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Abstract
In this paper, the Karhunen-Loève expansion of ensemble weather forecasts is proposed to model

meteorological uncertainties in aircraft trajectory planning based on stochastic optimal control techniques.
Ensemble weather forecasts are sets of forecasts that represent a range of possible weather conditions
together with the likelihood of their occurrence. Ensemble wind forecasts are treated as realizations of a
stochastic processes and represented using the Karhunen-Loève approach. The obtained results show the
ability of the Karhunen-Loève approach to provide suitable representations of ensemble wind forecasts to
be included into aircraft trajectory planning problems.

1. Introduction

The Next Generation Air Transportation System (NextGen) and the Single European Sky ATM Research (SESAR), are
currently ongoing programs to support the future air transportation system in the United States and Europe, respectively.
These new Air Traffic Management (ATM) programs are based on the concept of Trajectory-Based Operations (TBO).
A 4D aircraft trajectory consists of the 3D aircraft path plus time. In TBO, aircraft will be able to follow optimized
4D trajectories based on the preferences of the airlines. The planned trajectories must be precisely followed by the
aircraft to avoid conflicts with other aircraft and ensure the safety of the flight and an efficient exploitation of the
airspace. However, this accuracy is difficult to achieve mainly because of weather uncertainty. Among the most
effective trajectory optimization techniques are the stochastic optimal control methods, which are able to take into
account the inherent uncertainty of the problem and give robust solutions in the sense that probabilistic constraints
must be fulfilled.

Uncertainties in parameters are usually represented as random variables, whereas uncertainties in functions of
space or time are modeled as random processes. When uncertainties can be characterized by means of probability dis-
tribution functions, in the first case, uncertainty quantification can be directly addressed using Generalized Polynomial
Chaos (gPC) expansion whereas, in the second case, it is usually based on a combination of Karhunen-Loève (KL) ex-
pansion and gPC [1]. In data-driven applications, the gPC technique can be generalized by the Arbitrary Polynomial
Chaos (aPC) expansion, which can tackle raw data sets, and only demands the existence of a finite number of moments
and does not require the complete knowledge of a probability distribution function [2].

The European Centre for Medium-Range Weather Forecast (ECMWF) developed a system called Ensemble
Prediction System (EPS) to reflect uncertainty in weather forecast models. In this system, besides the forecast based
on the best estimate of the model equations and the best estimate of the initial state of the atmosphere, which is called
control, other 50 forecasts are generated using slightly perturbed initial conditions and also using different models
which are close to, but not identical to the best estimate of the model equations. The combination of the control plus
the other forecasts is called an ensemble. The spread of the ensemble prediction gives an estimate of the uncertainty of
the prediction [3, 4].

In [5], an approach for dynamic optimization considering uncertainties is developed and applied to robust aircraft
trajectory optimization. The nonintrusive polynomial chaos expansion scheme is employed to convert a robust trajec-
tory optimization problem with stochastic ordinary differential equations into an equivalent deterministic trajectory
optimization problem with deterministic ordinary differential equations. In [6], a stochastic optimal control method
is developed for determining three-dimensional conflict-free aircraft trajectories under wind uncertainty considering
a idealized Gaussian correlated wind model and a probabilistic conflict detection algorithm using the gPC method.
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Figure 1: Plot of the autocorrelation function given by Eq. (1).

A spatially correlated wind model is considered because the wind correlation has a significant effect on the trajecto-
ries of aircraft when they are close to each other. In [7], a practical approach to generalize the KL expansion, called
muKL, is proposed to model multiple-correlated non-stationary random processes, based on the spectral analysis of a
suitable assembled random process which yields a series expansion in terms of an identical set of uncorrelated random
variables.

Since there is no conclusive experimental evidence to support the assumption of the Gaussian process model
for wind uncertainty, other wind models with data-driven probability distributions are needed for specific weather
conditions. In this paper, the muKL expansion is applied to EPS wind data considering the wind module in the
eastward and northward directions as correlated processes and the members of the EPS as realizations. The results of
the numerical experiments show that the fist term of the muKL expansion of the considered EPS explains almost all
the variability of the ensemble, and that this is a practical representation of the EPS to be used in stochastic optimal
control problems for aircraft trajectory planning.

This paper is organized as follows. Stochastic processes are introduced in Sect. 2. The KL expansion for stochas-
tic processes is explained in Sect. 3. The muKL expansion is presented in Sect. 4. Results obtained applying the muKL
expansion to an EPS are reported in Sect. 5. Finally, Sect. 6 contains the conclusions.

2. Stochastic Processes

2.1 Definition of a stochastic process

Consider a random experiment specified by the outcomes ω from a sample space S , by the events defined on S , and
by their probabilities. Suppose to associate to every outcome ω a function of a parameter t, which usually represents
space or time,

f (t, ω), t ∈ I.

The graph of the function f (t, ω), for a fixed value of ω, is called a realization, sample path, or sample function of the
random process. Thus, in this case, the outcome of the random experiment is a function of the parameter t. Fixing a
value tk from the index set I, then f (tk, ω) becomes a random variable since it is actually a mapping between outcomes
ω ∈ S and real numbers. In this way, a family (or ensemble) of random variables indexed by the parameter t has
been created, that is, { f (t, ω), t ∈ I}. This family is called a random process. Random processes are also referred to as
stochastic processes [8].

Let f1(t, ω) and f2(t, ω) be two stochastic processes. To specify their joint behavior, the joint distribution of all
possible choices of t samples of all processes have to be specified. The cross-correlation R f1, f2 (t1, t2) of f1(t, ω) and
f2(t, ω) is defined as

R f1, f2 (t1, t2) = E[ f1(t1) f2(t2)],

where E[·] denotes the statistical expectation operator, and the cross-covariance C f1, f2 (t1, t2) of f1(t, ω) and f2(t, ω) as

C f1, f2 (t1, t2) = R f1, f2 (t1, t2) − m f1 (t1) · m f2 (t2),

where m f1 (t1) and m f2 (t2) are the mean functions of each process at t1 and t2, respectively. In particular, if f1(t, ω) =

f2(t, ω) = f (t, ω), R f (t1, t2) and C f (t1, t2) are called autocorrelation and autocovariance of f (t, ω) respectively. Without
loss of generality, in this article zero-mean random processes will be considered. Therefore, C f1, f2 (t1, t2) = R f1, f2 (t1, t2)
[8].
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A random process of second order, also called a square integrable process, can be defined as a family of complex
random variables which have finite second moments E[| f (t, ω)|2] < ∞ for all t ∈ I [9, 10].

A typical example of a stochastic process is the Gaussian random field g(t, ω), characterized by its variance σ2

and autocorrelation function Rg(t1, t2) given by

Rg(t1, t2) = σ2 exp
(
−
|t1 − t2|

Lc

)
, (1)

where Lc is the correlation length. This autocorrelation function is represented in Fig. 1 in the interval (t1, t2) ∈
[−1, 1] × [−1, 1] for σ2 = 1 and Lc = 1.

3. Karhunen-Loève Expansion for Stochastic Processes

This section introduces the KL expansion, which allows (possibly nonstationary) random process f (t, ω) to be expanded
in a series

f (t, ω) =

∞∑
k=1

√
λkφk(t)ξk(ω), (2)

where ξk(ω) are uncorrelated random variables

ξk(ω) =
1
√
λk

∫
I

f (t, ω)φk(t)dt,

and the eigenvalues λk and the eigenfunctions φk(t) fulfill the Mercer’s theorem

λkφk(t1) =

∫
I

K(t1, t2)φk(t2)dt2, (3)

where

K(t1, t2) =

∞∑
k=1

λkφk(t1)φk(t2).

Equation (3) is known as homogeneous Fredholm integral equation of the second kind and it is usually solved numer-
ically using the Nyström method. An interesting property of the KL expansion (2) is that, since the random variables
ξk(ω) are uncorrelated, it actually decorrelates the random process f (t, ω). Additionally, it can be used to reduce the
dimensionality of the representation by simple truncation of the sum.

Eigenvalues contain the information about the percentage of variability explained by the corresponding term of
the KL expansion. In Table 1, the first six eigenvalues of the KL expansion obtained applying the Nyström method to
the Fredholm integral equation for the Gaussian process whose autocorrelation function is given by Eq. (1) are listed,
along with the percentage of variability explained by each of them. Overall, they explain 92.70720% of the variability.
The first six eigenfunctions and the histograms of the corresponding random variables are represented in Fig. 2.

Table 1: The first six eigenvalues of the KL expansion of the Gaussian process whose autocorrelation function is given
by Eq. (1) and the percentage of variability explained by the first six terms of the expansion.

λ1 λ2 λ3 λ4 λ5 λ6

Eigenvalue 23.30359 8.09230 3.28548 1.67425 0.99671 0.65760
% of variability explained 56.83802 19.73732 8.01338 4.08355 2.43102 1.60391

4. Karhunen-Loève Expansion for Multi-Correlated Processes

As said before, the eastward and northward components of the wind, which will be referred to as the X and Y com-
ponents respectively, are correlated stochastic processes. Thus, to carry out their KL expansions, a special technique
for correlated processes must be employed. In this paper, the results of the application of the muKL method proposed
in [7] will be described. In this section, the muKL method is reported for convenience. The original paper contains a
more comprehensive treatment of the topic and some illustrative examples.
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Figure 2: The first six eigenfunctions and the histograms of the corresponding random variables of the KL expansion
of the Gaussian process whose autocorrelation function is given by Eq. (1).

Consider an ensemble of n zero-mean square integrable random processes

{ f1(t;ω), . . . , fn(t;ω)} (4)

For the sake of simplicity, it is assumed that each process is defined in the same bounded interval [0,T ].
The correlation between the processes { f1(t, ω), . . . , fn(t, ω)} is described in terms of n(n + 1)/2 covariance func-

tions Ci j,
Ci j(t1, t2) = E[ fi(t1, ω) f j(t2, ω)], 1 ≤ i ≤ j ≤ n. (5)

The quantity Cii(t1, t2) is the auto-covariance function of the process fi(t, ω), which will also be denoted as
Ci(t1, t2). If the processes { f1(t, ω), . . . , fn(t, ω)} are mutually independent, then the KL expansion (2) can be straight-
forwardly applied to each process fi(t, ω) separately [11, 12]. As said before, if the cross-covariances Ci j(s, t) are non
zero, then it is not straightforward to obtain consistent expansions for all random processes, able to reflect both the
autocorrelation and the cross covariance structure. The muKL method proposed in [7], overcomes this drawback by
generating series expansions of all processes in terms of a single set of uncorrelated random variables. To construct
such a series, an assembled process f̃ is considered, which is defined for each interval Ii as

f̃ (t, ω) = fi(t − Ti−1, ω), t ∈ Ii, 1 ≤ i ≤ n, (6)

where Ti = iT , I1 = [0,T1] and Ii = (Ti−1,Ti]. In this way, the restriction of the assembled process f̃ (t, ω) to the
interval Ii coincides with the process fi(t, ω). Thus, f̃ (t, ω) being the assembling of second order processes, is also a
second order process which satisfies

E[ f̃ (t, ω)] = 0, E[ f̃ (t1, ω) f̃ (t2, ω)] = C̃(t1, t2),

where C̃(t1, t2) is the assembled covariance function defined as

C̃(t1, t2) = Ci j(t1 − Ti−1, t2 − T j−1) t1 ∈ Ii t2 ∈ I j. (7)
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(a) Wind intensity in the X direction in [m/s] (b) Wind intensity in the Y direction in [m/s]

Longitude(
o
)

L
a
ti
tu

d
e
(o

)

(c) Wind field

Figure 3: First member of the EPS.

Now, the KL expansion (2) can be applied to the assembled process (6) obtaining

f̃ (t, ω) =

∞∑
k=1

√
λk f̃k(t)ξk(ω), (8)

where ξk(ω) are uncorrelated random variables

ξk(ω) =
1
√
λk

∫ Tn

0
f̃ (t, ω) f̃k(t)dt,

where λk and f̃k(t) are, respectively eigenvalues and eigenfunctions solutions to the homogeneous Fredholm integral
equation of the second kind

λk f̃k(t1) =

∫ Tn

0
C̃(t1, t2) f̃k(t2)dt2. (9)

In practical applications it is preferable to have a non negative covariance function. Unfortunately, the assembled
covariance C̃(t1, t2) could have negative eigenvalues since, in general, it is not positive semi definite, even if all the
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Figure 4: The first six eigenfunctions and the histograms of the corresponding random variables of the muKL expansion
of the 51 members of the wind components in the X direction of the EPS.

covariances (5) are. Therefore, the following positivity condition for the assembled discretized covariance C̃(ti, t j) is
introduced

m∑
j=1

m∑
i=1

C̃(ti, t j)xix j ≥ 0,

for any finite sequence {t1, . . . , tm} and real numbers {x1, . . . , xm}. In other words, the m × m matrix

C̃ =


C̃(t1, t1) C̃(t1, t2) · · · C̃(t1, tm)
C̃(t2, t1) C̃(t2, t2) · · · C̃(t2, tm)

...
...

. . .
...

C̃(tm, t1) C̃(tm, t2) · · · C̃(tm, tm)


must be positive definite for any set of m distinct values of the parameter t in [0,T ]. An example of the positivity
condition that must be introduced in case of exponential covariances is given in [7].

Suppose that the eigen-pairs {λk f̃k(t)}, k = 1, 2, . . . , obtained solving Eq. (9) have been ordered according to the
magnitudes of the eigenvalues λk. Then, each eigenfunction f̃k(t) can be represented in terms of n sub-components
φ(i)

k (t), i = 1, . . . , n,
φ(i)

k (t) = f̃k(t + Ti−1)I[0,T ](t),

where I[0,T ] is the indicator function of the set [0,T ].
Finally, the i-th random process fi(t, ω) of the original ensemble (4) is expanded as

fi(t, ω) =

∞∑
k=1

√
λkφ

(i)
k (t)ξk(ω). (10)
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Figure 5: The first six eigenfunctions and the histograms of the corresponding random variables of the muKL expansion
of the 51 members of the wind components in the Y direction of the EPS.

Remark 1. Eigenvalues λk and random variables ξk(ω) in (10) are the same as those appearing in the assembled
process (8).

Remark 2. For each index i, the set of sub-components {φi
k}, k = 1, 2, . . . is neither orthogonal nor normalized in

t ∈ [0,T ]. Nevertheless, φ(i)
k (t) can be normalized within the interval [0,T ] obtaining

fi(t, ω) =

∞∑
k=1

√
λ̂(i)

k φ̂
(i)
k (t)ξk(ω), (11)

where φ̂(i)
k (t) =

φ(i)
k (t)∥∥∥φ(i)

k (t)
∥∥∥

2

and λ̂(i)
k = λk

∥∥∥φ(i)
k (t)

∥∥∥2
2.

Remark 3. Since random processes in (10) or (11) are represented in terms of the same set of random variables ξk(ω),
the muKL method cannot be used to represent heterogeneous sets of processes.

In our application it is important to reduce the dimensionality of the expansion by truncation and calculate the
associated mean-squared error. The truncated assembled process, in which the first M terms of the expansion (8) are
considered, is defined as

S M =

M∑
k=1

√
λk f̃k(t)ξk(ω), (12)

and the corresponding mean-squared error as

ε2
M =

∫ Tn

0
E[( f̃ (t, ω) − S M(t, ω))2]dt.
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(a) Wind intensity in the X direction in [m/s] (b) Wind intensity in the Y direction in [m/s]

(c) Error wind intensity in the X direction in [m/s] (d) Error wind intensity in the Y direction in [m/s]
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Figure 6: Reconstructions of the first member of the EPS shown in Fig. 3 obtained using only the first component of
the muKL expansion of the ensemble of the two random processes.
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Since ξk(ω) are uncorrelated random variables and f̃k(t) are orthonormal eigenfunctions, it follows that

ε2
M =

∞∑
k=M+1

λk, (13)

that is, the truncation error of the series (8) decreases with respect to the decay rate of the eigenvalues. Moreover, the
errors of the cross-covariances Ci j(t1, t2) are bounded by the error of the assembled covariance C̃(t1, t2) in Eq. (7).

A key point of any KL expansion, is the choice of M. For the muKL expansion, the choice of M in (12) can be
done by imposing a threshold for the error εM , which can be achieved by setting a threshold for the relative sum of the
eigenvalues

M∑
k=1

λk ≥ α

∞∑
k=1

λk,

where α ∈ [0, 1] is chosen so that the accuracy of the approximation is satisfactory for a particular application.
To use the muKL in aircraft trajectory planning problems based on stochastic optimal control techniques, firstly

the eigenfunctions φ(i)
k (t), i = 1, 2, of the expansion of the eastward and northward components of the wind must be

interpolated to be converted into analytic expressions. Secondly, the uncertainty of the random variables ξk(ω) must be
quantified using an aPC expansion.

5. Results

For the numerical experiments data from the ECMWF has been used. More precisely, a wind EPS forecast issued by
the ECMWF on August 31, 2016 at 00:00 hours which prediction horizon goes from August 31, 2016 at 12:00 hours
to September 01, 2016 at 18:00 hours. The prediction makes reference to an altitude of 200 [hPa] (11769.9 [m]) for
a wide region of the Earth (between 70 [o] N and 40 [o] S, and between 125 [o] W and 45 [o] E ) and contains 51
members. For the sake of illustration, only the first member of the ensemble is represented in Fig. 3. In particular, the
wind intensity in the X direction is represented in Fig. 3.a, and the wind intensity in the Y direction is represented in
Fig. 3.b. Fig. 3.c shows the corresponding wind field.

The first six eigenfunctions and the histograms of the corresponding random variables of the muKL expansion
of the 51 members of the wind components in the X direction of the EPS are represented in Fig. 4, whereas the
first six eigenfunctions and the histograms of the corresponding random variables of the muKL expansion of the 51
members of the wind components in the Y direction of the EPS are represented in Fig. 5. Notice that, since the muKL
method generates series expansions of random processes in terms of a single set of uncorrelated random variables,
the histograms of the random variables of the muKL expansions of the processes that represent the wind components
in the X and Y directions coincide. The first six eigenvalues of the muKL expansion of the EPS and the percentage
of variability explained by the first six terms of the expansion are reported in Table 2. Notice that, as explained in
Sect. 4, the set of eigenvalues is the same for two correlated stochastic processes considered. It can be seen that the
98.80786% of the variability of the ensemble of the two random processes is explained by the first term of the muKL
expansion. This result is reasonable, since in ensemble-based probabilistic forecasting, besides a main forecast, 50
additional forecasts are generated from slightly perturbed initial conditions and with a slightly perturbed model. Thus,
only the first component of the muKL expansion is enough to get an accurate approximation of the ensemble of the two
random processes.

The reconstructions of the wind intensity in the X and Y directions obtained using only the first component of
the muKL expansion of the ensemble of the two random processes are reported in Fig. 6.a and Fig. 6.b, respectively.
Fig. 6.e shows the corresponding vector field. The errors in reconstructions of the wind intensity in the X and Y
directions are reported in Fig. 6.c Fig. 6.d, respectively.

Table 2: The first six eigenvalues of the muKL expansion of the EPS and the percentage of variability explained by the
first six terms of the expansion.

λ1 λ2 λ3 λ4 λ5 λ6

Eigenvalue 14769.01 8.35300 7.66338 7.41429 6.99105 6.71256
% of variability explained 98.80786 0.05588 0.05126 0.04960 0.04677 0.04490
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6. Conclusions

In this paper, a Karhunen-Loève expansion of ensemble weather forecasts has been proposed to model meteorological
uncertainties in aircraft trajectory planning problems based on stochastic optimal control techniques. The eastward
and northward components of the wind have been regarded as realizations of correlated stochastic processes and a
special technique has been employed to compute their Karhunen-Loève expansions in terms of an identical set of
uncorrelated random variables. The Karhunen-Loève expansion has the useful characteristic of allowing the dimension
of the representation for a designated numerical precision to be chosen by a simple truncation. Numerical experiments
have been conducted using an ensemble wind forecast with 51 members. The obtained results show that using a single
term of the Karhunen-Loève expansion of an ensemble wind forecasts, 98.80786% of the variability can be explained,
providing a practical representations of ensemble wind forecasts to be used in aircraft trajectory planning problems
based on stochastic optimal control techniques.
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