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Abstract 
In this work effect of wall normal gas injection on the heat transfer and the boundary-layer stability is 
investigated for the high-speed flow over two models of space vehicles – the hemispherical model and 
the model of Exomars project. The heat flux distributions on the body surface are obtained using 
numerical solutions of the Navier-Stokes equations for laminar axisymmetric flow. It was shown that 
the transition onset, which was experimentally observed in the boundary layer with injection, is 
associated with relatively small integral amplification of instability. This indicates that in the 
experiment laminar-turbulent transition is governed by bypass mechanisms. 

1. Introduction 

Vehicles entering planetary atmospheres can be thermally protected by covering their surfaces with ablative heat 
shields. The pyrolysis of such materials converts a thin layer of Thermal Protection System (TPS) into ablative 
products, which are carried away by the flow. This process can significantly reduce heat fluxes inside the vehicle 
wall. On the other hand, the ablation of TPS influences laminar-turbulent transition processes in the boundary layer 
flow [1]: the boundary-layer stability is altered by the effective gas injection from the wall [2, 3]; the body shape is 
changed and transition can be dominated by roughness (see review [4]). The influence of ablation on laminar-
turbulent transition has been intensively studied during the 1960s and 1970s. The review of relevant experiments is 
presented in [5]. Recently, ablative heat shields have regained attention due to Mars exploration missions [6] and 
reentry vehicles [7]. 
In [8] the hypersonic flow past a cylinder with a hemispherical nose was treated experimentally. The nose wall was 
permeable and gas injection normal to the wall surface was used to simulate the ablation effect. The experiment was 
conductued in the wind tunnel at Mach number M = 7.32 in the range of unit Reynolds number Re1 = 
(0.64÷1.33)×107 m-1. The calorimeter probes mounted on the nose were used to measure the heat fluxes. The 
boundary layer state was identified as laminar, transitional or turbulent by comparing the experimental heat-flux 
distributions with the corresponding analytical and/or computational distributions for laminar and turbulent flows. In 
the no injection case, the boundary-layer flow was fully laminar. As the injection rate was increased, the transitional 
region was detected on the nose and moved progressively toward the stagnation point. 
In the present work the configuration [8] is studied numerically with emphasis on: 1) the effect of distributed gas 
injection on the heat-flux distributions in the laminar flow regimes; 2) the effect of gas injection on stability and the 
transition onset in the transitional flow regimes. In this work model of descent vehicle of ExoMars project is studied 
at flow regimes with Mach number M = 8 and Reynolds number Re = 1.7×106 м-1 . The laminar flow fields are 
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