
8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS)

Copyright 2019 by R. Rocchio, F. Corraro, G. Di Capua, L. Garbarino and N. Genito. Published by the EUCASS

association with permission.

An Automation Language for Increasing Repeatability in Scaled

Flight Testing of New Aircraft Configurations

R. Rocchio* F. Corraro** G. Di Capua*** L. Garbarino**** N. Genito*****

CIRA – Italian Aerospace Research Centre

* r.rocchio@cira.it

** f.corraro@cira.it

*** g.dicapua@cira.it

**** l.garbarino@cira.it

***** n.genito@cira.it

Abstract
Current commercial autopilots allow full turnkey solutions for remote piloting of unmanned aircraft

(including scaled ones), optimized for the most common flight operations and with limited possibility

of being adapted for flight testing of new aircraft configurations.

This paper describes an autopilot specifically designed for supporting flight testing on unconventional

aircraft configurations, allowing integration of custom advanced control laws architectures and

strategies, logics, automated flight modes and execution of special flight test procedures. The paper also

includes results of validation tests performed on an HW-in-the-Loop test-rig with a vehicle real time

simulator.

1. Introduction

Essentially built upon the positive experience of the Clean Sky SFWA (Smart Fixed Wing Aircraft) project, the Clean

Sky 2 LPA (Large Passenger Aircraft) operational activities started in July 2014 in all three major work packages also

called “Platforms”. Platform 1 (Advanced Engine and Aircraft Configurations) will provide the development

environment for the integration of the most fuel efficient propulsion concepts into the airframe targeting next

generation short and medium range aircraft (A/C). In Platform 1, WP1.3 (Integrated Aeronautics Demonstration

Platform) aims at validating scaled flight testing as a viable means to de-risk disruptive A/C technologies and A/C

configurations to high TRL.

In this framework, CIRA (Italian Aerospace Research Centre) is the leader of the WP1.3.5 (A/C Guidance and Control)

aiming at developing an A/C Guidance, Navigation and Control (GNC) system, and a dedicated testing framework for

supporting the dynamically scaled vehicle flight demonstrations.

As already shown in [1], scaled flight testing has been a way of demonstrating new aeronautic technologies since many

years. Because of the typical small dimensions of the A/C used for this kind of testing, the guidance and control

equipment used for support scaled flight tests are the same of remotely piloted A/C or unmanned aerial systems. In

these fields, only quite recently some commercial products have been introduced on the market. These products offer

a “full turnkey” solution for remote piloting of an unmanned A/C from a small ground station [2] [3] [4]. The key

advantages of such products rely on their compactness, affordability, configurability and easy-to-use HW/SW but they

have many limitations when used for unconventional A/C configurations and/or when special flight test procedures

shall be executed.

Instead of using standard available autopilots (AP), in this project an HW/SW framework for GNC of A/C in the class

of 150Kg Take-Off weight is proposed. Such framework not only includes basic features of the above mentioned

products, but also introduces new characteristics specifically designed for supporting scaled flight testing on

unconventional A/C configurations, allowing implementation of advanced control laws architectures and strategies.

Moreover, to facilitate flight tests, the framework integrates a dedicated SW function for automated flight tests, so

avoiding, as much as possible, manual piloting and increasing test condition repeatability.

An additional relevant characteristic of such framework is a functional and SW architecture that, even if the specific

flight tests planned in this project do not need a high level of autonomy [5] [6], is already designed to be compatible

with the highest autonomy levels. This goal is pursued by developing a modular and scalar architecture and by adding

the capability to execute complex automatic functions based on a simple flight instruction list defined by the remote

pilot or the ground operator. To this end, have been developed a programming meta-language to allow performing

mission tasks with better efficiency and effectiveness and, for the purpose of flight testing, with increased repeatability.

DOI: 10.13009/EUCASS2019-302

R. Rocchio, F. Corraro G. Di Capua, L. Garbarino and N. Genito

2

Some words have been defined corresponding to all the possible states of the abstract state machine and to the

parameters associated to the functions performed in those states. Moreover, a syntax has been defined to allow

interpretation and conversion of sentences into proper GNC actions for executing the required operation.

One of the parameters that is included in the sentences of the defined language (i.e. the instructions) indicates which

control module combination, among the available ones, should be used in performing that operation. This possibility

maximizes the benefits deriving from a scalable, flexible and modular architecture and allows automatic testing, in few

steps, of dedicated advanced control laws.

To this end, the proposed AP comes with a software framework that, following a few, simple steps and using a

specifically developed library, allows the users integrating new flight test functions and/or control laws to the basic

SW and let include them in the instruction set.

Since the early phase of this work, the automation language has been designed considering the future implementation

of a voice engine software, a step beyond that allows interpreting and translating high level vocal commands by an

operator in a set of instructions to the AP system.

Eventually, the proposed automation language, integrated with the development framework, eases automated flight

tests of new scaled A/C configuration and allows increasing test condition repeatability avoiding manual piloting as

much as possible. This can also be considered a step towards an increased autonomy in UAS operations as it improves

and sets the grounding for a better a thorough Human Machine Interaction (HMI) and, consequently, for developing a

social interaction in a socially assistive robotics environment.

The first part of the paper includes a system SW architecture overview with a particular attention on the GNC functions.

Subsequently, the proposed automation language will be described and the firsts words created in the presented

programming meta-language will be shown illustrating the functionality specifically developed for flight testing.

Moreover, the HW-In-the-Loop (HIL) test-rig used for verification and validation will be presented with some detail

of the simulation test rig and the monitoring cockpit display developed for the ground pilot/operator. Finally, some

Real Time (RT) simulation test results will be discussed.

2. Autopilot SW architecture

As above mentioned, one of the aim of the subject research project was to support flight testing for unconventional

A/C configurations and to facilitate the execution of special flight test procedures with accurate and repeatable

conditions. To this aim, a specific HW/SW architecture has been designed that has the required flexibility and

automation features.

Figure 1: AP’s GNC functional architecture

For achieving the above goals, it is crucial in the AP having an effective GNC function, whose architecture is shown

in Figure 1. Its main modules are:

• Sensor Conditioning: Analyses all the sensors’ measures and diagnostics, apply appropriate signal

conditioning and corrections, and eventually computes the validated vehicle state, integrity and accuracy

information and advanced diagnostics;

• Envelop Limitation: Generates the limitations on vehicle key parameters (velocity, accelerations, etc.)

taking into account the health state of A/C and the current flight conditions;

DOI: 10.13009/EUCASS2019-302

3

• Test Automation: Implements the mission management function. It is composed by a Mission Logic state

machine, which designates the flight mode in command, and an Instruction Parser, which manages the

instruction list to be executed. In addition, it contains an “Event Generator” module that creates the

trigger for the state machine state changes depending on the remote pilot commands, the A/C state and

the current instruction in execution and a “Selector Manager“ that actually activates the required flight

mode;

• Flight Modes and Control Reference Generator: This container module includes several flight modes

and module for selecting the right references and configuration data as commanded by the Test

Automation;

• FMS & Control Laws: implements all the functions and algorithms needed to generate and track a

trajectory, defined through waypoints, and to control the flight of A/C. This module is modular and on-

line configurable thanks to special selector modules. They allow a completely customizable routing of

the control references generated by current active flight mode.

To achieve adaptability to unconventional A/C configurations, the proposed architecture allows adding custom flight

control lows and/or custom ‘flight modes’. The flexibility, obtained through a fully customizable reference selection

approach, makes the integration of such custom modules very easy. Moreover, to facilitate their implementation, the

development framework also includes a library of basic guidance and control modules (e.g. customizable PID

controller, filtered bumpless, etc.) and a procedure for efficiently and reliably generating code deployable on the on-

board avionic HW.

To facilitate special flight test procedures, the on-board AP was provided with an on-line configurable standard control

laws, a Flight Management System (FMS) and a “Test Maneuver” flight mode to generate predefined maneuvers (e.g.

step, singlet etc.) on any available single variables and using any available control lows.

3. Flight Test Automation Language

Set in a wider plan to create a High Autonomous Mission Management (HAMM) system, this work describes its initial

phase in the creation of a mission automation language, to achieve the above stated goal of enabling accurate and

repeatable flight tests.

An HAMM system is responsible of all the aspect concerning an autonomous mission planning in terms of defining

an action sequence to accomplish a given set of objectives and constrains in an optimal way. In a system like this, the

operator role is to define objectives and (part of) constraints and to manage and supervise the mission.

Due to the lack of involvement by the pilot in command and control tasks, being those executed by the vehicle in

autonomy, the interactions between the Ground Control Station and the A/C are limited to high level instructions.

A key function of a HAMM is to extrapolate and formalize the objective of the mission (e.g. position and characteristics

of the target to reach). To this aim, the mission instruction interpretation have to be done through an algorithm based

on a formal language.

Different standards already exists for the representation of the information that define Unmanned Aerial Vehicle

(UAV) mission’s operations. Two of them that include command and control messages are STANAG 4586 [9], a

NATO standard only used for unmanned A/C, and JAUS [10], used, instead, for all kind of vehicles.

The STANAG 4586 protocol is a standard that defines architectures, interfaces, communication protocol and messages

format to manage a complex operative scenario composed by a multinational group of UAVs. It defines standard

interfaces, substantially composed by a set of messages, on which the communication between an UAV and its control

station could be based. Its second version has been developed so to promote interoperability among one or different

control stations, UAVs and information from the ground network in complex mission scenarios.

The JAUS (Joint Architecture for Unmanned Systems) is a SAE (Society of Automotive Engineers) standard that

defines a communication protocol for unmanned vehicles systems in order to achieve uniformity and consistency and

to allow interoperability, interchangeability and modularity. JAUS uses a SOA (Service Oriented Architecture)

approach to achieve the distributed command and control of unmanned systems in a net; the systems based on JAUS

uses JSIDL (JAUS Service Interface Definition Language) [11] to formalize those services. In JSIDL any service is

defined as a specific set of input and output, together with a stochastic automaton to manage how to receive, treat and

send back the messages.

Inspired by those protocols, and considering the aim of the project, an HAMM system specifically aimed to increase

repeatability in flight-testing has been developed. Indeed, this paper presents only the first words of such language,

specifically designed to formalize instructions for performing flight testing, but also thought as a base for increasing

the vehicle’s system autonomy level.

An HAMM shall include, above other functions, a formal language to formalize the objective of the mission, an

instruction parser to extrapolate, instruction by instruction, the objective of the entire mission, and a mission logic, to

enable the proper flight module to achieve it.

DOI: 10.13009/EUCASS2019-302

R. Rocchio, F. Corraro G. Di Capua, L. Garbarino and N. Genito

4

There are several possible approaches for defining a language, as generative, recognition or denotational [7]. As in the

majority of programming languages, the recognition approach was chosen. It assumes that all the sentences

understandable by a predefined automaton belong to the language [8]. In the presented framework, the words

composing the language corresponds to both the possible states of the mission logic state machine and to the parameters

associated to the flight modes enabled in those states. Moreover, a syntax has been defined to allow interpretation and

conversion of single instructions into proper GNC actions for executing the required operation.

Taking examples on FMS early patent [12] and on the already existing mission automation languages, presented in the

previous chapter, an xml representation of the instructions was selected.

Due to the simplicity of the possible instructions, so far a single sentence approach has been chosen. All the currently

available instructions have a target WP and a maneuver to be performed (between the possible maneuvers is also

available ‘none’ that disable this second part of the instruction) meanwhile the vehicle is tracking the leg towards it.

Figure 2 shows an example of how an instruction is represented.

Figure 2 : Instruction xml definition

In the above figure, the first part of the instruction set contains information regarding the location of a WP and related

capture properties (e.g. fly-by or fly-to both in horizontal and vertical channel in an independent way, etc.), while the

second part, instead, contains instructions on the maneuver to execute (e.g. type of maneuver, variable, amplitude,

timing etc.).

Through the maneuver’s parameters of the instruction, it is also possible to define which control module combination,

among the ones available, should be used in performing that operation. This possibility effectively uses the benefits of

the proposed architecture in terms of scalability, flexibility and modularity and allows automatic testing, in few steps,

of custom/advanced control laws.

Finally, to verify instruction lists and validate all the AP functions, a RT simulation test rig has been developed for

performing simulated flight tests directly from the ground remote pilot station, as will be described below.

4. HW-in-the-Loop Simulation Test Rig

The reference vehicle architecture for integration of the proposed AP is shown in Figure 3. The proposed AP is depicted

in cyan colours and is composed by two segments: the On-board Guidance, Navigation and Control (OGNC) System

and the Ground Remote Pilot Station (GRPS).

Regarding the OGNC, a RT computer executing the SW described in the previous chapter, when in command generate

the references for the A/C actuator so to execute the instruction sent by the pilot through the GRPS.

The GRPS allows the on ground pilot/operator to interact with the automated A/C. Moreover, the graphical HMI

shows, using features available by the AP, information on the current instruction that the HAMM system is executing

in a clear way and give an extensive overview of the A/C state (as shown in Figure 5). In addition, the GRPS also

provide a cockpit OTW (Out Of Window) live streaming video coming from the on-board forward camera. Figure 4

shows the layout of the whole GPRS.

As already said, directly in the GRPS is also integrated a RT simulation facility composed by a vehicle RT simulator

model and a copy of the OGNC allowing remote pilot training and SW-In-The-Loop (SIL) simulation to verify

automation sequence, flight modes, control laws and mission execution.

DOI: 10.13009/EUCASS2019-302

5

Figure 3 : HW system architecture

Figure 4 : Ground remote pilot station architecture

All above equipment and SW have been verified and validated in a dedicated test rig for performing RT HIL and Pilot-

in-the-Loop testing.

Such test rig is substantially composed by a RT simulator that emulate all the equipment that interface the OGNC of

the proposed AP and the GPRS. All the systems connected to the On-Board GNC in Figure 3 are simulated together

with the datalink and the vehicle allowing a complete, HW and SW, validation of the developed AP.

Figure 5 : Human machine interface

DOI: 10.13009/EUCASS2019-302

R. Rocchio, F. Corraro G. Di Capua, L. Garbarino and N. Genito

6

5. Test Results

Using above described test rig, a verification and validation campaign has been performed, aimed not only to testing

the automation language but also to validating the overall AP system and assessing effectiveness of its main features.

Both offline and RT HIL simulation have been performed to verify logics, selection mechanism and automation in

transition between different flight modes. After being successfully completed this phase, the proposed autopilot will

be integrated in the final flight demonstrator for executing the flight campaign. Actually, two campaigns of flight tests

are expected to be performed both in Holland and in Italy over the next two years on two different configurations of

the flight demonstrator.

Just for example, in this section will be presented a specifically designed test to show the capability of the system to

follow automatically a list of instructions. The executed instruction list (red triangles in the top image of Figure 6) is:

• WP1, horizontal and vertical fly-to, no maneuver;

• WP2, horizontal fly-by, vertical fly-to, altitude step, AP altitude controller on longitudinal, AP track

controller on lateral, direct rudder on directional and AT IAS controller on velocity;

• WP3, horizontal fly-by, vertical fly-to, track step, AP altitude controller on longitudinal, AP track

controller on lateral, direct rudder on directional and AT IAS controller on velocity.

The test results are shown in Figure 6. The top figure shows a top view of the test, on that the waypoints are represented

as red triangles, green and red crosses indicate initial and ending points for maneuvers, the magenta circle is the starting

point of the simulation and the green one the point in which the system take control on the A/C. Moreover, the bottom

figures show reference and controlled variables (on altitude, track and IAS) during the maneuvers executed reaching

WP2 (left) and WP3 (right).

Figure 6 : Test results

DOI: 10.13009/EUCASS2019-302

7

6. Conclusions

In this paper, an automatic flight testing oriented AP has been presented. Its framework has been developed as an ad

hoc solution, alternative to the commercial “full turnkey” AP already existing, for supporting the Clean Sky 2

dynamically scaled vehicle flight demonstrations requiring scaled flight testing on unconventional A/C configurations

and of advanced control laws architectures and strategies. This goal has been pursued by developing a modular and

scalar architecture enabling the integration of custom flight control lows and/or custom ‘flight modes’. Moreover, to

increase repeatability, the capability to execute automatic missions based on a simple flight instructions list was

introduced. To formalize instructions, but also to increase efficiency and effectiveness, a programming meta-language

has been developed together with a test automation interpret function. Finally, a complete simulation environment for

SIL, HIL and Pilot-In-the-Loop simulations both in RT or off-line has been presented aimed to verification, validation

and rapid prototyping.

The presented architecture has been developed to be compatible with higher levels of autonomy considering numerous

future possible implementation, as the integration of a voice engine software aimed to interpreting and translating high

level vocal commands by an operator. In addition, some additional advanced control law functionalities will be

integrated for managing future versions of the scaled vehicle demonstrator.

Acknowledgments

The authors thank CSJU (Clean Sky Joint Undertaking) for funding the project Clean Sky 2 Large Passenger Aircraft

Platform 1 WP1.3 under which the activities described in this paper have been carried out.

References

[1] E. De Lellis, et. al., “Design of a SW Framework for an Autopilot with Automated Test Capabilities on an

Experimental Mid-Sized UAS”, SciTech 2019

[2] Micropilot Products - http://www.micropilot.com/products.htm

[3] ArduPilot Products - http://www.ardupilot.co.uk/

[4] Open Pilot Products - http://www.openpilot.org/

[5] Beer, J. M., et al., “Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction”, Journal

of Human-Robot Interaction, Vol. 3, No. 2, Pages 74-99, DOI 10.5898/JHRI.3.2.Beer, 2014

[6] Proud, R. W., et al., “Methods for Determining the Level of Autonomy to Design into a Human Spaceflight

Vehicle: A Function Specific Approach”, NASA, 2003

[7] S. Greibach. Formal languages: origins and directions. Ann. Hist. Comput., 3, 1981

[8] Hopcroft, Motwani, Ullman. Introduction to Automata Theory, Languages, and Computation. Addison Wesley,

2007

[9] “STANAG 4586 NAVY (EDITION 2) - Standard Interfaces of UAV Control System (UCS) for NATO UAV

Interoperability”, 2007 NSA 1022(2007) NAVY/4586

[10] http://www.openjaus.com/understanding-sae-jaus

[11] “JAUS Service Interface Definition Language”, SAE Aerospace Standard AS5684A

[12] Bodin, W.K., Redman, J.J.W., Thorson, D. C.: US20046813559B1 (2004).

DOI: 10.13009/EUCASS2019-302

