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Abstract 
Active debris removal has been a hot topic of the space security. Multi-target rendezvous mission is an 

efficient and economical way for space debris removal. An autonomous mission planning approach 

based on the back propagation neural network and the genetic algorithm is proposed in this paper. A 

trained neural network is utilized to obtain the approximations of the optimal trajectory parameters. 

The rendezvous sequence and accurate transfer trajectory is solved using the genetic algorithm. The 

simulation results show that the proposed method exhibits favourable in the efficiency and precision. 

 

 

1. Introduction 

The large and growing number of space debris seriously threatens the safety of spacecraft, and has attracted 

widespread attention. This threat is even worse for some special orbits, such as Sun-synchronous orbit (SSO) that is a 

common type of orbit for remote sensing satellites. Thus, Active debris removal (ADR) has become a hot topic of 

space technology in recent years [1-5]. Multi-target rendezvous mission is widely recognized because of the high 

efficient and economical. Many scholars and researchers have conducted research on related issues [6-8]. The 

mission planning is one of the focus, which involves the selection and ordering of targets, as well as the transfer 

trajectory optimization.  

Multi-rendezvous mission planning is a considerable challenge to trajectory design and optimization. It is a variant of 

the well known traveling salesman problem (TSP) with a time-varying cost function, which is an typical example of 

the NP-hard problem in combinatorial optimization. A large number of enumeration algorithm and their 

improvements are unilized to solve this combinatorial optimization problem. In previous literatures, Multi-

rendezvous mission planning is generally partitioned into two subproblems, the target sequence optimization and the 

transfer trajectory optimization, to reduce optimization difficulty and complexity. Cerf used a branch and bound 

algorithm that is an explicit enumeration of all possible sequences to obtain the rendezvous sequence [9]. Although 

some simplification strategies are also defined to limit the search space, it is still unacceptable to the increase of 

calculation burden with the candidate growth. The branch and bound algorithm is suitable for sequence issues and 

can obtain the global optimal solution at the cost of calculation time. Therefore, to improve the algorithm efficiency, 

various pruning techniques are extensive applied in the famous Global Trajectory Optimization Competition (GTOC) 

and China Trajectory Optimization Competition (CTOC) [10-14]. Zhao adopted the branch and bound algorithm 

with greedy strategy to search the debris sequence and won the championship of the CTOC-8 [11]. Pruning with 

local performance index has extremely applicability to the sequence search problems. JPL constructed a local 

performance index function based on flight time, propellant consumption and weighting factors to prune the poor 

branches in GTOC-5, which help them won the competition [13]. In addition, pruning approach based parameter 

constraints is also a general strategy in branch and bound algorithm. Tsinghua university and national university of 

defense technology used this approach to solve the trajectory of visiting a maximum of asteroids in GTOC-5 [12, 14]. 
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The local performance index and parameter constraints can effectively reduce the solution space and improve 

computational efficiency. However, These formulas and parameters depend on professional experience and intuition. 

Heuristic algorithm is a type of optimization method that has outstanding global optimization capabilities. It has been 

explored as an alternative to solve combinatorial problems in multi-rendezvous mission analysis. Compared with the 

traversal search of the branch and bound, Heuristic utilize stochastic individual and population evolutionary theory of 

natural selection to perform optimization operations, which avoids the computational burden trap resulting from the 

problem scale. Izzo designed chromosomes with encoding asteroid sequences and used GA for the identification of 

good asteroid sequences in GTOC-5 [15]. Ant Colony Optimization (ACO) is another heuristic approach that is 

applied to solve the multi-rendezvous problem. Stuart incorporated ACO and multi-agent coordination method and 

successfully obtained a debris mitigation tour scheme [16]. 

It is a very challenging works to directly solve the multi-rendezvous trajectory that is an complex combinatorial 

optimization problem. In the existing methods, both traversal methods and Heuristic algorithms, An encounter 

sequence is first obtained, and then the exact trajectory is solved [10]. Because of the coupling of sequence and 

trajectory optimization, a simplified approximation model is usually employed to estimate the transfer trajectory 

during the sequence optimization to improve computational efficiency. In traditional mathods, the approximation 

models are generally built based two-body dynamics, lambert solutions, or empirical formulas. The applicability and 

accuracy of the obtained models are unreliable when dealing with problems in different situations. 

In this paper, An autonomous multi-rendezvous mission planning approach using back propagation (BP) neural 

network and GA is proposed to perform the ADR mission scheme. Firstly, a trained BP neural network is utilized to 

substitute the traditional approximation model. The computing efficiency of network is not affected by the dynamics  

and accuracy requirements. Furturemore, this method can be reused in a variety of situations as long as the trained 

network is obtained. Then, GA is employed to obtain the optiminal rendezvous sequence and transfer trajectory. 

Finally, a ADR mission is performed to verify the feasibility of the proposed method. 

The rest of this paper is organized as follows: Section 2 intuoduces the multi-rendezvous problem for the ADR of 

sun-synchronous orbit. In Section 3, the methodology of optimal multi-rendezvous trajectory design for ADR 

mission is formulated. A three-impulse transfer strategy and the structure of BP neural network is brief. The 

simulation and results are shown and analysed in Section 4, and the conclusions are summarized in Section 5. 

2. Problem description  

Sun-synchronous orbit (SSO) is a significant space resource, which is the ideal orbit for remote sensing satellites. 

Debris from scrapped remote sensing satellites has long been concentrated on nearly SSO, and seriously threatens the 

safety of spacecraft running on SSO. Therefore, a problem of ADR mission planning on typical SSOs is considered 

in this paper. The range of orbital elements of the typical SSOs is shown in Table 1. The orbits of debris to remove 

are quasi-circular. 

Table 1: The range of orbital elements of the typical SSOs 

Elements Range 

Altitude /km 600 ~ 1000 

Eccentricity  0 ~ 0.01 

Inclination /deg 96 ~ 100 

During the ADR mission, the mission spacecraft is launched to the initial orbit that is near the target debris area, and 

the subsequent work is done autonomously by the spacecraft. In this paper, it is the process of debris rendezvous 

rather than the clearing techniques is focused. Hence, it is assumed that the debris is removed as the spacecraft 

rendezvous them. The spacecraft with an autonomous mission planning system will select target debris from a 

number of candidates and plan rendezvous sequences and transfer trajectories. 
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3. Statement of methodology 

3.1 Three-impulse transfer strategy 

The debris to remove is scattered on the SSOs with different orbital altitudes and planes. It is fuel-intensive to 

directly adjust the orbital plane. An economical way is to alter the orbital plane with J2 perturbation, but the time of 

flight will become very long due to the small difference in orbital altitude. For Balancing fuel consumption and time 

cost, a three-impulse strategy is proposed in this paper. 

For each debris rendezvous mission, the transfer trajectory is divided into two stages: the waiting stage and the 

rendezvous stage, as shown in Figure 1. Firstly, the spacecraft applies an impulse maneuver to transfer to the waiting 

orbit. The spacecraft will stay on the waiting orbit for a while to reduce the difference of orbital plane using J2 

perturbation. When the waiting orbit coplanar with the target orbit or the upper limit of the dwell time is reached, a 

Bi-impulse transfer is performed to rendezvous taget debris, which is called the transfer stage in this paper. 

 

Parking orbit Waiting orbit Rendezvous trajectoryTarget orbit

1: Maneuver 1

3: Maneuver 2

4: Maneuver 3

0: stay in Parking orbit

2: stay in waiting orbit

5: Remove debris

 

Figure 1: The diagram of the three-impulse transfer strategy 

 

The transfer trajectory of each rendezvous contains waiting leg and rendezvous leg. The waiting leg is from the first 

maneuver to the second maneuver. The solving of the rendezvous leg is essentially a lambert problem under J2 

perturbation. td is the duration from the initial moment to the first maneuver. tw presents the duration that the 

spacecraft stay on the waiting orbit. The time of flight from the waiting orbit to the target is referred as tr. The initial 

time is set as 0. 
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where wr  and wV  are the position and velocity vectors of the spacecraft at tw+ td. tr  and tV  denote the position and 

velocity vectors of the debris at tw+ td+ tr. dV  and aV  are the velocity vector of the spacecraft after the second 

maneuver and before the third maneuver, respectively. Thence, the object function of each transfer trajectory 

optimization is defined as follow.  
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where the first velocity increment 1V  is expressed as  1, ,V     in spherical coordinates for convenience.  
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The optimal solution can be found using heuristic algorithm such as GA and ACO. Because of the repeated iterations, 

it is not appropriate to directly put the trajectory optimizer into the sequence optimization. Some approximate 

formulas that depend on experience are utilized to replace the trajectory optimizer in traditional methods. In this 

paper, a BP neural network rather than the experience formulas is employed, which has ability to estimate transfer 

trajectory parameters more accurately. The structure of BP neural network is introduced in the follow section. 

3.2 Structure of BP neural network 

Artificial neural network (ANN) is a complex network structure formed by a large number of units connected to each 

other. It can fully approximate to any complex nonlinear relations and is widely used in various fields. BP algorithm 

is a typical error back propagation algorithm, which was proposed by Rumelhart and Mcllelland in 1986 [17]. BP 

neural network is a multi-layer feedforward neural network. Its main feature is that the signal is forward propagating, 

and the error is back propagating [18]. As shown in Figure 2, a 3-layers BP neural network is built.  
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x2

x3

x4 y4

y1

y3

y2

z1

z2

z3

Input layer Hidden layer Output layer
 

Figure 2: the Structure of BP neural network with 3 layers 

 

The process of BP neural network is mainly divided into two steps. The first is the forward propagation of the signal, 

from the input layer through the hidden layer, and finally to the output layer. The second step is the back propagation 

of the error, from the output layer to the input layer in turns. The weight w and offset b between adjacent layers is 

also adjusted layer by layer from the output layer to the input layer. The output of unit i in layer j is solved as follows 

 

  ij ij j ijy g b w x   (3) 

 

where 
ijw  and 

jx  are the weight and input vector. bij is the value of the offset. g is the activation function. Purelin, 

threshold function and sigmoid function are all common activation functions. In theory, when nonlinear and linear 

activation functions are used together, all nonlinear systems can be approximated. Therefore, the sigmoid function 

and purelin are respectively selected as the activation function of the hidden layer and output layer in this paper. A 3-

layer BP neural network is employed to describe the mapping relationship between the transfer trajectory parameters 

and the initial states of the spacecraft and the debris.  

 

    0, , tV tof net oe oe    (4) 

 

where oe0 and oet denote the orbital elements of the spacecraft and debris, respectively. V  is the total velocity 

increments and tof is the time of flight. 

The target orbits are randomly generated and GA is used to optimize the transfer trajectory between these selected 

debris. The obtained transfer trajectory is stored as the samples for training. In order to ensure the quality of the 

sample, every transfer trajectory is calculated three times. 
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3.3 Autonomous mission planning approach 

With the help of the BP neural network and the three-impulse transfer strategy, an autonomous mission planning 

approach is proposed in this section. It makes the spacecraft have the ability to select the target debris and design the 

transfer trajectory. The implementation process of the algorithm is shown in Figure 3.The GA is used to perform the 

sequence and trajectory optimizations, and the 3-layer BP neural network is applied to estimate the transfer trajectory 

parameters during sequence optimization.  

For the sequence optimization, the object function is defined as 
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where Dk (k = 1, 2, 3, 4, 5) denotes the number of debris to remove in order. net is the trained BP neural network. 

 
sD soe t  denotes the orbital elements of the debris Ds at ts. 

 

orbital elements of candidates Initial orbital elements of spacecraft

Sequence optimization with GA

Transfer trajectory optimization with GA

Rendezvous  sequence;

Initial value of transfer trajectory

Mission trajectory

The trained BP 

neural network

 

Figure 3: The flow chart of the autonomous mission planning approach 

 

after the rendezvous sequence is obtained, the GA is again applied to optimize the transfer trajectory for each 

segment according to the order of the rendezvous. The object function is as shown in Eq. (2). The estimated 

parameters solved from the BP neural network are used as the initial guesses to improve trajectory optimization 

efficiency.  Finally, the whole mission trajectory is solved. 

4. Results and discussion 

4.1 Sample generation and training  

The ADR mission on SSO is taken into consider as an example to verify the feasibility and advantage of the 

proposed method. Considering the limited fuel of spacecraft, some restrictions on the distribution of candidate orbits 

are necessary. As shown in Table 1, the candidate target orbits are quasi-circular SSOs, of which the altitudes are 

from 600 to 1000 km. The range of initial right ascension of ascending node (RAAN) is set from 0 to 30 deg. The 

rang of argument of periapsis and true anomaly are all from 0 to 360 deg. 100 000 candidate orbits satisfying the 

constraints are randomly generated, and divided equally into the parking orbit set and the target orbit set. The orbits 

belong to the parking orbit set and the target orbit set are drawn one by one to form 50 000 samples. GA is used to 

solve the transfer trajectory from the parking orbit to target orbit for each samples. The range of the variables to 

optimize is set as shown in the following table. 
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Table 2: The range of the variables to optimize for transfer trajectory 

Variables Range 

td (sec) [0, 7200] 

tw (day) [0, 5] 

tr (sec) [0, 7200] 

1V  (km/sec) [0, 0.5] 

  (deg) [0, 360) 

  (deg) [-90, 90] 

In order to ensure the optimality of the transfer trajectory, each sample is solved three times and the optimal solution 

is stored. The data structure of the sample is shown in Eq. (6). 

 

 0 1Sa [ , , , , ]toe oe v v tof     (6) 

 

where oe0 and oet represent the initial orbital elements of the spacecraft and the debris, respectively. 1v  is the size 

of the first velocity increment, and v  is the size of the total velocity increments. tof is the time of flight that is from 

the initial moment to the moment of rendezvousing debris.  

The parameters and structure of BP neural network will affect the training performance and the fitting effect of the 

final network. A fully-connected BP neural network with three layers is built. The specific parameters are shown in 

Table 3 and Table 4.  

The input is the orbital elements of the spacecraft and the debris. The output is the first and the total velocity 

increments and the time of flight. Since the values of the parameter vary widely, parameter normalization is 

necessary. The detailed process of normalization is not repeated here. 

Table 3: The structure of the BP neural network 

Parameter Input layer Hidden Layer Output layer 

Units in each layer 12 200 3 

Activation function -- Sigmoid Purelin 

 

Table 4: The parameters of the BP neural network 

Parameter Value 

Initial learning rate 0.01 

Training Optimizer Gradient Descent 

Training epoch 1000 

The error of  test set for the trained BP neural network is shown in Figure 4. The estimated error of the test data 

decreases exponentially as the training, and eventually converges to 0.275%. This shows that the trained BP neural 

network is able to accurately estimate the flight time and fuel consumption of the transfer trajectory for ADR mission. 
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Figure 4: The error of the test set in the training process for the BP neural network 

4.2 Autonomous planning of ADR mission 

Without loss of generality, the same method is used to randomly generate 20 orbits that satisfy the parameter 

constraints as the orbits of the candidate debris. The generated orbits of debris is listed in Table 6. The No. 0 is the 

initial orbital elements of the spacecraft. 

Table 5: The initial orbital elements of the spacecraft and the debris 

No. a (km) e  Inc (deg) RAAN(deg)  (deg)  (deg) 

0 6878 0 98 15 0 0 

1 7429.030 0.007621 98.242 8.717 252.108 84.503 

2 7402.401 0.004067 99.302 33.226 272.576 96.397 

3 7183.748 0.010440 96.17 8.858 151.428 107.632 

4 7245.826 0.003113 96.61 7.579 131.610 1.431 

5 7223.908 0.000674 98.03 8.401 216.233 226.455 

6 7285.064 0.005946 97.484 22.631 185.771 83.918 

7 6918.970 0.003187 97.368 12.98 131.539 56.693 

8 7098.502 0.000175 96.274 3.575 87.896 256.21 

9 7333.849 0.000875 96.065 12.654 137.88 125.057 

10 6889.953 0.00218 99.836 13.803 122.629 175.816 

11 7100.981 0.003459 97.279 11.115 313.511 14.615 

12 7384.654 0.005947 95.683 12.485 131.395 61.502 

13 7203.436 0.005817 97.437 8.108 202.168 158.868 

14 7154.921 0.00471 99.094 14.09 13.842 296.436 

15 7404.928 0.003 96.235 19.504 202.876 339.953 

DOI: 10.13009/EUCASS2019-549



Bin Yang, Qunzhi Li 

     

 8 

16 6809.200 0.007888 95.785 4.095 33.046 93.953 

17 7394.388 0.002854 99.030 15.513 263.182 124.246 

18 6983.839 0.003931 96.016 20.508 83.685 196.160 

19 7371.259 0.000773 98.174 0.523 393.279 85.73 

20 7074.251 0.004234 99.927 30.429 85.553 63.858 

 

As mentioned in Section 3.3, the GA is employed to selecte 5 targets and optimize the rendezvous sequence. The 

object function is given in Eq. (5), and the trained BP neural network in Section 4.1 is used to estimate the velocity 

increments of each transfer trajectory. The results of simulation is shown in Table 6. 

Table 6: The results of the sequence optimization 

 Value 

Rendezvous sequence 0-14-10-7-9-12 

Total velocity increments (km/s) 1.389 

Mission duration (day) 11.182 

Iterations 134 

Computation time (s) 36.458 

According to the results of sequence optimization, each transfer trajectory is reoptimized using GA and the object 

function is same as the Eq. (2). The results are listed in Table 7.  

Table 7: The results of the trajectory optimization 

 td (sec) tw (day) tr (sec) V (km/s)  

Segment 1 4814 1.583 4584 0.299 

Segment 2 22 2.609 3999 0.266 

Segment 3 1224 2.276 2739 0.364 

Segment 4 2554 1.483 4203 0.352 

Segment 5 3947 2.559 5607 0.136 

The accurate mission duration and fuel consumption obtained from the trajectory optimization are 10.903 days and 

1.418 km/sec, respectively. Compared with the estimated value in Table 6, the estimated error of the trained BP 

neural network is 0. 279 day and 0. 029 km/sec, which are small and explain the effectiveness of the BP neural 

network.  

5. Conclusion 

An autonomous mission planning method based on the BP neural network and the GA is proposed to plan multi-

rendezvous mission. a three-impulse strategy is employed for balancing fuel consumption and mission duration. In 
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order to improve the efficiency of the sequence optimization, A 3-layer BP neural network is built to estimate the 

parameters of each transfer trajectory during sequence optimization. The result of numerical simulation confirm the 

efficacy of the proposed method. The utilization of the BP neural network improves the accuracy and efficiency of 

sequence planning. 
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