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Abstract 
Numerical study of gas flow in a channel is difficult for rarefied gas (i.e. for high Kn) because this 

flow could not be described by differential equations: the solution of Boltzmann equation or numerical 

DSMC methods are required. The problem becomes even more complex for unstable rarefied gas 

flow. Analytic model of rarefied gas flow in a channel for high Knudsen number can be represented as 

nonlinear dynamic system based on iterative equations. However, the flow in transitional regime 

between free-molecular and continuum flow could not be described by iterative scheme. To minimize 

calculation time we apply artificial neuron network (ANN) in its basic form – multilayer perceptron.  

1. Introduction 

Numerical simulation of rarefied gas flows in channels applying artificial neuron network (ANN) is the main purpose 

of this paper. If Knudsen number is high enough, ordinary grid methods become inaccurate, and DSMC methods are 

preferred. However, often DSMC procedure must be repeated many times, so that powerful high-efficiency 

computers and much computation time are necessary. Therefore, difficult time consuming computation requires here 

computer time economy methods like ANN. For testing ANN in rarefied gas we consider one of the most complex 

type of rarefied gas flows – unstable (relative to a variation of the parameters) flows. Such flows (including the flows 

in micro- channels) are described by nonlinear dynamic systems with attractors and bifurcations, and has been 

investigated in our previous papers [1]–[7].  

The learning and training of ANN is based here on relative simple test flows, on analytic solutions in limit cases and 

on comparatively few Monte Carlo simulations. Rarefied gas flows in channels are discrete dynamic systems (unlike 

continuous dynamic systems specified by differential equations), because they are described by the laws of mutual 

interactions of gas particles and of collisions with the surface. Thus, these systems can exhibit strange attractors 

whatever their dimensionality, whereas in a continuous dynamical system according to the Poincaré-Bendixson 

theorem a strange attractor can only arise if the system has three or more dimensions. The cascade of bifurcations in 

rarefied gas flow in a channel has been studied in [1]–[7] for the ray model of scattering function  V  of gas atoms 

from channel walls.  

Simulated unstable states of the system are close to physical situations observed in experiments. Under certain 

conditions corresponding iterative equations may have unstable solutions in some regions of the values of gas-

surface interaction parameters. Numerical study of unstable flow in this regime is especially difficult because to 

construct the bifurcation diagram we need to repeat the DSMC procedure many times (at least 10
4
) for different 

values of the parameters. The main purpose of ANN procedure in its basic form (multilayer perceptron –MLP) is to 

find the regions where the flow becomes unstable. To analyze the bifurcations near these regions the Monte Carlo 

simulation is applied. The results of numerical calculations have demonstrated that the effect of substantial change in 

a gas flow in a channel by negligible deviation of one of the parameters of scattering function near the bifurcation 

points becomes less considerable in transitional regime in comparison with free-molecular analytic results. In 

numerical calculations the same ray model of scattering function  V  is applied. 
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2. Description of rarefied gas – surface interaction 

The ray model, as well as the specular reflection, determines only one velocity of reflected from the surface gas 

atoms by given incident velocity. However, the angles of incident and of reflected gas atoms for the ray model could 

be different. So the ray model defined by the expression *( , ) ( ( ))V u u u u u    [4] could be regarded as the 

generalized specular reflection. Here   is Dirac delta function and *u  is some specified velocity of reflected from 

the surface gas atoms that is in general different from the specular velocity. The function *( )u u  is not arbitrary –

some restrictions are required to ensure that ( , )V u u  satisfies the known criteria on wall collision kernels. For 

example, if the distribution of the velocities u  of incoming gas atoms is Maxwellian, then corresponding  

distribution of the velocities *( )u u  of reflected from the surface gas atoms must be the same. In this case the 

function *( )u u  transforms Maxwellian distribution into itself. More general restrictions to the function *( )u u
 can 

be represented as the principle of detailed balance in gas-surface interactions [8]. However, it is known from the 

papers of Barantsev and Miroshin (who considered the ray reflection originally) that the class of such functions 

*( )u u  is wide enough [4]. In our calculations only the functions *( )u u  are applied satisfying these restrictions. In 

spite of this, various analytical expressions of momentum exchange coefficients (depending on the angles of the 

incidence and of the reflection) can be obtained in the context. Correspondingly many different shapes of limit gas 

atoms trajectories are the advantages of the ray model. The diffuse addition (multiplied by the coefficient  , 

0 1  ) to the ray model gives us the more general ray-diffuse scattering function 
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depending on the velocities u  of incident upon the channel wall and u   of reflected from the surface gas atoms.  

This addition causes a randomization and changes fundamentally the limit behavior of the studied dynamic system 

[1], [2]. The ray model has better experimental confirmation (especially combined with diffuse scattering) in 

comparison with other surface interaction models widely applied in practical DSMC calculations, in particular with 

the specular-diffuse model [4]. The approximation of real gas-surface characteristics by the ray model is good 

enough for different physical conditions. Therefore we assume the ray model to be valid also in considered flows. 

By investigating analytically and numerically the limit behavior of this nonlinear dynamic system most interesting is 

not a strange attractor which can be observed in rarefied gas flows as a cascade of bifurcations (unlike usual 

applications of the chaos theory, where the corresponding chaotic behavior is the case of most interest). However, in 

a rarefied gas flow especially interesting is the transition from regular to chaotic behavior of the system, because 

such transition indicates in practice the values of the parameters where the solution changes substantially by a very 

small deviation of these parameters. Our problem is to study it not only for different values of the parameters, but 

also for different analytical approximations of momentum exchange coefficients. From the point of view of nonlinear 

dynamics it corresponds to different iterative equations describing the trajectory of a gas atom. 

Studying the transition from regular to chaotic behavior of the system requires multiple computations by small 

deviation of initial conditions, i.e. in rarefied gas we need to repeat DSMC procedure many times. For example, to 

construct the bifurcation diagram the whole DSMC computation of the flow must me repeated at least 10
4
 – 10

5
 

times. Applying ANN to minimize calculation time enables us to reduce repetitive computation time significantly. 

The rarefied gas flow is detected becoming unstable in our previous analytical and numerical investigations [1]–[7] 

in long enough channels or nozzles for some transition parameter values of the scattering function ( , )V u u   under 

some specified conditions. Analytic results for unstable rarefied gas flows are obtained in free-molecular flow [3]–

[7].  Similar analytical study of unstable dynamic systems can be found in different applications (for example, in [9]–

[10]). The local interaction approximations we need to apply in rarefied gas flow to take into account that Knudsen 

number is finite [4], i.e. the flow is not free-molecular, but in transition regime from continuum to free-molecular 

flow. The local interaction theory, being exact for free-molecular flow, gives confirmed by experiment 

approximations of momentum and energy exchange coefficients for this transition regime. Meanwhile we detect the 

bifurcations, the attractors and corresponding physical values in the flows. However, the problem of the empirical 

confirmation of the obtained numerically effect is still difficult, because the scattering conditions, as well as the 

regions of corresponding empirical parameters, are narrow enough. Therefore these scattering conditions are hardly 

reproducible in the experiments, and no experimentally observed unstable flows of this type are known yet: the 

experiments are expensive enough. But it does not mean that it does not correspond to a real physical problem: 

numerical calculations indicate all the required physical values (scattering function, Knudsen number etc.), so the 
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discussed unstable flows will be certainly confirmed experimentally in the future. Considered bifurcations can 

essentially affect different gas flows applied in practice, such as flows in propulsion systems and in microelectronic 

vacuum devices. Moreover, the effect of increasing conductivity of the channel because of flow instability under 

specific conditions can have important practical application. 

The parameters of rarefied gas flow in a channel are naturally connected with the parameters of the scattering 

function ( , )V u u . This function V determines entirely the parameters of a rarefied gas flow in a channel (if the 

geometric shape is known) in a near free-molecular flow (Kn). The basic condition for appearing the attractors 

and the bifurcations is that the model describing scattering function  V  is close to the ray reflection. Corresponding 

momentum exchange coefficients for the ray scattering function V are expressed by 2cos (cos cos )p u     , 

2cos (sin sin )u      , where u and u   are absolute values of the velocities u  and u  ,   and    are 

corresponding angles for incident and reflected gas atoms [4]. In numerical calculations for finite Knudsen number 

we apply the same boundary conditions as in a free-molecular flow (Kn): it gives the possibility to find the 

regions of flow instability and to compare obtained results. 

3. Analytic models of unstable rarefied gas flows as test examples 

Simulation of successive gas atoms reflections from channel walls in a free-molecular flow produces the nonlinear 

dynamic system. Denoting tanm mx  ,  1 1tanm mx    (xm and xm+1 are successive values defining the trajectory 

of a gas particle in the channel, subscript m indicates the number of reflections), and expressing    from presented 

formulae of momentum exchange coefficients p and , we obtain iterative equation 
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where the function    and the variable lm are determined by the geometrical shape of the channel (Fig. 1), and the 

momentum exchange coefficients p and   are assigned by local approximations.  

 

 

Figure 1: The iterative scheme of successive reflections of a gas atom from the walls in a channel. 

 

If the solutions of the equation (2) become unstable, considered nonlinear dynamic system has many different limit 

solutions – attractors [1]–[7]. In this case system parameters lie in some small regions, and corresponding parameters 

of the scattering function  V  represent the values of singularity. Numerical calculations of the trajectories of gas 

atoms in a channel demonstrate significant changes of the aerodynamic characteristics of the flow near considered 

values of system parameters. The investigation of the behavior of nonlinear dynamic system in these regions is very 

difficult because the describing it iterative equation (2) is more complicated than well-known equation for logistic 

map 1 (1 )m m mx rx x   . Therefore additional restrictions are taken into account to construct simple analytical 

solutions applied as test examples. 

First, we consider (following our previous papers [1]–[7]) two-dimensional flow, i. e. flat or cylindrical channel 

(Fig. 1). Then the function  in the equality (2) is identical, and the connection between the angles m   and 1m   in 

successive m-th and  (m+1)-th points of collisions of a gas atom with the surface becomes simple: 1m m  
  . 

Second, only three following most applied in practice local approximations are examined. 
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1. Depending on three parameters approximation [1]–[2] based on the expansion of p and 
sin




 in terms of 

cosn , n = 1, 2, … This model has been confirmed by experiment in many papers (cited in [4]) from St.-

Petersburg State University and Central Aviation Institute (TSAGI, Moscow) and can be described by the 

equations
 

2

1 2cos cosp p p   , 0 sin cos    . Special cases of this approximation have been 

examined by Miroshin [4], [11]: 2 0p   (“model A”) and 2 2p   (“model Z”). The coefficients 1p , 2p , 0  

can be expressed in terms of aerodynamic values, such as Kn, Mach number, temperature factor etc. Substitution 

into (2) permits to reduce three coefficients 1p , 2p , 0  to two parameters a and b transforming iterative 

equation (2) to 
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2. Another approximation suggested also by Miroshin [11] (“model B”) reduces three coefficients 2p , 4p , 0  ( 2p  

and 0  remain the same, 4p  is corresponds to higher power 
4cos  ) to two parameters a1 and b1 transforming 

iterative equation (1) to 
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3. A more general approximation [1] containing four coefficients 1p , 2p , 0 , 1  is corresponding to iterative 

equation with the same parameters a and b like in (3) and a new parameter d 
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For 0d   the equation (5) coincides with (3). Hence the first approximation (3) is particular case of the third (5). 

However, the second model (4) cannot be represented in the form (5), but the main properties are similar by 

corresponding values of the parameters. Fig. 2 illustrates the graphs of the functions (2)–(4) for the values of 

variables a, b, c and d (and corresponding momentum exchange coefficients) observed in real physical conditions of 

gas-surface interaction (and in the experiments). In particular, a = 2, b = 1.7 for the approximation (2) (dashed line), 

a = 0.2, b = 0.9 for (3) (dotted line), a = 2, b = 1.8, d = 0.3 for (4) (solid line).  

 

 

Figure 2: The functions in iterative equations (3)–(5) corresponding to successive reflections of a gas atom the walls 

in a channel. 

 

Analytical and numerical investigation of limit solutions demonstrates, that all the three iterative equations (3)–(5) 

can have attractors of different types depending on the parameters a, b and d. Limit cycles corresponding to the roots 

of the equation ( )f x x  and stationary point 0x   (indicating direct flow along the axis of the channel) are 
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obligatory. Iterative equations (3)–(4) can also have stationary points 
2
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0x    

respectively. The last value has a physical meaning of locking the channel, i. e. its conductivity reduces significantly. 

The main conclusion from numerical study of the third model (4) is that the attractors and bifurcations in this case 

are noticeably more various than for the first two models (2)–(3). In particular, up to three attractors exist 

corresponding to the roots of the equation 3 2( 1) 0at b t d    . The attractors of higher degree could be obtained 

from the equation  ... ( )f f x x  (where ( )f x  could be iterated many times) and the set of the solutions could be 

very rich for some values of a, b and d. 

Under certain conditions iterative equations (3)–(5) may have unstable solutions in some regions of the values of 

gas-surface interaction parameters a, b and d. In these regions (which can be found analytically in described way) 

comparative small modification of the parameters  a, b and d causes significant difference between corresponding 

limit values tanm mx  .  From aerodynamic point of view it has following interpretation: macroscopic parameters 

of the flow may fluctuate unsteady while the difference in microscopic values describing gas-surface interaction 

remains negligible. However, the regions in which the flow becomes unstable are very narrow, therefore it is difficult 

to find them numerically or experimentally. In the coordinate system (a, b) the regions of instability obtained 

analytically are concentrated near the line  a = b. 

Real physical setup of considered rarefied gas flows has not yet detailed experimental confirmation because of 

technical difficulties in performing such experiments. However, these analytical evaluations are confirmed by 

numerical calculations. Considered analytical solutions we apply as test examples for ANN. 

4. Numerical simulations with an application of artificial neuron network 

To minimize calculation time in rarefied gas flow in a channel for finite Kn we apply artificial neuron network 

(ANN) in its basic form – multilayer perceptron (MLP). The learning and training of ANN is based on relative 

simple test flows, on described above analytic solutions in limit cases and on comparatively few Monte Carlo 

simulations. 

Preferred MLP has an important advantage over another type of ANN – Radial Basis Function (RBF) network: 

RBF network is better for interpolation between known solutions, and MLP gives better approximations for 

extrapolation problems and for solutions with steps and leaps (like shock waves) because it applies nonlinear 

activation function (usually a hyperbolic tangent). Moreover, MLP gives approximate solutions for very complex 

problems and allows solving problems stochastically [12]. 

The construction of ANN for rarefied gas flow in a channel can be described briefly as follows. The MLP 

consists of many layers (an input and an output layer with intermediate hidden layers) of nonlinearly-activating 

nodes. Each node in any layer connects with a certain weight wij to every node in the following layer. 

Learning occurs in MLP by changing connection weights wij after each piece of data is processed. The output is 

compared to the expected result and connection weights wij are changed corresponding to the minimum value of 

error. 

Repeated Monte Carlo simulation of the rarefied gas flow in the channel is applied to learn MLP under following 

conditions. In the initial section of the channel – uniform rarefied gas flow is assumed consisting of  N0  atoms, is 

considered from 40000 and above. The length of the channel varies from 20 to 100 (the channel must be long enough 

to produce attractors). Mutual collisions between gas atoms considered as hard spheres are simulated as usual in 

DSMC, while the trajectory of each gas atom is simulated applying MD approach. Scattering of gas atoms from 

channel walls is modeled by ray-diffuse scheme with parameters of gas-surface interaction (, a , b and d) chosen 

from the regions where unstable analytic solution obtained for free-molecular flow could be indicated. In the most 

part of our calculations the number of the layers was limited by 2 or 3 layers. 

Calculated as a result of Monte Carlo and ANN simulation values are the distribution of average velocity 

inclination angles along the channel and the mean number of gas atoms in the sections of a channel. 

To illustrate obtained results comparative graphs of the numerical density of gas atoms in some sections of a 

channel depending on the value a are presented  (Fig. 3) for transitional regime between continuum and free-

molecular flow, Kn = 1, compared to free-molecular flow.  

The scattering function is assumed to be ray-diffuse with the identical value  = 0.05. The parameters are changed 

gradually near the points of the instability to demonstrate the variation of the results. For instance, the variable a 

changes from 1.47 to 1.60 in four steps (Fig. 3). The largest difference between two graphs corresponding to nearest 

values a = 1.47 and a = 1.48 indicates the region of the instability in the segment 1.47 1.48a  . Near the value 

a = 1.47 the conductivity of the channel reduces significantly – it has a physical meaning of locking the channel. 

Similar results have been obtained for other values of the parameters a, b and . 
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Corresponding results for the change of the average scattering angle     of gas atoms along the channel are presented 

in Fig. 4.  

 

        
(a)                                                                                           (b) 

Figure 3: The change of the number  N  of gas atoms along the channel by the modification of the parameter from  

a = 1.47 to a = 1.48,  a = 1.50  and  a = 1.60 by constant  b  = 1.7,   = 0.05, N0 = 40000:  (a) Kn = , free-molecular 

flow; (b) Kn = 1, transitional regime between continuum and free-molecular flow. 

 

 

    
(a)                                                                                           (b) 

Figure 4: The change of the average scattering angle     of gas atoms along the channel by the modification of the 

parameter from  a = 1.47 to a = 1.48,  a = 1.50  and  a = 1.60 by constant  b  = 1.7,   = 0.05, N0 = 40000:  (a) free-

molecular flow; (b) Kn = 1, transitional regime between continuum and free-molecular flow. 

 

The best way to study the limit behavior of unstable dynamic systems and their bifurcations is constructing the 

bifurcation diagrams presented in [1]–[2]. However, for increasing values of the coefficient , indicating the input of 

diffuse scattering into the function V, and for finite Kn (for instance, Kn=1) the bifurcation diagrams similar to 

presented in [1] become very dissolved because of the randomization. Hence the clearness in visualization is lost. 

The results of numerical calculations show that for relative small values of    the effect of significant variation of 

flow parameters by a small modification of gas-surface interaction coefficients a and b remains qualitative the same 

as the effect for the ray scattering  ( = 0)  and it can be observed by the same parameter values of  a  and  b.  

Near all the points of the bifurcation a negligible change of one of the parameters of the ray-diffuse model (less than 

1%) causes also the substantial difference in gas flow in the channel. 

5. Conclusion 

Monte Carlo and ANN simulation of different nonlinear dynamic systems corresponding to rarefied gas flows in 

channels has indicated various developments of instability including cascades of period-doubling bifurcations. 

Several main conclusions follow from the analysis of the comparison. 

DOI: 10.13009/EUCASS2019-650



SIMULATION OF UNSTABLE RAREFIED GAS FLOW IN A CHANNEL IN TRANSITION REGIME 

     

 7 

 Proposed ANN procedure in its basic form – multilayer perceptron (MLP) allows computation time economy 

in rarefied gas flow simulation; analytic evaluations and comparatively few Monte Carlo simulations can be 

applied as a base for MLP learning. Studied algorithm could be applied to solve different problems, so the 

results are of interest for future ANN applications in rarefied gas. 

 Substantial difference in the characteristics of gas flow in a channel by negligible change of the parameters 

of ray-diffuse model of gas atoms scattering from surface is confirmed analytically and numerically. 

Experimental confirmation for considered type of unstable flows will be certainly provided in the future. 

 Numerical results allow finding the values of the parameters corresponding to possible unstable flows; the 

regions of instability are very small, therefore it is difficult to find them without special search. Simulated 

unstable states of the system are close to physical situations observed in experiments. 

 The effect of substantial change in a gas flow in a channel by negligible deviation of one of the parameters of 

scattering function near the bifurcation points becomes less considerable in transitional regime in comparison 

with free-molecular analytic results.  

 Obtained connection between the parameters of nonlinear dynamic system (a, b and 0) and momentum 

exchange coefficients (or accommodation coefficients) permits to express analytically the combinations of 

the gas dynamics characteristics (including Knudsen and Mach numbers, temperature factor etc.) specifying 

the unstable flows. 
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