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Abstract  
Depending on the launcher configurations, two, three or four boosters can be attached on the Lower 
Liquid Propulsion Module. The axial compression induced by the boosters loads on the liquid tank is 
then not uniform but can be represented by a modal or harmonic function (sine or a cosine function). 
The paper concerns buckling of thin-walled cylindrical aluminium shell structures induced by a local 
axial compression load, or by harmonic or modal compression load. The problem is numerically 
solved using ABAQUS/Implicit finite element code. First, linear and geometrical nonlinear analyses 
are conducted to determine the critical stress for a perfect shell for different boundary condition. Then, 
sensitivity of geometric imperfections has been performed by considering different initial defect 
shapes which were introduced in the numerical models. Especially, local defects have been simulated 
as local inward bump or axisymmetric mode or the first buckling mode issued from linear buckling 
analysis. This study shows that the common practice which assumes for the design an equivalent 
axisymmetric load equal to the maximum value which occurs only at some azimuths in the reality (real 
local or modal load) is an approach which is too conservative for bucking analysis of cylindrical shells. 
Then, suitable values of Knock-down factors KDF are not only proposed for the design in the case of a 
modal load but also compared to the KDF given by NASA rules for axisymmetric compression. A 
substantial gain was noticed.  

1. Introduction 

The aim of the present study is to give another method to analyse the buckling of the Ariane 6 Lower Liquid 
Propulsion Module (LLPM) Oxygen tank. The method of today is mainly based on the NASA SP8007 rule [1], 
established in the late 1960s. The Lower Liquid Propulsion Module (LLPM) is connected to four or two boosters 
depending on the Ariane 6 launcher configuration. During the flight, the launcher is submitted to several sources of 
loadings. This corresponds mainly to a combination of axisymmetric compression, bending load, shear load and non-
axisymmetric load induced by the boosters. The compression induced by the boosters can be approximated by a 
harmonic function qcos(nα), where n=2 or 4. For the design, the common practice used the simple and conservative 
approach which considers an axisymmetric load Q=qmax instead of the harmonic or modal load Q=qmax cos(nθ).   
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Figure 1. Ariane 6 launcher with 4 boosters configuration 

 

 

Figure 2. Axisymmetric loading 

2. Theoretical critical stress and NASA SP8007 

The theoretical buckling stress associated to the elastic bifurcation load of thin cylindrical shell under uniform axial 
compression ([2],[3],[4]) is given below: 
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The results of many experiments in the literature showed that the buckling of cylindrical shells under uniform axial 
compression is very sensitive to geometric imperfections. So, the critical buckling stress of a real cylinder is always 
lower than the theoretical critical stress and very scattered (Figure 3) [5] [6]. 

  

Figure 3. Experimental buckling stress comparatively to the theoretical one for cylindrical shells 

Q=qmax  

KDF = 1.0 for perfect structures 

KDF for imperfect structures 

Test database 
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For the design, imperfection sensitivity is taken into account via a reduction factor, or knock-down factor, applied to 
the theoretical stress. Hence, the NASA SP8007 [1] rule define the buckling load under uniform compression by: 
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It is questioned here if this KDF proposed by the NASA rule for uniform axial compression is suitable for the 
harmonic load.  

3. Numerical modelling 

Numerical modelling was conducted using the commercial finite element program ABAQUS [6]. Figure 4 shows the 
3D numerical model for the perfect cylinder of ratio R/t=470 and ratio L/R=1,1. The cylinder is clamped at the 
bottom, and uniform axial compression or harmonic (modal) compression is applied at the top edge of the shell. The 
radial displacement is blocked at the top edge, and the bottom edge of the shell is fully clamped. The meshing was 
performed via S4R 4-noded linear curved shell elements (six degrees of freedom per node) with reduced integration 
and hourglass control. 

 

 

Figure 4. Scheme of the numerical model with harmonic (n=2) load application 

 
Linear bifurcation analysis and geometrical nonlinear analysis with the modified Riks algorithm were conducted, 
without imperfection (LBA and GNA) or with imperfection (LBIA and GNIA). In this study, to evaluate 
imperfection sensitivity, three forms of defects with a varying amplitude 0 ≤ A/t ≤ 3 were used: 

1) The generalized axisymmetric defect (DE), called also Euler axisymetric defect or Koiter defect [7].This 
imperfection corresponds to the theoretical first buckling mode of analytical linear bifurcation analysis (LBA) in case 
of uniform compression. 

2) Localized inward defect (DL) proposed by Wullscheledger[8]. This defect corresponds to an inward local 

bump or dimple imperfection. The defect has the width a=2πR/20 and the height b=2#$ where #% � 1.728√�� is the 
classical axisymmetric buckle half-wavelength. 

 

	

	

Figure 5. Localized inward defect (DL) 
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3) The inward axisymmetric triangular defect (DTRI) proposed by Limam  [9] [10]. 
 

 

Figure 6. Inward axisymmetric triangular defect 

 
The Figure 7 below represents the numerical model for imperfect cylinder with the different defects. 

   
DE DL DTRI 

Figure 7. The different studied defects 

 

4. Numerical results and analysis 

4.1 Linear bifurcation analysis 

The classical buckling load is here used as a reference load. For the first case, we consider two boosters’ 
configuration, then n=2. The Figure 8 shows clearly that for all initial imperfections here considered, the 
axisymmetric compression conducts to lower bearing capacity comparatively to mode 2 loading. The gap is 
systematically (for all the configurations here studied) not negligible. Hence, considering axisymmetric loading 
instead of harmonic mode 2 loading can conduct to a very conservative approach.  
 

 

Figure 8. Imperfection sensitivity gauged trough LBA 

 

A/t =0 

 

A/t = 1 
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 DE DTRI DL 

Figure 9. Buckling modes obtained through LBIA  

 
To quantify the effect of mode 'n' characterizing the load (loading in mode 2 when two boosters and in mode 4 when 
four boosters), a parametric study is carried out, where DTRI imperfection is considered as the initial geometrical 
imperfection.  

 

Figure 10. Effect of the wavenumber n of modal load 

 
These calculations confirm that, for the perfect configuration, the critical stress for the modal load is higher than the 
classical theoretical stress. The defect here considered has no effect for low amplitude (A/t<0.2), knowing that the 
buckling mode appears mainly near the top boundary, and this zone is far from the imperfection positioned at the 
middle height of the shell. For high amplitude, the defect plays an important role and the buckling load decreases. It 
is clear from this curves that axisymmetric load conducts to lower buckling characteristic curve, imperfections are 
less sensitive for the modal load. Increasing 'n' conducts to decrease imperfection sensitivity. These main conclusions 
have to be confirmed with non-linear analysis, to be more confident when taken into account large displacement and 
large rotation effect which can be important near the boundary, the zone where bifurcation mode appears. 
  

4.2 Nonlinear analysis 

Non-linear calculations, taking into account the different proposed defects, are performed for uniform and harmonic 
(mode 2) loading.  

 

Figure 11. Non-linear bifurcation analysis 
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A/t =0 

 

A/t = 1 

   
 DE DTRI DL 

Figure 12. Obtained buckling modes according to GNIA approach   

 
For the configuration here studied, a value of KDF equal 0,76 can be proposed in case of n=4 which corresponds to 
four boosters configuration, instead of 0,329 if axial compression uniform load was considered. For n=2, 
corresponding to two boosters configuration, the conducted calculations show that KDF=0,52 is still conservative for 
all the amplitudes of the most detrimental defects here studied. This leads to a great enhancement of the design on 
bearing capacity (+58%), knowing that the too much conservative hypothesis associated to axisymmetric equivalent 
load, conducts to take the NASA KDF of 0,329.  

5. Conclusions 

The buckling of thin-walled cylindrical shell subjected to mode 2 harmonic compression was numerically 
investigated in this research. To analyse the sensitivity of initial geometric imperfections in this particular case of 
loading, the most detrimental geometrical imperfections, according to the literature, for axial uniform compression, 
are introduced into the FE model. The results show that the common practice which assumes for the design an 
equivalent uniform load equal to the maximum peak value, instead of the real mode 2 harmonic load, is too much 
conservative. Considering mode 3 or mode 4 harmonic loading confirms that, for a perfect cylindrical shell, 
harmonic compressive loading conducts to a higher buckling stress comparatively to uniform compression loading. 
Furthermore, imperfection sensitivity for modal loads is lower than for axisymmetric load. An appropriate 
knockdown factor (KDF) is finally proposed for the design in case of mode 2 harmonic loading. The new 
methodology of design, which considers the real load (mode 2 loading), conducts to a gain of bearing capacity about 
58%. 
 

Abbreviations and acronyms  

A : Amplitude of defect 
R : cylinder mean radius 
L : cylinder length 
t, : cylinder wall thickness  
E, ν : Young's modulus, Poisson's ratio of skin 
n : wavenumber of applied compression load 
q : load (N/mm) 
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