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Abstract
In this paper, a direct approach is presented to tackle the multi-impulse rendezvous problem consider-

ing the impulse limit. Particularly, the standard Lambert problem is extended toward several consequential
orbit transfers for the rendezvous problem. A number of different evolutionary algorithms are taken into
consideration. It is shown that the proposed approach can lead to the optimal multi-impulse transfer
maneuver that has the minimum amount of fuel similar to the traditional two-impulse transfer without
violating the impulse limitation. Results also indicate that the approach is efficient even when the number
of stages increases due to lower impulse limitations.

1. Introduction

Long-range rendezvous is the early phase of the space rendezvous, in which the spacecraft is expected to have an orbital
maneuver that transfers the space vehicle from the initial orbit to a final orbit. When some specific considerations such
as the impulse limit are applied, the orbit transfer becomes more challenging. Because of that, the problems usually can
not be solved analytically and therefore, semi-analytical and numerical approaches have been taken into consideration
by researchers more, and analytical solutions are obtained only for specific missions and assumptions.

In recent years, many approaches have been developed to face the impulsive maneuvers in different problems
with various conditions, limitations and considerations. Such considerations may be impulse limit, time limit, orbital
perturbations or uncertainties in some design parameters. For instance, in research by Kitamura et al.13, an analytical
solution is obtained for minimum energy orbit transfers. The time-averaged Hamiltonian derivation was utilized in
this research and good results were achieved. However, the method is only applicable to coplanar transfers when the
transfer time is fixed. Such analytical approaches commonly use optimal control theory and the averaging method16

under heavy assumptions either regarding the space mission or the thrust vector. As another example, an explicit form
of the transfer trajectory under the assumption that the thruster direction is expressed as a combination of sinusoidal
functions, is obtained by Asai et al.2. In research by Koblick and Xu14, a semi-analytic approach is developed to
determine the minimum velocity increment for a two-impulse rendezvous. Although this approach will work for both
coplanar and non-coplanar 3D geometries for any orbit type, the impulse limit is not considered. Research by Xie et
al.25 is another example which is dedicated to impulsive orbital rendezvous with respect to a constraint on the transfer
trajectory for coplanar transfers. However, only two-impulse transfers are considered in this research. Similarly,
constraints considered in research by Zhang et al.29 consist of a lower bound for perigee altitude and an upper bound
for apogee altitude, but no observation is applied through the magnitude of impulses. Research by Santos et al.9

is dedicated to a four-impulse transfer. This research aims to analyze rendezvous maneuvers between two coplanar
circular orbits, seeking to perform this transfer with the lowest possible fuel consumption, assuming that this problem
is time-free and uses four burns during the process. The assumption of four burns is used to represent a constraint
posed by a real mission. In this research and other similar papers,21 the Lambert problem (sometimes referred to as
Lambert method), which is actually an orbit determination method based on two position radii and a transfer time,
is mostly involved in impulse orbital maneuvers. Handling the terminal condition and involving fewer variables in
optimization are the main reasons for using the Lambert method in optimal impulsive maneuvers. As for instance,
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research by Zhang et al.28 focused on the two-cooperative-spacecraft-rendezvous problem with the same direction of
terminal velocities, i.e., the same arrival flight-path angle based on the Lambert method. Also, Shen and Tsiotras20

developed a method for determining the optimal two-impulse solution. However, Shen and Tsiotras’s method is only
for coplanar circular orbits. A closed form solution to the minimum-fuel Lambert problem between two assigned
positions in two distinct orbits is presented by Avendano and Mortari3. In research by Zhang30 an analytical linear
covariance prediction is formulated for Lambert’s boundary value problem with navigation errors and in research by
Carter and Humi4, a new approach is presented for the problem of optimal impulsive rendezvous of a spacecraft in an
inertial frame near a circular orbit. Other research also exists5, 6, 12, 26, which is dedicated to the rendezvous problem
with various assumptions and considerations.

Having an overview of the research in recent years shows that the problem of facing the fuel-optimal multi-
impulse non-coplanar transfer has not received much attention in the literature. This paper presents an approach
to confront this problem by introducing a new method based on the extension of the Lambert problem. The main
focus in this research is to find the best multi-impulse orbit transfer, which satisfies the impulse limit for a given
space mission while minimizing the fuel consumption. The proposed approach considers the entire orbital maneuver
as several consecutive Lambert problems. In this approach, every two sequential impulses form a unique Lambert
problem and the transfer trajectories are connected to each other through some orbits, called the intermediate orbits.
The optimization problem is created and the orbital elements of the intermediate orbits and the variables associated
with the Lambert problems are considered as the decision variables. The objective function includes total velocity
increment and the penalty term associated with the impulse violations. Several evolutionary algorithms are used and
compared for dealing with the problem. Their convergence and the probability of reaching the solution with minimized
fuel without violating the impulse limit is investigated.

The paper is organized as follows. The developed approach is presented in Section 2, where the concept of
multi-impulse orbit rendezvous based on the extension of Lambert problem is explained. Section 3 briefly describes
the evolutionary algorithms employed in this research. Results from the numerical simulations are presented in Section
4. Finally, Section 5 concludes the research.

2. The Approach

This section is dedicated to describing the approach developed in this work. Since the approach is generally based on
the standard Lambert problem, the application of the Lambert problem in the two-impulse orbit transfer is explained
first. Next, the extension of the two-impulse orbit transfer based on the Lambert method into multi-impulse orbit
transfer is introduced. The variables involved in the approach are presented, and the formulation of the objective
function is discussed.

2.1 Two-impulse rendezvous

In a general long-range space rendezvous mission, all of the orbital elements suffer changes. The typical way to
accomplish this mission is to use a two-impulse transfer based on the Lambert method. This transfer is a trajectory that
has one intersection with the initial orbit and one with the final orbit, and the impulses act on these intersections. A
schematic diagram of this concept is illustrated in Fig. 1.

In this figure, ri and r f represent two vectors corresponding to each intersection and t denotes the transfer time.
Finding the best transfer trajectory that has the least fuel consumption is an optimization problem. The unknown
variables in this problem are the transfer time and the points on the initial and final orbits, where the spacecraft ascend
and descend between two impulses. These points can be defined by their true anomalies θi and θ f as the orbital
elements of the initial and final orbits are known (obtaining state vectors from orbital elements is provided in Appendix
I7). These variables act as the decision variables in the optimization problem and define a Lambert problem. Using
the Lambert method based on the standard Gauss approach, the orbital elements of the transfer trajectory along with
the magnitude of impulses at each intersection ∆v1,∆v2 are obtained (details are provided in Appendix II7). Following
these calculations, the overall fuel consumption can be obtained as the objective function of the optimization problem
as follows.

J = |∆v1| + |∆v2| (1)

Considering this objective function, the optimization problem for the two-impulse long-range rendezvous has
only three unknown variables (θi, θ f , t). Therefore, it can be easily approximated with the help of an evolutionary
algorithm (EA) or a non-linear programming (NLP) method with small a number of iterations. However, if a propulsion
system with low impulse is about to be utilized in the mission, the obtained impulses may exceed the limitation. Such
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Figure 1: Scheme of a two-impulse rendezvous.

a condition dictates an impulse limit, which should be considered when minimizing the overall fuel consumption.
Depending on the limitation, the problem might not be solved with a two-impulse transfer and multiple impulses are
needed to satisfy the constraint on the impulse limit. Therefore, a new approach is needed, in which the multi-impulse
orbital maneuver is considered for long-range space rendezvous. In this approach, the impulse limit of the propulsion
system is taken into consideration along with minimizing the fuel consumption.

2.2 Multi-impulse rendezvous

Consider a multi-impulse orbit transfer as illustrated in Fig. 2. This figure shows an orbital maneuver from the initial or-
bit, with orbital elements denoted as a0, e0, i0,Ω0, ω0, to a final orbit with orbital elements denoted as a f , e f , i f ,Ω f , ω f .

Figure 2: Multi-impulse long-range space rendezvous.

The whole maneuver is divided into N stages and each stage represents a unique Lambert problem. Having N
stages will generate N −1 intermediate orbits, represented by ak, ek, ik,Ωk and ωk (k = 1 to N −1), along with N jumps.
Every jump is denoted by initial and final anomalies, denoted as θi,1 and θi,2, which correspond to the initial and final
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state vectors and the transfer time ti in each stage. By considering the orbital elements of the stages and the Lambert
problem variables (θk,1, θk,2, tk) as the inputs, a complete multi-impulse orbit transfer with 2N impulses (∆vk,1 and ∆vk,2)
is defined. Therefore, the decision variables, denoted by the vector ~X, will be formed as:

~X = ~X(ak, ek, ik,Ωk, ωk, θk, j, tk) (2)

Following this approach, the orbit transfer problem with thrust limitation consists of 2N − 1 sets of orbital
elements. These sets contain N − 1 intermediate orbits, which are the inputs of the problem and N jumps, which are
trajectories representing the solution from each stage corresponding to a minor Lambert problem.

This approach has several advantages over the traditional methods, which usually consider the impulses and
their direction in three dimensions along with impulse timing as the inputs of the problem. The first advantage is
that the total number of inputs is lower in comparison to the traditional approach, in which the direction, magnitude
and time of impulses are considered as the decision variables. This is due to the fact that by defining multiple minor
Lambert problems, the majority of the characteristics of the transfer trajectories will be revealed. In other words, the
shape of the transfer trajectories is taken into account instead of the impulse directions in Cartesian coordinate system.
Regarding this fact, this approach can be called an impulsive shape-based approach. The next advantage is handling
the terminal conditions. The initial and final condition for point to point, point to orbit and orbit to orbit cases can
be easily handled in the current approach by setting the Lambert problem variables in the first and last stages either
free or fixed. However, satisfying the terminal condition in the traditional approach is an issue, which usually needs
to be considered as an additional term in the objective function. Besides, since the shape of stages is defined via the
actual orbital elements with physical meanings, the method benefits from rapid convergence as the orbital elements
have known boundaries in real applications.

2.3 The objectives

As the boundary conditions are already satisfied by the proposed approach, two types of objectives are defined for the
problem including fuel and impulse violation. Regarding the proposed approach, the overall fuel consumption in terms
of ∆v in every stage is denoted by J f and is defined as:

J f =

N∑
k=1

(
∆vk,1 + ∆vk,2

)
(3)

The impulse violation regarding a given impulse limit needs to be calculated for each ∆v in every stage. As a
result, the penalty denoted by the jth ∆v in kth stage is calculated as

Jk, j =
1 + sgn(∆vk, j − η)

2
(∆vk, j − η) (4)

where η is the given allowable impulse during the orbit transfer. Consequently, the overall magnitude of the penalty
function due to the impulse violations in all stages is calculated as:

Jv =

N∑
k=1

(
Jk,1 + Jk,2

)
(5)

Having the cost functions, the overall objective function can be written via scalarizing the two objectives as:

J = J f + ζJv (6)

where ζ is the scalarization coefficient for impulse violation. The impact of the choice of the underlying scalarizing
coefficient is still far from being well understood in the literature in space orbit design and optimization problems.
Consequently, it is very important and crucial to choose these parameters according to the type of space transfer.

2.4 Simulation

Taking into account the optimization variables, the problem can be illustrated as in Fig. 3.
As shown in Fig. 3, each cost function evaluation consists of solving N number of Lambert problems. Each

Lambert problem is formed for two sequential intermediate orbits and associates with three unknown variables. The
number of stages (N) should be selected according to the given impulse limit (ζ). One option for obtaining an estimation
for the necessary number of impulses is using the solution of two-impulse orbit transfer (N = 1). Having the total
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Figure 3: Scheme of the cost function evaluation.

velocity increment for this problem (∆vN=1), an estimation of the number of necessary impulses for multi-impulse
transfer (N > 1) can be obtained as:

ϕ =
⌈∆vN=1

η

⌉
(7)

where ϕ is the minimum total velocity increment for the two-impulse orbit transfer and η is the impulse limit. Taking
into account that each stage consists of two impulses in the proposed approach, one can estimate the number of stages
as N = dϕ/2e. Obviously, if the algorithm finds a solution that includes one impulse almost equal to zero, it means that
the optimal solution for that problem consists of an odd number of impulses.

Following the proposed approach, further aspects of the presented method can be analyzed. The one unique
feature of the proposed approach is that by increasing the number of stages, the problem is converted to multiple two-
impulse transfers that can be separately analyzed. For example, when N = 2, the rendezvous problem is a four-impulse
transfer, including two sequential two-impulse transfers. If this problem is solved by the proposed approach and the
obtained solution contains the overall fuel consumption similar to or less than the two-impulse transfer (N = 1) without
violating the impulse limit, the process can be considered as a successful transition from N = 1 to N = 2. If we assume
that the obtained solution for N = 2 is optimal, then the two sequential two-impulse transfers inside this solution are
also optimal for this transfer. Now, each of these transfers can be seen as an isolated orbit transfer mission. They can
individually be broken down into two other four-impulse transfers based on the amount of impulses that exist in every
jumps. So, by performing this process in both problems and solving the two new four-impulse transfers, the obtained
solution will be a solution for N = 4, which is an eight-impulse rendezvous. If only one of them is broken down
to a new four-impulse transfer, then the overall solution will be a six-impulse rendezvous (N = 3). In conclusion, if
a specific number of stages is required, there are two ways to obtain a solution regarding that number of impulses.
The first one is considering the required number of stages directly and breaking down the two-impulse transfer into
N stages and solving the one multi-impulse rendezvous problem as was done in a sample rendezvous mission in the
previous subsection. The second option is to break down the two-impulse transfer (N = 1) into a four-impulse transfer
(N = 2), solve the problem and then break down the obtained two-impulse transfers into another four-impulse transfers
and solve the problems in each conversion and repeat this process over and over until the required number of stages is
achieved. In this first case, the optimization algorithm is used only once in solving a big problem with a high number
of variables. But in the second case, the number of optimization variables is always constant, which is associated with
solving the problem with two stages. However, the optimization algorithm must be used several times in order to divide
the stages as required. This recursive strategy is discussed with some examples in the empirical tests in this paper.

3. Evolutionary Algorithms

The proposed approach turns the multi-impulse orbit rendezvous mission into an optimization problem in continuous
domain. Having N number of stages, the problem will have n = 8N−5 decision variables, including 5(N−1) unknown
orbital elements for intermediate orbits plus 3N unknown Lambert problem variables in each transfer.

We considered optimizing this problem by applying a set of different evolutionary algorithms (EAs). EAs are
general-purpose search procedures based on the mechanisms of natural selection and population genetics8. These
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algorithms are appealing to many users in different areas of engineering, computer science, and especially in spacecraft
trajectory optimization22, to name a few, due to their simplicity, ease of interfacing, and extensibility. EAs have
attracted wide attention and found a growing number of applications, especially in the last decade.

By considering the scheme of the problem based on the proposed approach in Fig. 3, the decision variables are
N − 1 sets of the orbital elements of the intermediate orbits (ak, ek, ik,Ωk, ωk), and N sets of Lambert problem variables
(θk,1, θk,2, tk). The objective function is defined as in Eq. 6, which consists of the overall fuel consumption and the
penalty function for impulse violations. Five types of EAs are selected in this research to search for the best solution
in this problem. They are briefly introduced in this section. However, the reader is urged to refer to the provided
references for details.

The first EA considered in this research is the Genetic Algorithm (GA). GA, a heuristic search method used in
artificial intelligence and computing,11 is widely used for finding optimized solutions to spacecraft trajectory optimiza-
tion problems.22 It is based on the theory of natural selection and evolutionary biology and an excellent technique
for searching through large and complex data sets. They are considered capable of finding reasonable solutions to
complex issues1 as they are highly adept at solving unconstrained and constrained optimization issues. The typical
GA as described in11 is used in this research. There are two basic parameters of GA, including crossover probability
and mutation probability. The parameter related to crossover probability says how often crossover will be performed
while the parameter related to mutation probability defines how often parts of chromosome will be mutated. Details
are provided in10.

Particle swarm optimization (PSO) is another population based stochastic optimization technique, inspired by so-
cial behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA)27. The system is initialized with a population of random solutions and searches for
optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation.
In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum parti-
cles. The process of PSO depends on some parameters, including two learning coefficients (global and personal) and a
velocity limiter, which limits the velocity of the particles during the optimization process. In modern versions of PSO,
the velocity is also dampened by a parameter called the damping ratio in order to improve the convergence24.

Estimation of Distribution Algorithms (EDAs)15 are stochastic heuristic search strategies that form part of the
evolutionary computation approaches, where a number of solutions or individuals are created every generation, evolv-
ing once and again until a satisfactory solution is achieved. In EDAs, the problem specific interactions among the
variables of individuals are taken into consideration. While in common evolutionary computations, the interactions
are kept implicitly in the operators, in EDAs the interrelations are expressed explicitly through the joint probability
distribution associated with the individuals of variables selected at each generation. The task of estimating the joint
probability distribution associated with the database of the selected individuals from the previous generation constitutes
the most difficult work to perform. This requires the adaptation of methods to learn models from data developed in the
domain of probabilistic models. Various sampling and learning methods can be considered in different EDAs. Since
the multi-impulse space rendezvous problem is an optimization problem in continuous domain, two types of EDAs are
considered in this research including an EDA based on Multivariate Gaussian Distribution (EDA-MGD) and an EDA
based on Univariate Gaussian Distribution (EDA-UGD).17 These algorithms mainly differ in the class of probabilistic
models employed and the learning and sampling methods they use. However, the selection and replacement strategies
used can also determine important differences in the behavior of EDAs. Therefore, different techniques are chosen in
this research for the two selected EDAs. Generally, it is difficult to decide which type of EDA is the best choice for a
given problem. Therefore, comparing at least a short list of combinations of EDA operators in terms of their efficiency
is necessary19.

Differential Evolution (DE) is a stochastic direct search and optimization algorithm, and is an instance of an
evolutionary algorithm from the field of evolutionary computation. It is related to sibling evolutionary algorithms such
as the GA, and has some similarities with PSO23. DE includes three parameters including the scaling factor and the
lower bound and upper bound of crossover weight. Experimental results have shown that their values have great effect
on the convergence speed and solution quality18. For this research, the provided values have shown to have the best
performance of DE in most instances of the problem.

4. Numerical Results

For the sake of validating the proposed multi-impulse approach, a variety of experiments have been conducted. Each
experiment is tackled using the presented EAs. In this section, first the boundaries of the decision variables in the
problems are provided, along with the settings of the EAs utilized in this research. Then, the experimental results are
presented and discussed.
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4.1 Parameter settings of EAs

For all the algorithms in this research, the same population size and generations are considered as npop = 10N, and
ngen = 20N, where N is the number of stages considered in the multi-impulse orbit transfer based on the proposed
approach. The boundaries of the decision variables are considered as shown in Table 1.

Table 1: Boundaries for EAs

Semi-major axis Eccentricity Inclination Right Ascension
0 < ak < 50000 0 < ek < 1 0 < ik < 2π 0 < Ωk < 2π

Arg. of perigee Initial true anomaly Final true anomaly Transfer time
0 < ωk < 2π 0 < θk,1 < 2π 0 < θk,2 < 2π 0 < tk < 24h

To provide reproducibility for the results, the values of the parameters for each algorithm that were briefly
described in the previous section are provided in Tables 2, 3, 4, 5, 6.

Table 2: Parameters for GA

Crossover percentage 0.6
Crossover range factor 0.3
Mutation percentage 0.4
Mutation range 0.2

Table 3: Parameters for PSO

Personal Learning Coefficient 1.8
Global Learning Coefficient 2
Damping Ratio 0.95

Table 4: Parameters for DE

Scaling factor 0.7
Minimum crossover weight 0.2
Maximum crossover weight 0.8

Table 5: Parameters for EDA-UGD

Sampling+Learning Univariate
Selection method Truncation
Selection parameter 0.1
Replacement method Elitism
Replacement parameter 0.2

Table 6: Parameters for EDA-MGD

Sampling+Learning Multivariate
Selection method Exponential
Selection parameter 1.5
Replacement method Elitism
Replacement parameter 0.3

Readers are urged to refer to the references regarding the details of the optimization process in each algorithm.
Following the proposed approach, several rendezvous problems in different space missions are taken into account for
simulation. Various aspects of the obtained solutions are analyzed and finally the focus of the research is to make a
comparison between the performance of different EAs.

4.2 Coplanar Transfer

The first case that is selected for the simulation is a coplanar orbit transfer. This type of transfer is applicable when the
initial and final orbits are in the same plane. In such a case, the two orbital elements inclination (i) and right ascension
Ω are the same in the two orbits. As in this case, the coplanar transfer represented in Table 7 is considered.

Table 7: Orbital elements in coplanar transfer

Semi-major axis (a) Eccentricity (e) Argument of Perigee (ω)

Initial orbit 9000 km 0.2 0◦

Final orbit 20000 km 0.3 120◦

The impulse limit of η = 500m/s is considered for this mission. As the first step, the two-impulse transfer is
considered to have an approximation for the required number of stages. The solution for the two-impulse transfer
is obtained by means of a non-linear programming method (MATLAB fmincon() with default parameters is used
considering a random initial). The best solution found is a transfer trajectory that starts on the initial orbit at the true
anomaly of θi = 134.35◦ and ends on the final orbit at true anomaly of θ f = 151.2◦. The transfer time is 8642 seconds
and the overall velocity increment is ∆vN=1 = 2.0312km/s. Considering this value and the given impulse limit, the
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number of stages is considered as N = 3 and the weighting coefficient of the penalty for the impulse violation is
considered as ζ = 10. The problem is formed according to the presented approach and the afformentioned EAs are
utilized to reach the best solution. Each algorithm is run 10 times and the best convergence of the algorithms considered
is shown in Fig. 4.

In this simulation, all EAs started with the same initial population. Regarding the obtained results, PSO and
EDA-MGD have the best convergence in comparison to the other EAs as they found a solution with similar fuel
consumption as the two-impulse transfer without violating the given impulse limit. The final solution obtained by each
algorithm is shown in Fig. 5, in which the amount of impulse violation is separated from the overall velocity increment.
Although all EAs tried to minimize a unique objective function, which includes total fuel consumption and the penalty
for the impulse violation, not all of them managed to find feasible solutions in terms of impulse limit. Besides EDA-
MGD, the solution found by PSO also satisfies the impulse limit. Solutions by GA, DE and EDA-UGD do not satisfy
the impulse limit, even when the overall fuel consumption is near the one associated with the two-impulse transfer. The
two-impulse transfer (N = 1) that was obtained initially is illustrated in Fig. 6 along with the best solution found so far
between all of the obtained solutions for the six-impulse transfer (N = 3) in Fig. 7.

The obtained impulses satisfy the impulse limit considered for this space mission. According to Figs. 6 and 7,
the overall fuel mass of the obtained six-impulse transfer is almost the same as the two-impulse transfer, which shows
that the approach is effective in finding a transfer scenario without violating the impulse limit while having the same
amount of fuel as in the two-impulse transfer. Detailed results regarding the obtained solution are provided in Table 8.

Table 8: Detailed results for multi-impulse coplanar rendezvous (optimization variables are in bold)

Initial orbit k = 1 Intermediate orbit k = 2 Intermediate orbit k = 3 Final orbit
a 9000 10465 11093 13413 17541 19965 20000
e 0.2 0.16936 0.21609 0.28747 0.43598 0.29942 0.3
ω 0 48.436 52.741 87.287 104.7 119.74 120
θi 132.19 83.754 91.468 56.922 161.32 146.28 -
θ f - 4.3051 0 53.236 35.823 72.087 71.824
t - 8824.7 2157.7 15353 8037 21752 -

As shown in Table 8, by having the Lambert problem variables within a solution, the rest of the orbital charac-
teristics of the transfer trajectories can be calculated along with the coast times (the time when the spacecraft stays in
the intermediate orbit until reaching the next impulse) between two sequential Lambert problems.

4.3 Empirical Tests

Following the recursive strategy discussed in the previous section, it is advantageous to see whether or not the solution
to the four-impulse rendezvous (N = 2) is always better or as good as the two-impulse rendezvous (N = 1) in terms
of fuel consumption without violating the given impulse limit. A clear example for this investigation is the bi-elliptic
Hohmann transfer,7 which has a lower fuel than the two-impulse Hohmann transfer in some special cases. In order to

 

Figure 4: Best convergence of the EAs in multi-
impulse coplanar rendezvous.

 

Figure 5: Objectives including the overall velocity incre-
ment and the impulse violation.
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Figure 6: Two-impulse (∆v = 2.0312km/s, η =

∞) long-range rendezvous.
Figure 7: Six-impulse (∆v = 2.0608km/s, η = 500m/s)
long-range rendezvous.

analyze this subject, a high number of long-range rendezvous missions (763 instances) is considered. In each instance,
the orbital parameters of the initial and final orbits are randomly generated so that |∆a| < 10000km, |∆e| < 0.3,
|∆i| < 60◦, |∆Ω| < 40◦ and |∆ω| < 40◦. For each instance, first, the two-impulse transfer (N = 1) is considered
and solved by means of the mentioned EAs. Each algorithm is run 10 times and the best solution found by each
algorithm is saved and assumed to be the best possible performance of that algorithm for that specific instance. Then,
for each instance, the solutions obtained by all EAs are gathered and the best solution is extracted, denoted by JN=1
and considered as the global optimal solution for that instance. Next, the algorithms are sorted and ranked according to
the quality of the solutions they obtained in comparison to the global optimal solution for that instance. This process
is repeated again with respect to the four-impulse transfer (N = 2). The impulse limit is considered as one forth of the
two-impulse velocity increment, forcing the algorithms to search for the feasible solutions with respect to the impulse
limit. Like before, each algorithm is run 10 times and their best performance is separated. Again, the algorithms are
sorted and ranked and the best solution is extracted, denoted by JN=2.

Having all of the solutions for the two-impulse (N = 1) and four-impulse (N = 2) transfers, it is possible to see
the obtained results in Fig. 8. This figure shows the difference of the objective function related to the best solution
found so far for the two-impulse and four-impulse transfer in each instances. The results are sorted based on the value
of the difference. It can be seen that in nearly 33 percent of the instances, the four-impulse rendezvous is better than the
two-impulse rendezvous in terms of fuel consumption, while in the majority of the instances, it is impossible to reach

 

507 instances 
236 instances 

Figure 8: Difference of objectives in two-impulse and four-impulse rendezvous
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a solution with the same amount of fuel as in the two-impulse transfer by means of any EAs. Separating the instances
in this figure according to the algorithms, which were capable of finding the best solution, can lead us to an insight
regarding the performance of the aforementioned EAs. Fig. 9 shows their performances.

 

 

      

  
 

507 instances 236 instances 

PSO (559 instances) EDA-MGD (153 instances) GA (17 instances) 

EDA-UGD (21 instances) DE (13 instances) 

Figure 9: Performance of the algorithms in finding the best solution

In this figure, the instances with the best solution related to each algorithm are separated. As shown, PSO is
capable of finding more of the best solutions between all other EAs, while DE has the worst performance. Between
the two EDAs, EDA-MGD, which is associated with the multivariate Gaussian distribution, has quite an advantage
over the EDA-UGD. An interesting point is that although PSO has a superior advantage over the other EAs in finding
the global best solution, the global optimal solution of the space rendezvous mission related to the highest difference
between the four-impulse and two-impulse transfers belongs to EDA-MGD, leading to the conclusion that EDA-MGD
is a potential option and tuning its parameter or perhaps enhancing the algorithm may make this algorithm competitive
to PSO.

Another investigation is to find out the relation between the characteristics of the space orbits in the rendezvous
mission and the superiority of the multi-impulse transfer over the two impulse transfer in terms of fuel. This can be
investigated by considering the absolute value of the total velocity increment of the two-impulse orbit transfer in each
instance. It is clear that, as the differences between the orbital elements of the initial and final orbits increase, the
required ∆v for the space mission also increases. Plotting the difference between the velocity increment of the two-
impulse and four-impulse rendezvous versus the absolute amount of velocity increment in the two-impulse rendezvous
gives Fig. 10.

According to Fig. 10, it can be concluded that, as the two-impulse transfer requires more fuel, the chance of the
fact that multi-impulse transfer becomes more fuel-optimal than the two-impulse transfer is higher. In other words,
when the solution to the two-impulse transfer has a relatively small amount of ∆v, possibly due to low differences
between the orbital elements of the initial and final orbits, there is little chance for the multi-impulse transfer to have
less fuel consumption. On the other hand, when the initial and final orbits have huge differences in their orbital
elements, there is a high possibility that the multi-impulse transfer consumes less fuel than the two impulse transfer.

5. Conclusion

In this paper, a multi-impulse approach for optimizing long-range rendezvous considering the impulse limit is pro-
posed. The presented approach divides the whole transfer into several minor Lambert problems. The main goal of this
approach is to handle the impulse limit, which may be considered due to the requirement of the space mission. The
objective function in this approach consists of the overall velocity increment, which is the summation of all impulses
plus the penalty function for excessive impulses with respect to a given impulse limit. In order to validate the proposed
approach, various types of EAs were utilized to find the optimal solution in different types of space missions. The EAs
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Figure 10: Superiority of the multi-impulse transfer over the two-impulse transfer

are compared and investigated regarding their convergence and practicality. The obtained results indicate that gener-
ally PSO outperforms other EAs in finding the best solution. However, the EDA based on the multivariate Gaussian
distribution showed that it is potentially a good choice for some specific cases. Results also indicate that if the orbital
elements of the initial and final orbits have huge differences, there is a high chance that multi-impulse transfer requires
less fuel than the two-impulse transfer. Future research involves the expansion of this approach and development of a
hybrid EA based on the extended Lambert problem.

Appendix I: Conversion of orbital elements to state vectors

Having the orbital elements a, e, i,Ω, ω representing semi-major axis, eccentricity, inclination, right ascension of as-
cending node and argument of perigee respectively along with true anomaly θ, the position vector~r◦ and velocity vector
~v◦ relative to perifocal frame are calculated as:

~r◦ =
h2

µ

1
1 + e cos θ

cos θ
sin θ

0

 (8)

~v◦ =
µ

h

 − sin θ
e + cos θ

0

 (9)

where µ is the Earth’s gravitational constant (µ = 398600km3/s2) and h is the angular momentum of the orbit, calculated
by:

h =

√
aµ(1 − e2) (10)

The transformation matrix [Q] is calculated by:

[Q] = [Rω] × [Ri] × [RΩ] (11)

where the tree rotation matrices are obtained as:

[Rω] =

 cosω sinω 0
− sinω cosω 0

0 0 1

 (12)

[Ri] =

1 0 0
0 cos i sin i
0 − sin i cos i

 (13)

[RΩ] =

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 (14)
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The state vectors relative to the initial frame are calculated as:

~r =[Q]′~r◦ (15)
~v =[Q]′~v◦ (16)

Appendix II: Solution of Lambert’s problem via Gauss Method

Having two radii ~r1, ~r2 and the transfer time between two positions (t), the angle between the two vectors (α) is
computed as:

cosα =
~r1.~r2

|~r1| × |~r2|
(17)

Considering prograde trajectory, one can calculate:

sinα =

 √
1 − cos2 α (~r1 × ~r2)Z ≥ 0

−
√

1 − cos2 α (~r1 × ~r2)Z < 0
(18)

Then, the parameter A, is calculated as:

A = sinα

√
|~r1| × |~r2|

1 − cosα
(19)

Having A, ~r1 and ~r2, the function y(z) can be defined as:

y(z) = |~r1| + |~r2| + A
zS (z) − 1
√

C(z)
(20)

where S (z) and C(z) are Stumpff functions defined as:

S (z) =



√
z − sin

√
z

(
√

z)3
z > 0

sinh
√
−z −

√
−z

(
√
−z)3

z < 0

1
6

z = 0

(21)

C(z) =



1 − cos
√

z
z

z > 0

cosh
√
−z − 1
−z

z < 0
1
2

z = 0

(22)

Having the functions defined, the function F(z) is formed as:

F(z) = [
y(z)
C(z)

]
3
2 S (z) + A

√
y(z) −

√
µt (23)

where µ is the Earth’s gravitational constant (µ = 398600km3/s2). Solving for F(z∗) = 0 using an iterative New-
ton’s method, the solution z∗ is obtained. Following the obtained parameter, the following Lagrange coefficients are
calculated:

f = 1 −
y(z∗)
|~r1|

(24)

g = A

√
y(z∗)
µ

(25)

ġ = 1 −
y(z∗)
|~r2|

(26)

Having the Lagrange coefficients, the velocity vectors correspond to ~r1 and ~r2 can be obtained as:

~v1 =
1
g

(~r2 − f~r1) (27)

~v2 =
1
g

(ġ~r2 − ~r1) (28)
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