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Abstract 
The effect of pressure gradient on stability of small disturbances is investigated using the linear stability theory. 
A flow past plain expansion corners with different angles is considered at Mach 6. The amplification of the 
disturbances in the boundary layer is computed using e-N method. The strong stabilizing effect of the expansion 
is observed numerically.  

1. Introduction 

The flow over supersonic and hypersonic aircraft elements (segmental-conical fairings, rudders, shields, elevons, flat 
joints of external geometry, nozzles, etc.) is associated with the formation of accelerating and decelerating flow regions, 
where the boundary layer may separete, interacting with shock waves, and form zones of increased heat transfer with 
subsequent attachment to the surface. The boundary layer turbulization greatly enhances this effect. Accelerating flow 
regions with a favorable (negative) pressure gradient occur in practice as often as deceleration zones. Despite this, the 
majority of computational, theoretical and experimental studies are devoted to decelerating flows, such as supersonic 
flow in a compression angle. The fundamental problem of the influence of a favorable pressure gradient on the stability 
of the laminar boundary layer and the relaminarization of the turbulent boundary layer is much less studied. This gap 
is especially noticeable for hypersonic flow regimes. There are several experimental studies confirming stabilization 
effect of the favorable pressure gradient, but there are practically no theoretical and computational studies of the 
mechanisms underlying it. 
Relaminarization of a high-speed turbulent boundary layer is associated with a significant decrease in heat loads on 
the aircraft elements. Therefore, an understanding of the basic process mechanisms of suppression of disturbances and 
turbulence in the accelerating flow regions will help predict the turbulence occurrence and optimize the thermal 
protection of high-speed aircraft of the new generation. 
The problem of the turbulent flow returning to the laminar state (relaminarization) has been studied since the middle 
of the last century. The investigation of subsonic turbulent flows in the presence of a large negative pressure gradient 
indicated the possibility of complete boundary layer relaminarization [1-4], which is associated with the curved nature 
of the streamline, as well as favorable longitudinal and normal pressure gradients, leading to a rapid reduction in the 
scale of turbulent pulsations in the accelerating flow region [5]. The magnitude of the longitudinal static pressure 
gradient and the free-stream Reynolds number were noted as the main flow parameters affecting the relaminarization 
process. On the basis of these quantities and parameters characterizing the boundary layer state, various criteria for the 
relaminarization onset are proposed. Relaminarization in a supersonic flow regime leads to a significant weakening of 
heat transfer from the hot gas to the streamlined surface. Today there is a large amount of experimental evidence that 
compressibility effects prevail over other effects in the external part of the boundary layer (for example, [6, 7]). The 
compressibility effect, in particular, includes weak damping and an increase of the size of large-scale vortex structures 
in expansion flow at Mach number 3 [6]. In addition, a significant suppression of  Reynolds shear stresses was noted 
in [6], as a result of which large-scale structures are weakened downstream. In a number of studies (including [6]), 
there is a significant suppression of small-scale structures immediately behind a fan of rarefaction waves. These 
conclusions are confirmed in experiments with Mach number 4.9 [8, 9]. In these studies, it was also found that the 
region of the boundary layer intermittency in the accelerating flow is reduced, shifting to its boundary. This makes it 
difficult to mix gas from an external flow into the boundary layer. 
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Experimental studies of relaminarization are also conducted in Russia. It is shown in Novosibirsk (ITAM) at Mach 
numbers from 2 to 4 [10]  that partial relaminarization of the boundary layer is possible (near-wall part up to 40% of 
full thickness). It was also noted that the Reynolds number increase mainly leads to an increase of the length of the 
relaminarized flow section, and a greater flow acceleration (greater negative pressure gradient) in the interaction region 
leads to greater decrease of turbulent pulsations. According to the results, it was concluded that relaminarization criteria 
obtained at subsonic velocities can be applied at high supersonic velocities. Experiments were carried out in Zhukovsky 
(TsAGI) in wind tunnels in the range of Mach numbers from 5 to 8. They indirectly confirm the stabilizing effect of 
the favorable pressure gradient on the body of revolution “ ogive-cone-cone-cylinder”, as well as on turbulent wedge  
relaminarization behind a single surface roughness [11]. 
Experimental studies (for example, [9]) provide a good test base for the development of RANS and LES computational 
models for this type of flows. However, there are very few publications on direct numerical simulation of the 
relaminarization phenomenon in supersonic flow regimes due to computational complexity. The authors know only 
the studies [12] at Mach number M = 2.9 and [13] at Mach number M = 2.7. A turbulent flow around the rarefaction 
angle was considered in both papers. A two-layer structure of the accelerating flow near the angle was found, 
confirming the experimental observations. The flow in the upper layer is characterized by a strong suppression of 
turbulent pulsations, which are slowly restored downstream. In the lower layer, the pulsations are suppressed only in 
a small vicinity near the turning point and are quickly restored downstream. The authors are not aware of similar studies 
at high supersonic and hypersonic velocities. It should be noted that the applicability of the relaminarization criteria at 
a Mach number above three is questioned in computations by the RANS method [14]. An insignificant number of 
papers at large Mach numbers does not allow us to obtain the necessary corrections for compressibility. In this regard, 
the importance of research in this area is emphasized. The evolution of a developed turbulent boundary layer in the 
region of a favorable pressure gradient is a complex task, which depends on many factors. In this study, an attempt is 
made to isolate these factors within the framework of the linear stability theory and in this way to study the mechanisms 
underlying the relaminarization phenomenon in hypersonic flow regimes. 
It is known that the process of a hypersonic flow transition into a turbulent state on a smooth surface in quiet conditions 
of hypersonic flight occurs through the formation, growth and merge of individual turbulent spots. The turbulent spot 
formation occurs under different scenarios depending on the undisturbed flow parameters, the background of 
disturbances and the temperature of the streamlined surface. According to the linear stability theory, the inclined waves 
of the first mode dominate over the hot (heat insulated) surface; the plane waves of the second mode dominate above 
the cooled surface. Although the turbulent spot is a substantially non-linear object, its development is influenced by 
linear stability mechanisms. Previous computations [15] reveal a relationship between the characteristics of turbulent 
spots and linear wave packets. There are a number of experimental and numerical studies (a detailed review is given 
in [15]), which confirm these results. 
It should be noted that the shapes and dynamic properties of turbulent spots in hypersonic flow regimes are poorly 
studied. To date, there are a small number of experiment-computed studies on the evolution of turbulent spots and 
wave packets in a hypersonic boundary layer on simple configuration bodies: a flat plate, a cone, a compression angle. 
And direct numerical simulation of turbulent spots on a plate at Mach 6 was performed in [16]. It is shown that the 
spot shape substantially depends on the temperature of the streamlined surface: the spots are strongly extended along 
the flow on the cooled wall, and they have a classic triangular shape on the heat-insulated wall. As far as the authors 
of this studies are aware, the evolution of spots at supersonic and hypersonic flow velocities in areas of favorable 
pressure gradient, such as a rarefaction angle, has not been studied enough. Estimated computations performed by the 
paper authors earlier for configurations such as axisymmetric rarefaction angle show that the instability of the 
hypersonic boundary layer is suppressed when the flow turns from the conical part to the cylindrical part of the surface. 
This study  is devoted to the investigation of the stabilization (relaminarization) mechanisms of turbulent flow under 
the action of a favorable pressure gradient within the framework of the linear stability theory. The fundamental problem 
of the development of small disturbances (wave packets) in the boundary layer at a rarefaction angle at the Mach 
number 6 is considered. The study of this issue will allow to set tasks of the direct numerical simulation of the 
development of wave packets and turbulent spots when flowing around the rarefaction angle, which will later allow to 
create the basis for a generalization of the intermittency models describing laminar-turbulent transition at hypersonic 
flow velocities on gradient hypersonic flows.The authors of this study have already taken the first step in this direction 
[17]. 

2. Formulation of linear stability problem 

Propagation of the disturbances through the expansion corner was modelled within the Linear Stability Theory (LST) 
framework, briefly discussed here. The small disturbances ( , )t′Q x  are introduced into the mean flow ( )Q x : 

DOI: 10.13009/EUCASS2019-201



EFFECT OF PRESSURE GRADIENT ON STABILITY OF SMALL DISTURBANCES 
IN SUPERSONIC BOUNDARY-LAYER FLOWS 

     

 3 

 ( , ) ( ) ( , )t t′Q x = Q x + Q x  (1) 

Here Q  is the vector of gas-dynamics values at a given point { , , , , }u v w p T=Q , , ,u v w  - components of the velocity 
vector in the global Cartesian reference frame, p  - pressure, T  - temperature. The substitution of (1) into Navier-
Stokes equations provides a system of nonlinear partial differential equation for the disturbance field if the mean flow 
is known. The system can be greatly simplified in the case of boundary layer problems when the disturbance can be 
expanded as follows (for a two-dimensional case { , }Tx y=x ): 

 
0

1 ˆ( , , ) exp( ) exp( ) ( ; , )
2

x y t i t i x y d dω α α ω α ω
π

∞ ∞

−∞

′ = −∫ ∫Q q  
(2) 

Here the elemental disturbances has the form of the travelling wave with the frequency ω  and streamwise wavenumber 
α : 

 ˆ( , , ; , ) ( ; , ) exp( )x y t y i x i tα ω α ω α ω= −q q  (3) 

 If the disturbances are considered small ( / 1<<Q' Q  ), the substitution of (3) in the stability system of equations 
produces the system of ordinary differential equations: 

 2 ˆ( ) 0AD BD C+ + =q  (4) 

Here D
y
∂

=
∂

 , matrices , ,A B C  in two-dimensional case are square 4x4 matrices depending on the mean flow ( , )x yQ  

and the characteristics of the disturbance ,α ω . The system (4) should be closed by a set of boundary conditions. In 
this work the propagation of unstable boundary layer enigenmodes is considered through the expansion corner. These 
modes of discrete spectrum (see Section 4) have the following set of boundary conditions: 

 1 2 3 5

1 2 3 5

ˆ ˆ ˆ ˆ0 : , , , 0,
ˆ ˆ ˆ ˆ: , , , 0.

y q q q q
y q q q q
= =
→∞ →

 
(5) 

The first set of conditions states that velocity disturbances at the wall vanish, and also the thermal impermeability of 
the wall. The second set states that the disturbances’ amplitude functions decay far outside the boundary layer. 

The system (4) with the uniform boundary condition (5) formulates the eigenvalue task. That means that the non-trivial 
solutions for the set of amplitude functions ˆ ( )yq  exists only when the dispersion relation between frequency ω  and 
wave-number α  is satisfied: 

 ( , ) 0F ω α =  (6) 

If for a given pair ( , )ω α   the condition (6) is satisfied, an eigenmode with a corresponding set of amplitude functions 
is found. There are several approaches to solve (6) numerically. The stability task can be solved in spatial or temporal 
approach. In the first case, α  is considered complex and ω  is considered real. In the second case, ω  is considered 
complex and α  is considered real. The first approach seems more correlated with the spatially growing disturbances, 
for this reason all the computations in this work performed with spatial formulation.  

The first method of solving (6) developed in [18] is to reduce the system (6) to the system of first-order equations with 
the new vector of unknowns  

 / / 1 6{ , , , , , } { ,..., } .T T
u du dy v p T dT dyq q q q q q q q= =q  (7) 

The system (4) is then rewritten in the following form: 

 
d
dy

=
q Bq


  
(8) 
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Here the matrix B  also depends on mean-flow values and characteristics of the disturbance.The one-dimensional 
computational domain usually contains several thicknesses of boundary layer. In this work the integration of (8) is 
performed numerically with the Runge-Kutta scheme of 4th order of approximation with an orthogonalization of basic 
functions to avoid numerical singularities. This enables to calculate the value F  from (6) for a given pair of ( , )ω α . 
The equation (6) is solved numerically using the Newton method when ω  is fixed and eigenvalue α  is sought. It is 
to mention here that this method requires a good initial approach for the eigenvalue which is a common requirement 
for the Newton method to converge. 

Another method of solving (6) is to solve (4) directly with spectral methods. If the global vector of unknowns in (4) is 
written for the discretized system (1) (1) (1) (1) ( ) ( ) ( ) ( )

1 2 3 4 1 2 3 4( , , , ,..., , , , )N N N N
gq q q q q q q q q=  , the system (4) can be rewritten in 

the form 
2

α αα α+ =M A B  (9) 

 The matrices , ,α αM A B  are square sparse matrices of large dimensions (4Nx4N) where N is the number of grid points 
in the discretization. The square term in (9) with all the terms divided by the Reynolds number can be often neglected 
which produces a generalized linear eigenvalue problem 

α αα =A B  (10) 

The spectrum of (10) can be found numerically using various linear algebra routines. The original method of solving 
the system (4) as (9) was proposed in [19]. In this work the method was implemented with the help of QR-
decomposition method from the LAPACK library. This procedure allows to produce the full spectrum of the boundary 
layer at a given point with both discrete and continuous modes for a fixed frequency. This is an important tool in the 
case when several discrete modes are present in the spectrum and the eigenvalues of α  can also be used as initial 
approaches for the integration method. 

The numerical solution of (8) or (10) provides the local growth rates of the disturbances at a given point iσ α=−  . The 
integration of the growth rate provides the logarithm of the amplification of the disturbance from its origin: 

00

ln( ) ( )
x

x

Q
N d

Q
σ ξ ξ≡ = ∫  

(11) 

This is the basic idea of the so-called e-N method [20], [21], which is well-developed for the last 50 years and is the 
most physically-based engineering tool for computation of the amplification of disturbances in the boundary layer. The 
integration in (11) in this work is performed for a set of plane disturbances (see Section 3) of fixed frequencies, the 
locations 0x  correspond to the neutral point of the disturbances.  

3. Configuration of the mean flow 

In this work the propagation of disturbances along the surface of expansion ramp is considered. Figure 1 shows the 
temperature flowfield for the case of expansion 010θ = . The non-dimensional temperature value is presented: 

* */T T T∞= . Here *T  is the dimensional value, *T∞  is the dimensional free-stream value. The parameters that are fixed 
for all cases considered are as follows: the free-stream Mach number is 6, the wall temperature is 150K, the free-stream 
temperature is 73.2K. These parameters correspond to the relatively cold wall. At these conditions usually the second 
mode disturbances are dominant in the boundary layer. The Reynolds number computed over the characteristic length 

0.1L m=  is 6Re 10L = . The geometry scales at Figure 1 are non-dimensional and obtained as follows: 
* */ , /x x L y y L= = . The flat-plate section before the expansion is 0.75m long and the expansion part is 0.75m long. 

The mean laminar flowfields over the expansion corner were computed using the in-house code HSFlow [22]. The 
stationary flow fields were obtained by marching in time with the TVD (Total Variation Diminishing) scheme that has 
the second-order of accuracy in space and time. A fine two-dimensional strucutred meshes were used with an average 
number of grid nodes 800x600 in streamwise and wall-normal directions, correspondingly. Approximately 250 grid 
nodes were inside the boundary layer at the point where expansion starts (point x=0, y=0 at Figure 1). The viscosity 
was calculated using the Sutherland’s law with the constant 110.4sT K=  , Prandtl number was fixed Pr 0.72= . 
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Figure 1: Temperature flowfield over the expansion ramp ( 010θ = ).  

The following angles of the expansion were considered: 0 0 0 00 ;5 ;10 ;15θ = . The first case corresponds to the flat-plate 
flow. For all cases considered e-N calculations were performed with the computed flowfields. Within the locally 
parallel LST-framework, the stability of the boundary layer depends on the local boundary-layer profiles extracted at 
a given point. Here we provide some analysis on the mean flow profiles along the inviscid steamline on the boundary 
layer edge. Figure 2 provides the profiles of temperature in the boundary layer at various x-stations. It is seen that 
before the expansion corner the profile has a typical flat-plate distribution. After the corner there is a region where the 
inviscid expansion flow resides at the upper edge of the boundary layer, modifying it drastically (section x=0.3). Far 
away from the corner the boundary layer and inviscid expansion flow split, and the temperature profile again resemble 
that of the flat plate, although the edge temperature changes significantly. Thus, the region of the flow near the corner 
has a rapid variation of boundary layer thickness and profiles, which is the reason for the complex disturbance spectrum 
in that region (section 5). The strong connection between the boundary layer flow and the inviscid expansion flow is 
observed in the region 0 1.0x< < . 

 

Figure 2: Boundary layer temperature profiles at various stations of x. Case 010θ = . 

4. e-N calculations 

Stability computations were performed with the e-N method discussed above. The stability module of the HSFlow  
package [23] was used to calculate N-factors of disturbances as they travel over the expansion corner. The 
computational routine was as follows: 

DOI: 10.13009/EUCASS2019-201



Chuvakhov P.V., Obraz A.O., Alexandrova E.A., Fedorov A.V., Egorov I.V. 
     

 6 

1) Do a global search of unstable modes: at various stations. The wide range of frequencies were considered to 
find unstable waves (3) with positive growth rates.  

2) Calculate N-factors for disturbances according to (11) for a set of fixed frequencies. The calculations are 
performed from the neutral point downstream to the end of computational domain when possible. The 
integration of N-factors is performed along the surface of the model. 

Computations performed for a flat-plate case ( 00θ = ) show that the dominant waves are plain (lateral wavenumber 
0β = ) second mode disturbances. This is why only plain waves are considered in Section 2. Fig. 3 shows the computed 

N-factors. It is seen that at the point 0.0x =  where the expansion would occur at non-zero θ , the N-factors are 
relatively large ( max 6.5N ≈ ). At the end of the plate, the critical value 10crN ≈  is reached which is a typical value for 
the onset of laminar-turbulent transition dominated by second-mode disturbances in low-noise environment. 

 
Figure 3: The N-factors for a flat plate (no expansion) case. Dashed line shows the position of the expansion corner 

Computations performed for the 05θ =  case are presented at Figure 4. It is seen that the expansion damps the high-
frequency disturbances coming from a flat-plate section of the geometry (a disturbance having the highest N-factor at 
point 0x =  has the dimensional frequency * * / (2 ) 106 kHzν ω π= =  ). The boundary layer thickness nearly doubles 
after the expansion, and the set of lower frequency disturbances start to grow at the expansion part of geometry (the 
dimensional frequency * 44kHzν =  has the highest N-factor at the end of computational domain 7.5x = ). The 
damping effect of the expansion is quite strong, although it is seen that the disturbances of the second family start to 
grow with the increments comparable to those of disturbances at the flat plate part. It is to be noted here that the 
spectrum of the boundary layer becomes quite complex in the viscinity of the corner. Unstable disturbances coming 
from the flat-plate region synchronize with the entropy cut of the continuous spectrum. A number of new discrete 
modes also originate in this region. This means that in the mode branching region there different possibilities to 
continue the e-N calculations choosing different modes downstream of the synchronization points. This problem is 
discussed in Section 5. 
N-factor computations performed for the case 010θ =  are presented at Figure 6. It is seen that the further increase of 
the boundary layer thickness downstream of the corner point leads to the damping of the disturbances originating on 
the expansion part of the model. The most amplified high-frequency disturbances coming from the flat-plate part are 
also damped at higher rates in comparison to the case of 05θ = . The value of N-factor for the envelope at the end of 
the computational domain is near 2, indicating strong damping of the linear disturbances. A similar result is observed 
for the case 015θ = . Figure 7 shows the computed N-factors to the mode branching points (see Section 5).   
It is important to note here that as the flow passes the corner, the spectrum of the boundary layer differs dramatically 
and mode branching was observed. This provides different strategies for the stability computations, as discussed below. 
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Figure 5: computed N-factors for the case 05θ =   

 

Figure 6: computed N-factors for the case 010θ =  
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Figure 7: computed N-factors for the case 015θ = . 

5. Analysis of the boundary layer spectrum 

Upstream of the expansion corner the boundary layer has the spectrum typical for cold hypersonic flat plate. Figure 8 
shows the calculation of the boundary layer spectrum at the station 0.01x = −  computed with (10).All calculations of 
the spectra are performed for the frequency having the largest N-factor at the point 0x = . The discretization has 301 
points, and computational domain has approximately 5 thicknesses of the boundary layer. Nonuniform grid was used 
for stability computations and half of the nodes reside in the region with approximately 2 thicknesses of the boundary 
layer. The eigenvalues of α  are made non-dimensional using the displacement thickness *δ  at the given point: 

* *α α δ= , frequency is non-dimensionalized as follows: * * */ eUω ω δ=  ,  where *
eU  is the magnitude of the velocity 

vector at the boundary layer edge.  
Downstream the corner the spectrum changes. As one moves along the surface of the model downstream, the unstable 
mode moves upstream in the phase plane, and becomes stable. A set of new modes emerge on the upper phase plane, 
and at least one of them (the one with the smallest increment) starts to move along the slow acoustic branch. The 
spectrum for the section 0.03x =  is presented at the Figure 9 
Further downstream a new discrete mode detaches from the fast acoustic branch and starts to move to the 
entropy/vorticity branch of the continuous spectrum. Far from the corner only one fast decaying mode is present. It is 
important to note here, that all the discrete modes found downstream of the corner with the frequency band coming 
from the flat-plate section are stable. Nevertheless, the decrements of the modes are quite different. Calculations of N-
factors in this case require selection of the modes to continue computations at synchronization and/or branching points. 
The Figures 5-6 were obtained when calculations were performed with the most decaying discrete mode. Figure 7 was 
obtained when now calculations were carried out downstream of synchronization between second mode and 
vorticity/entropy branch of the spectrum. 
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Figure 8 : Boundary layer spectrum for the station 0.01x = −  , frequency 0.332ω = . Unstable discrete mode with 

eigen value 0.37 0.01iα = −  is clearly seen. 

 
Figure 9 : Boundary layer spectrum for the station 0.01x = −  , frequency 0.332ω = . Unstable discrete mode with 

eigen value 0.37 0.002iα = −  is clearly seen. Another mode with the eigen value 0.42 0.007iα = +  emerges. 
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Figure 10 : Boundary layer spectrum for the station 0.3x =  , frequency 0.332ω = . The second mode enters the 
entropy/vorticity cut. A new mode detaches from fast acoustic branch and starts to move to the entropy/vorticity 

branch. 

4. Conclusion 

The effect of pressure gradient on the small disturbances developing in the boundary layer was considered numerically 
with linear stability theory. A flow past a plain expansion corner was considered. A set of expansion corners in the 
range 0 – 15 degrees was considered. It was shown that the expansion has the strong damping effect on the disturbances. 
The boundary layer spectra was analyzed in the viscinity of the expansion corner. A set of discrete modes were 
observed. This information will be used in the DNS computations of wave packets of disturbances passing the 
expansion corner. 
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