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Abstract: In the modern warfare, missiles are required to attack maneuvering targets. However, 

saturation is a potential problem for actuators of guidance systems to be considered. This paper 

concentrates on the problem of designing a three-dimensional nonlinear guidance law accounting 

for saturation nonlinearity. To solve the physical constraints of missile actuators, an 

anti-disturbance and anti-saturation terminal sliding mode guidance law is provided based on 

radial basis functions neural networks. Numerical simulations are introduced to demonstrate the 

effectiveness and superiority of the designed composite guidance law in theory. 
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1. Introduction 

With the rapid development of the aerospace weapon industry, air defense systems are drawing 

more and more attentions. Because attacking the target with a specific impact angle can improve 

the lethality of warheads, guidance laws with terminal impact angle constraints have become a hot 

topic recently. Meanwhile, many methods have been proposed in this field such as proportional 

navigation guidance law (PNGL), the biased pure PNGL (BPPNGL), and optimal control method. 

In recent decades, the sliding mode control (SMC) theory is proposed, which also provides an 

effective method for the guidance laws design. A formulation of SMC based PNGL is presented 

[1]. An adaptive nonlinear guidance law was proposed by using the SMC method so that a missile 

can accurately intercept a target at the desired impact angle [2]. However, one disadvantage of the 

traditional sliding mode method is that it can only guarantee the asymptotic convergence of 

system states. 

The engagement scenarios of a missile intercepting targets are three-dimensional scenarios, 

actually. A three-dimensional fast robust integrated control and guidance law design method was 

proposed against hypersonic vehicles [3]. Based on the back stepping method, a novel 

three-dimensional integrated guidance and control scheme were proposed against maneuvering 

targets [4]. A three-dimensional navigation guidance law was proposed against a moving target 

with the expected impact direction. The performance of the designed guidance law was essentially 

bounded within a impact time [5]. A nonlinear suboptimal guidance law was presented for an air 

launched missile intercepting ground targets, which accurately satisfies terminal impact angle 

constraints in both azimuth and elevation simultaneously [6]. 

In addition, there is another potential problem for actuators of the missiles. That is nonlinear 

saturation, which severely limits system performance. Moreover, the anti-saturation methods have 

also received great attentions. A three-dimensional guidance law with input saturation constraints 

and autopilot dynamics was proposed combing an adaptation law to estimate the bound of target 

acceleration [7]. A three-dimensional anti-saturation integrated guidance and control law with 

impact angle constraints was developed for intercepting a ground fixed target [8]. A hyperbolic 
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tangent function was employed to approximate the saturation function and the auxiliary system 

including a Nussbaum function established to compensate for the approximation error [9]. 

In the actual battlefield, the information of targets including acceleration and angles is difficult 

to be measured or estimated accurately. Considering all of the above problems, this study is 

devoted to design a composite guidance law based on the slding mode control theory. The content 

of this paper is arranged as follows. In Section 2, three-dimensional engagement dynamics are 

established. In Section 3, a novel anti-saturation guidance law is designed by using radial basis 

functions neural networks. In addition, the theoretical analysis of the guidance law is given. 

Simulations are presented in Section 4. This paper is finished with conclusions in Section 5. 

2. Problem statement 

Many of the existing literatures usually decouple the three-dimensional guidance model into 

two two-dimensional orthogonal models, and then design guidance laws. This way is evidently not 

in conformity with the reality, and even affects the guidance accuracy. In this study, a 

three-dimensional coupled model is established according to the three-dimensional geometry, and 

three-dimensional guidance laws will be designed. 
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Fig.1. Geometry in three-dimensional space 

The three-dimensional guidance geometry of a missile M  intercepting a maneuvering target 

T  is presented in Fig.1. 
I I IMX Y Z , 

M M MMX Y Z  and 
T T TTX Y Z  represent the inertial reference 

frame, missile velocity coordinate system and target velocity coordinate system, respectively. R  

represents the LOS distance. 
mV  and 

tV  are the missile velocity and target velocity, and 

assumed that the missile and target fly at constant speed in this study. 
mθ  and 

m  are the 

directions of 
mV  with respect to the LOS frame. 

tθ  and 
t  are the directions of 

tV  with 

respect to the LOS frame. 
Lθ  and 

L  are the directions of LOS with respect to the inertial 

reference frame. 
yma  and 

zma  are lateral accelerations of the missile in the yaw and pitch 

directions. 
yta  and 

zta  are target accelerations. Then, the three-dimensional engagement 

dynamic systems can be expressed as Eqs.(1)-(7) 
[10]

.  

( cos cos cos cos )  t t m m mR V  ρ θ θ                       (1) 

( sin sin )  L t m mR V θ ρ θ θ                           (2) 

cos ( cos sin cos sin )L L t t m m mR V   θ ρ θ θ                     (3) 

     s i n s i n c o s  zm

m L L m L m

m

a

V
    θ θ θ                        (4) 

sin cos tan sin tan cos     
cos

ym

m L L m m L m m L L

m m

a

V
       θ θ θ θ θ

θ
          (5) 
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sin sin cos  zt

t L L t L t

m

a

V
    θ θ θ

ρ
                       (6) 

 sin cos tan sin tan cos
cos

yt

t L L t t L t t L L

m t

a

V
       θ θ θ θ θ

ρ θ
              (7) 

where = t

m

V

V
ρ . To obtain the dynamics of 

Lθ  and 
L , on differentiating Eqs. (2) and (3), the 

coupled nonlinear second-order dynamics of 
Lθ  and 

L  with respect to 
yma  and 

zma  can be 

summarized as 

2cos cos 2
cos sint m L

L zt zm L L L

R
a a

R R R
   

θ θ θ
θ θ θ                 (8) 

cos sin sin sin sin

cos cos cos

cos 2
       2 tan

cos

t t t m m

L yt zt zm

L L L

m L

ym L L L

L

a a a
R R R

R
a

R R

  


 


  

  

θ θ

θ θ θ

θ θ
θ

                 (9) 

Unlike the decoupled engagement dynamics, the dynamics of 
Lθ  and 

L  expressed by Eqs. (8) 

and (9) are systems with nonlinear and strong coupled. Noted that 
zma  has an effect not only on 

the elevation direction but also on the azimuth direction. If the guidance laws are designed using 

the decoupled engagement dynamics, the guidance accuracy might be degraded. In addition, the 

following assumptions are given about the variables of dynamics (8) and (9). 

Assumption 1. Suppose that the target accelerations, 
yta  and 

zta , are bounded and satisfy 

1yta a , 
2zta a , for all 0t  , where 

1a  and 
2a  are the upper bound of the target 

accelerations. 

Assumption 2. Suppose that the signals R , R ,
Lθ , 

L , 
Lθ , 

L , 
mθ , and 

m  can be 

measured. 
mθ  and 

m  satisfy , ( / 2)m m  θ π . 

Assumption 3. Suppose that during the terminal process, the relative velocity between the 

missile and the target is negetive. Besides the missile intercepting target by impact occurs when 

0 0R R  , but belongs to the interval 
min max[ , ] [0.1,0.25]mR R  . 

Moreover, to facilitate guidance laws design, the relative dynamics, expressed by Eqs. (8) and 

(9), can also be represented in a more concise form as Eq. (10). 

+L

L

 
  

 
F Bu D

θ
                              (10) 

2 2
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 
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yt zt

L L
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d
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 
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cos
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 


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B

θ

θ
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, 
zm

ym

a

a

 
  
 

u  

where   is the control input, and it is multiplied by the matrix B . The LOS angles can be 

controlled only if the matrix B  is nonsingular during the engagement, i.e., 0R  , and 
mθ  and 

m  satisfy , ( / 2)m m  θ π . With the Assumptions 2 and 3, u  can be applied to control the 

system (10). According to Assumption 1, Assumption 2 and Assumption 3, D  is bounded.  
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The main body of this study is to design a three-dimensional guidance law to ensure the 

successful interception of a maneuvering target at expect impact angles. 

3. Gudiance laws design 

The guidance dynamics are strongly coupled, time varying, and subject to external disturbances. 

Besides that, the capacity of dynamic actuators is also limited in practice. Any of these aspects 

would bring considerable difficulty to the guidance laws design. Therefore, this study is devoted 

to deal with target maneuvers, control input constraints, and external disturbances simultaneously.  

In this study, the dynamic actuators can only provide a limit aerodynamic acceleration against a 

maneuvering target during terminal phase. To satisfy the control saturation constraints, the control 

input u  is constructed as 

1

2

sat( )
sat( )

sat( )

 
   

 
u

τ

τ
                             (11) 

              

sat( )         ( 1,2)

          

m m i

i i m i m

m i m

i




   
 

τ τ τ

τ τ τ τ τ

τ τ τ



 

 

where 0mu   is the magnitede constraint. Defining a new state variable x  as: 

1

2

= =
L Lf

L Lf

x

x  

  
      

x
θ θ

 

where 
Lfθ  and 

Lf  are the desired LOS angles, and are assumed as constant in this paper. Then 

Eq.(10) can be expressed as Eq. (12) 

+ = sat( )+  x F Bu D F B D                      (12) 

sat( )  is a saturation function. To facilitate the control design, the control input subject to 

saturation type nonlinearity is approximated by a smooth function defined as 

sat( ) ( ) == g                               (13) 

max
max

( )= tanh( )g u
u

                          (14) 

where, 

1 1 2 2

max max max max

1 1 2 2

max max max max

T

max
tanh( )=

u u u u

u u u u

e e e e

u
e e e e

 

 

 
  

 
  

τ τ τ τ

τ τ τ τ
 . Eq. (14) can be reorganized as  

+

    = sat( )+

    = ( )+

    = +

g

 





  

x F Bu D

F B D

F B D

F B B D





 

                          (15) 

To nullify the LOS angle errors and the LOS angular rate, an appropriate sliding surface is 

selected as follows: 

1

2

( )
s

f
s

 
   

 
S = x x xα β                            (16) 

1

2

( )
( )

( )

f x

f x

 
  
 

f x                                  (17) 

2

1 2 sign( )   
( )    1,2

sign( )       otherwise

i i i i

i r

i i

r x r x x x
f x i

x x

  
 


η
                (18) 

1

1 (2 ) rr r   η                                 (19) 
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2

2 ( 1) rr r   η                                 (20) 

where 0 1r  ; η , α , and β  are positive constants. 

The derivative of S  can be expressed as Eq. (21). 

( )

   +

  

    

S x x f x

F B B D G

α β

 
                          (21) 

where 

( )L

L

 
  

 
G f x

θ
α β                              (22) 

1

2

( )
( )

( )

f x

f x

 
  
 

f x                                 (23) 

1 2

1

2 sign( )  
( )

             otherwise

i i i i i

i r

i i

r x r x x x x
f x

r x x


  
 


η
1,2i                    (24) 

Because B   is a continuous function, radial basis functions neural networks can be used to 

approximate the continuous function. 

* *Tˆ= ( , ) ( )f   B x x                         (25) 

where, l  is called the neural network node number，and 

 
T

= L L m m x θ θ  

T

1 2( ) [ ( ), ( ), , ( )] l

l   x x x x R  

2 2( / ) 4( ) , 1, 2, ,i i

i ie i l
 

  
x c

x c
σ
, R  

* * * * *

1 2 1 2=[ , ] , , l     R  

T

1 2=[ , ]ε ε  

Then, 

*T

= +

   = ( ) +

  

  

S F B B D

F B x D

 

   
                     (26) 

Assumption 4：According to universal approximation property of RBF networks, the maximum 

mean square value of the approximation error vectors can be written as 

0 ε  

where 
0ε  is a small constant 

Assumption 5：The ideal neural networks weights 
Mθ are bounded so that *

M θ  with 
Mθ  

is a known bound.  

The anti-saturation guidance law designed in this part is as Eq. (27). In addition, an adaptive 

law (6-77) is designed to estimate the upper bound D  of the system external disturbance. 

1 T

1
ˆˆ= ( + ( ))   B F G k S QH x                  (27) 

T

2
ˆ ˆ= ( ( ) )kk x S                          (28) 

ˆ ˆ H QS Hγ                           (29) 

1

2

0

0

 
  
 

σ

σ
σ ， 1

2

sign( ) 0

0 sign( )

s

s

 
  
 

Q  

where， 2

1 2, k k R  are diagonal matrixes， and diagonal elements are greater than zero. 
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, 1,2i in i σ ； 0k  ， 0γ ，and 1min 11 12 1

1
= min{ , , }

2
lk k k k , , 

1

2

h

h

 
  
 

H . 

Theorem 1. Consider the systems (1)-(7). Suppose that the observation error D  is bounded, 

and 
1 me  . If choose Eq. (16) as the sliding mode surface, and Eq. (27)as the guidance law, 

then the state of the system is uniformly ultimately bounded. 

Proof: Assuming that 1 1d h  and 2 2d h . And * ˆ=    , ˆ= H H H . Consider a 

Lyapunov function candidate as Eq. (30)： 

           T T 1 T

2

1 1 1
+

2 2 2
V  S S k H H                  (30) 

The time derivative of V  results in 

T T 1 T

2

T *T T 1 T T

2 2

T *T T T 1 T

1 2 2

T

T T T 1

1 2 2

+

ˆ   ( ( ) + ) ( ( ( ) ))+

ˆ ˆˆ   ( ( ) ( ) + ) ( ( ( ) ))

        +

ˆ    = ( + ( )) ( ( (

V

k

k









 

     

       

    

S S k H H

S F B x D k k x S H H

S k S QH x x D k k x S

H H

S k S QH D x k k

 

      

        

      T

T

T T T T * T

1

2 2 2
T T *

1

1 1 1

2
T

1

T T *

1

ˆ) ))

ˆ        ( )

ˆ ˆ   ( ) ( ) ( )

ˆ ˆ   ( ) ( )

ˆ        

   ( ) ( ) (

j j i j i j j i

j j j

j j i

j

j

k

k

h s h s k h s

h s

k

  





 

        

       

 

     

  



x S

H QS H

S k S S QH S D H QS H

S k S

H H

S k S

γ

γ

σ σ

σ γ

σ





     

   

   
2

T

1

ˆ1) j i

j

h s


  H Hγ

(31) 

Because 

T * T * T

T *T * T

*T * T

( )

1 1
                

2 2

1 1
                

2 2

  

  

 

      

     

   

                   (32) 

and 

T T T T1 1ˆ = ( )
2 2

  H H H H H H H H H                 (33) 

It can be obtained that 
2

T T * T

1

1

T *T * T T T

1

T T *T * T T T

1

2T T *T * T T T

1

1min

ˆ( ) ( ) ( 1)

1 1
   ( )

2 2 2 2

1 1
   

2 2 2 2

1 1 1 1
   +

2 2 2 2 2 2

    = (

j j i

j

V k h s

k



       

      

      

      

 

S k S H H

S k S H H H H

k S S S H H H H

k S S S S H H H H

σ γ

γ γ

γ γ

γ γ

   

    

    

    

2T T T *T * T1 1 1 1
) +

2 2 2 2 2 2

   V

   

  

S S H H H H
γ γ

λ

    

        (34) 

where 
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min 1min

1 1
= { , , }

2 2 2
k 

γ
λ λ                           (35) 

2T

max

1 1
+ 0

2 2 2
  H H
γ

                        (36) 

Then we can obtain that S  is uniformly ultimately bounded. Referring [11], it is straight 

forward to show that all the signals in the system are uniformly ultimately bounded. The 

conclusions of the Theorem have been proved here. 

4. Simulation results 

In this section, the effectiveness and superiority of the composite guidance law   are verified 

through nonlinear numerical simulations. The set of scene parameters are given as follows.  

Table 1 scene parameters 

(0) (m)R  1200 

(0) ( )Lθ  20 

(0) ( )L  60 

(0) ( )mθ  25 

(0) ( )m  30 

 (m/s)mV  600 

(0) ( )tθ  10 

(0) ( )t  160 

 (m/s)tV  300 

 ( )Lfθ  25 

 ( )Lf  65 

2(m/s )zta  19.6 

2(m/s )yta  19.6 

The PNGL and nonsingular terminal sliding mode (NTSM) guidance law
[12]

 were compared to 

analyze the superiority of the guidance laws proposed in this paper. The PNGL is shown as  

1 L

c

2 L

N R

N R

 
  

 
n

θ
                                (37) 

The NTSM surface is expressed as  

1

2

1 p
q 

  
 

=
σ

σ β
x x                             (38) 

where 0β  is a constant. 0p   and 0q   are odd constants, and satisfy 

p q                                    (39) 

The corresponding NTSMGL is presented as 

1 2

0 0 0( + sgn( ))p qq
k

p

    u B N x H
β

                      (40) 

The guidance parameters of 
0u  and PNGL are chosen as 0.5α , 2β , 9p  , 7q  , 

0 0.5k  . The parameter in the saturation function is selected as 25mu g . 0.5k  , 1

2 0

0 2

 
  
 

k , 

2

12 0

0 12

 
  
 

k , 
1.7 0

0 1.7

 
  
 

σ , 1γ  The neural network contains 11 nodes, and the center 
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vector , 1,2, ,i i lc  is evenly spaced on [ 1,1] [ 0.01,0.01]   . The radial basis vector =1σ . The 

parameters 
1N  and 

2N  in the PNGL are selected as 
1 7N   and 

2 7N  .  

When the initial scenario is listed in Table 1, the simulation results are shown in Fig. 3. From 

Fig. 2, it can be observed that all of the three guidance laws can guarantee the successful interception, 

although the missile under PNGL has a different path with it under   or 
0u . Fig. 3 clearly presents 

that both   and 
0u  can drive the convergences of 

Lθ  and 
L  to the desired values in finite time, 

but PNGL can not guarantee it. Moreover,   can guarantee a faster convergence rate than 
0u . Fig. 4 

shows the curves of Lθ  and 
L , and it can be clearly observed that the performance of   in driving 

the LOS angular rate to zero is superior compared with 
0u  and PNGL. Fig. 5 shows the curves of the 

missile accelerations. It can be noted that there exists the acceleration saturation phenomenon for   

and 
0u  at the beginning of the guidance process. Additionally, it can be noted that the accelerations of 

the missile produced by the PNGL are smaller than those under   or 
0u . It could all come down to 

that large accelerations can ensure preferable convergence performances.  

Generally, the effectiveness and superiority of   have been clearly statemented. 

 

Fig. 2 Relative movement curves                       Fig. 3 Curves of 
Lθ  and 

L  

 

Fig. 4 Curves of Lθ  and 
L                      Fig. 5 Missile acceleration profiles 

5. Conclusions 

A three-dimensional anti-disturbance and anti-saturation terminal sliding mode guidance law has 

been proposed. Firstly, the three-dimensional coupled guidance dynamics for a missile 

intercepting a maneuvering target were established. Then, based on the fast nonsingular terminal 

sliding mode control theory and the radial basis functions neural networks, a novel anti-saturation 

guidance law was proposed. In addition, the theoretical analysis of guidance laws was also given. 

Finally, the effectiveness and advantages of the designed guidance laws have been verified by 

simulations. 
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