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Abstract
The minimum fuel station keeping of a geostationary satellite equipped with electric thrusters undergo-
ing the Earth non-spherical disturbing gravitational potential up to degree and order 2 is first recast by
transforming the linear time varying relative dynamics in a time invariant one with a Floquet-Lyapunov
transformation. In a second step, the flatness property of the system is used to convert the genuine opti-
mal control problem to a linear programming problem. This problem is solved for an ideal geostationary
satellite with one thruster mounted on each face.

1. Introduction

Spacecraft orbiting the Earth on Geostationary Earth Orbits (GEO) undergo orbital disturbing forces, resulting in a
natural drift. This drift pushes the spacecraft outside their operational station keeping (SK) windows (a rectangular
box of a given geographical longitude and latitude range). It is therefore mandatory to design an accurate SK guidance
strategy, in order not to let the spacecraft operating conditions deteriorate.

The usual spacecraft propulsion system is composed of chemical thrusters (see Soop32 or Sidi30). However, the
idea of using electric propulsion has been proposed in the sixties (see for instance Barret3 or Hunziker17), followed
by some theoretical developments in the eighties (as for example the development conducted by Anzel2). This kind
of propulsion system is a viable alternative to the commonly used chemical one thanks to its high specific impulse.
Indeed, this particular feature naturally imply fuel consumption savings enabling to increase the spacecraft longevity,
and has been successfuly used for the Eurostar 3000 platform (see Demairé8).

A whole venue of works addresses the resolution of constrained optimal control problem. These works have
been classified in two families: the direct and indirect methods (see Betts5 or Hull16 for details on this classification).
The indirect methods rely on the necessary optimality conditions of the Pontryagin Maximum Principle (PMP) and the
resolution of the Two-point-boundary-value problem. The direct methods aim to transcribe the OCP into a constrained
optimization program, the optimality conditions being ensured by the Karush-Kuhn-Tucker conditions. To obtain such
a program, different techniques are available, the most popular being the discretisation-based collocation method where
both dynamics and constraints are satisfied discretely.

An alternative direct method for solving OCP is based on the notion of differential flatness. This notion relates
to a dynamic feedback of the system, see for instance Fliess10–12 or more recently Lévine.19 Roughly speaking, a
controllable system admits flat outputs so that any state and input histories can be computed from these flat outputs
(and its derivatives) without integration. Moreover, these new variables undergo a trivial dynamics, and consequently
they are differentially independent from each others. As a consequence, the OCP expressed in terms of the system flat
outputs is differential-constraint free since this constraint is trivially satisfied. Then, with a suitable parametrization
of these flat outputs, the original OCP is recast to a nonlinear programming problem. In the case where the original
dynamics is linear time invariant, algorithm exists for the computation of the flat outputs, see Sontag,31 Lévine20 or
Ford14 for instance.

Differential flatness has been applied for several kinds of systems. For instance, the reference Murray26 exhibits
the flat outputs for a wide range of mechanical systems. For spacecraft control, Louembet22 applies the differential
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flatness theory for attitude slew manoeuvres computation. For spacecraft trajectory optimisation, the work of Louem-
bet23 solves a collision avoidance low-thrust rendez-vous with splines based parametrization of the flat outputs and the
recent work of Farahani9 solves the path planning problem for autonomous docking. Regarding geostationary station
keeping, the reference Losa21 uses differential flatness in the case of simplified dynamic matrix with only two non-zero
terms. In this paper, the GEO dynamics is enhanced to account for the disturbing part of the Earth potential up to degree
and order 2. The novelty of the proposed paper is to compute the flat outputs for the considered time varying model.
Our contribution consists in adapting existing algorithms for computing flat outputs and thus obtaining time varying
flat outputs transformations (see for instance Sontag31). After a parametrization by splines functions, the genuine SK
optimal control is transformed into a linear programming problem. An illustration of the results is performed using an
ideal GEO spacecraft with one thruster mounted on each face.

2. Geostationary Station-Keeping Problem

2.1 Geostationary Spacecraft Dynamics

The motion of a spacecraft orbiting the Earth on a GEO can be described with the equinoctial orbital elements as
defined in Battin:4

xeoe =
[
a ex ey ix iy `MΘ

]T
, (1)

where a is the semi-major axis, (ex, ey) the eccentricity vector, (ix, iy) the inclination vector, `MΘ = ω + Ω + M − Θ(t)
is the mean longitude where Ω is the right ascension of the ascending node, ω is the perigee’s argument, M is the mean
anomaly and Θ(t) is the right ascension of the Greenwich meridian.

The non-linear dynamics of the GEO satellite is given by:

dxeoe

dt
= K(xeoe) + L(xeoe)

∂Vdist(xeoe)
∂xeoe

+ G(xeoe)v, (2)

where K(xeoe) is the Keplerian part of the dynamics, L(xeoe) the Lagrangian matrix, Vdist the disturbing potential, G(xeoe)
the Gauss matrix and v the disturbing external force. In such a description, the disturbing potential and the disturbing
force are assumed to be small relatively to the Keplerian attraction. The expression of K(xeoe), L(xeoe) and G(xeoe) can
be found in Losa.21

Spacecraft orbiting the Earth on a GEO orbit undergo three main orbital disturbances: the non-spherical Earth
gravitational potential, the lunisolar attraction from the Sun and the Moon, and the Sun radiation pressure. This study
focusses solely on the effects of Earth disturbing gravitationnal potential up to the degree and order 2. These disturbing
terms expressed by means of the equinoctial orbital elements are given in Appendix A.

The satellite is equipped with an ideal electric propulsion system with a thruster mounted on each face. The
control acceleration created by these thrusters v =

[
vR vT vN

]T
is expressed in the local orbital RT N frame (also

written RS W) and defined by Soop32 as N being the unit vector along the kinetic momentum, R being the unit vector
in the direction Earth’s center - satellite and T completing the right-handed orthogonal basis.

The satellite has to remain near its Station Keeping (SK) state:

xsk =
[
ask 0 0 0 0 `MΘ,sk

]T
, (3)

with ask the SK semi-major axis (see Appendix C) and `MΘ,sk the mean longitude. Therefore, the non linear equation
of motion (2) can be linearized around this nominal state. Defining the relative SK state as:

x =
[ a−ask

ask
ex ey ix iy `MΘ − `MΘ,sk

]
, (4)

the linearized dynamics reads:
dx
dt

= A(t)x + D(t) +

√
µ

ask
B(t)v, (5)

with the expressions of the matrices A, B and D given in Appendix B.
For convenience, the control vector v is transformed to:

u =

√
µ

ask
v. (6)

The nonlinear dynamics equation (5) is rewritten as:

dx
dt

= A(t)x + D(t) + B(t)u. (7)
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2.2 Floquet-Lyapunov Transformation of the Dynamics

As the dynamics matrix of the Linear Time Varying (LTV) system given by Equation (5) is periodic, it is possible
to apply the Floquet-Lyapinov theory as in Brentari,6 Deaconnu7 and Sherill29 so as to look for a periodic similarity
transformation in order to transform the system (7) into a Linear Time Invariant (LTI) one.

Denoting t 7→ W(t) the Floquet-Lyapunov transformation, and ζ the new state vector such that ζ = W(t)x, the
new dynamics is expressed as:

ζ̇(t) =
(
Ẇ(t)W−1(t) + W(t)A(t)W−1(t)

)
ζ(t) + W(t)D(t) + W(t)B(t)u(t),

= Ãζ(t) + D̃ + B̃u(t),
(8)

where matrices Ã, B̃ and D̃ are time invariant.
In the context of the relative dynamics of a GEO spacecraft, the proposed transformation is adapted from the one

given by Losa:21

W(t) =



0 −S κ Cκ 0 0 − 1
2

0 −S κ Cκ 0 0 − 3
4

−1 Cκ S κ 0 0 0
0 0 0 −S κ Cκ 0
0 0 0 Cκ S κ 0
−1 S κ −Cκ 0 0 0


, (9)

with Cκ = cos κsk(t), S κ = sin κsk(t) and κsk(t) = `MΘ + Θ(t).
The matrix W(t) is bounded and non singular for every t with a determinant W(t) = 1

4 , 0. The inverse of the
transformation is given by:

W−1(t) =



−3 2 0 0 0 −1
−3(Cκ + S κ) 2(Cκ + S κ) Cκ 0 0 −Cκ

3(Cκ − S κ) 2(−Cκ + S κ) S κ 0 0 −S κ

0 0 0 −S κ Cκ 0
0 0 0 Cκ S κ 0
4 −4 0 0 0 0


, (10)

and its derivative is:

Ẇ = ωe



0 −Cκ −S κ 0 0 0
0 −Cκ −S κ 0 0 0
0 −S κ Cκ 0 0 0
0 0 0 −Cκ −S κ 0
0 0 0 −S κ Cκ 0
0 Cκ S κ 0 0 0


, (11)

with ωe the Earth mean rotation rate, whose value is given in Appendix C.
With the proposed Floquet-Lyapunov transformation, the new dynamics matrices Ã, D̃ and C̃ are explicitely

defined by: Ã = Ẇ(t)W−1(t) + ÃK + ÃC20 + ÃC21 + ÃS 21 + ÃC22 + ÃS 22 ,

D̃ = D̃K + D̃C20 + D̃C21 + D̃S 21 + D̃C22 + D̃S 22 ,
(12)

with :

Ẇ(t)W−1(t) = ωe



3 −2 −1 0 0 1
3 −2 −1 0 0 1
3 −2 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
−3 2 1 0 0 −1


, (13)

ÃK = WAKW−1 = γK



− 3
2 −1 0 0 0 1

2
9
4 − 3

2 0 0 0 3
4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (14)

3

DOI: 10.13009/EUCASS2019-713



USING DIFFERENTIAL FLATNESS FOR SOLVING THE MINIMUM-FUEL LOW-THRUST GEOSTATIONARY
STATION-KEEPING PROBLEM

ÃC20 = WAC20 W−1 = α20



− 3
8

1
4

29
8 0 0 − 1

8
− 3

16
1
8

71
16 0 0 − 1

16
4 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
15
4 − 5

2 −2 0 0 1
4


, (15)

ÃC21 = WAC21 W−1 = α21



0 0 0 13
2 C` 0 0

0 0 0 57
4 C` 0 0

0 0 0 −4S ` 4C` 0
−2C` 2C` 0 0 0 0

− 3
4C` + 2S `

1
2C` − 2S ` − 3

2C` 0 0 −
1
4

C`

0 0 0 −6C` − 4S ` −4C` 0


, (16)

ÃS 21 = WAS 21 W−1 = β21



0 0 0 1
2 S ` 0 0

0 0 0 − 9
4 S ` 0 0

0 0 0 4C` −4S ` 0
−2S ` 2S ` 0 0 0 0

−2C` −
3
4 S ` 2C` + 1

2 S ` − 3
2 S ` 0 0 −

1
4

C`

0 0 0 −6C` − 4S ` −4C` 0


, (17)

ÃC22 = WAC22 W−1 = α22



− 9
4C2` − 23S 2`

3
2C2` − 6S 2` − 81

4 C2` 0 0 − 3
4C2`

− 45
8 C2` −

55
2 C2`

15
4 C2` − 7S 2` − 195

8 C2` 0 0 − 15
8 C2`

−56C2` − 36S 2` 12C2` + 24S 2` 36S 2` 0 0 −12S 2`
0 0 0 0 2S 2` 0
0 0 0 −2C2` 2S 2` 0

− 77
2 C2` − 16S 2` 15C2` + 24S 2` 12C2` + 20S 2` 0 0 − 3

2C2` − 10S 2`


,

(18)

ÃS 22 = WAS 22 W−1 = β22



− 9
4 S 2` + 23C2`

3
2

S 2` + 6C2` − 81
4 S 2` 0 0 − 3

4 S 2`

− 45
8 S 2` + 55

2 C2`
15
4 S 2` + 7C2` − 195

8 S 2` 0 0 − 15
8 S 2`

36C2` −
45
8 S 2` 12S 2` − 24C2` −36C2` 0 0 12C2`

0 0 0 0 0 0
0 0 0 −2S 2` 2C2` 0

− 77
2 S 2` + 16C2` 15S 2` − 24C2` 12S 2` − 20C2` 0 0 − 3

2 S 2` + 10C2`


,

(19)

D̃K = WDK = δK

[
− 1

2 − 3
4 0 0 0 0

]T
, (20)

D̃C20 = WDC20 = α20

[
1 5

4 0 0 0 − 1
2

]T
, (21)

D̃C21 = WDC21 = α21

[
0 0 0 0 1

2C` 0
]T
, (22)

D̃S 21 = WDS 21 = β21

[
0 0 0 0 − 1

2 S ` 0
]T
, (23)

D̃C22 = WDC22 = α22

[
−6C2` − 15

2 C2` 8S 2` 0 0 3C2` + 4S 2`

]T
, (24)

D̃S 22 = WDS 22 = β22

[
−6S 2` − 15

2 S 2` −8C2` 0 0 3S 2` − 4C2`

]T
, (25)
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B̃ = WB =



0 0 0
1
2 0 0
0 0 0
0 0 0
0 0 1

2
1 −2 0


, (26)

Putting together the matrices given by Equations (14)-(25) and symplifying trigonometric expressions lead to the
new dynamics system defined by:

Ã =



− 9
4ηC22 + 92

4 ηS 22 + 3
2γK + 3

8α20 + 3ωe
3
2ηC22 + 6ηS 22 − γK −

1
4α20 − 2ωe − 81

4 ηC22 + 29
8 α20 − ωe

− 45
8 ηC22 + 55

2 ηS 22 + 9
4γK −

3
16α20 + 3ωe

15
4 ηC22 + 28

4 ηS 22 −
3
2γK + 1

8α20 − 2ωe − 195
8 ηC22 + 71

16α20 − ωe

−56ηC22 + 36ηS 22 + 4α20 + 3ωe 12ηC22 − 24ηS 22 − 2α20 − 2ωe −36ηS 22

−2ηC21 2ηC21 0
− 3

4ηC22 − 2ηS 22
1
2ηC22 + 2ηS 22 − 3

2ηC22
77
2 ηC22 + 16ηS 22 + 15

4 α20 − 3ωe 15ηC22 − 24ηS 22 −
5
2α20 + 2ωe 12ηC22 − 20ηS 22 − 2α20 + ωe

11C`α21 + 1
2ηC21 0 − 3

4ηC22 + 1
2γK −

1
8α20 + ωe

− 9
4ηC21 + 33

2 C`α21 0 − 15
8 ηC22 + 3

4γK −
1
16α20 + ωe

4ηS 21 −4ηC21 12ηS 22

0 −ωe 0
−2ηC22 + α20 + ωe 2ηS 22 − 1

4ηC21

−6ηC21 + 4ηS 21 −4ηC21 − 3
2ηC22 + 10ηS 22 + 1

4α20 − ωe


, (27a)

D̃ =



1
2δK + α20 − 6ηC22

− 3
4δK + 5

4α20 −
15
2 ηC22

−8ηS 22

0
1
2 η̄C21

− 1
2α20 + 3ηC22 − 4ηS 22


, (27b)

with: 

ηC21 = α21C` + β21S `,

η̄C21 = α21C` − β21S `,

ηS 21 = β21C` − α21S `,

ηC22 = α22C2` + β22S 2`,

ηS 22 = β22C2` − α22S 2`.

(28)

The constants γK , δK , α20, α21, β21, α22, β22, C`, S `, C2` and S 2` are defined in Appendix B.
As stated in Losa,21 the transformation given by Equation (9) has been built in order to make the control matrix

B(t) time invariant. The novelty of our approach is to consider as dynamic matrix A(t) the true expression of the Earth
disturbing potential, and not the simplified one used by Losa21 for which only the (6, 1) and (1, 6) terms are non-zero.

As the new dynamical system defined by the Equation (8) is LTI, it is possible to compute its state transition
matrix as defined by Antsaklis.1 This matrix is the matrix Φ(t, t0) such that:

dΦ(t, t0)
dt

= Ã(t)Φ(t, t0) and Φ(t0, t0) = I6, (29)

with I6 the identity matrix of dimension 6. The state vector ζ(t) is thus given by:

ζ(t) = eÃ(t−t0)ζ(t0), (30)

and converting back to the relative equinoxial elements thanks to the Floquet-Lyapunov transformation leads to:

x(t) = W−1(t)eÃ(t−t0)W(t0)x(t0). (31)
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2.3 Fuel Optimal Geostationary Station-Keeping Problem

The geographical coordinates of the satellite:

yeoe = T (xeoe, t)xeoe, (32)

have to be computed as the SK strategy consists in finding the control for maintaining the satellite in the vicinity of
the SK position ysk =

[
rsk 0 λsk

]T
, where rsk is the synchronous radius and λsk is the station keeping geographical

longitude. Equation (32) can be linearized about ysk, which leads to the following relative geographical coordinates:

y = yeoe − ysk = T (xsk, t)x = C(t)x, (33)

with the expression of C(t) being given in Appendix B.
Thanks to the expression of the relative geographical position given by Equation (33) and the proposed Floquet-

Lyapunov transformation presented in Section 2.2, the SK requirement of maintaining the satellite in its SK window is
given by the following constraints:

∣∣∣∣[0 1 0
]
C(t)W−1(t)ζ(t)

∣∣∣∣ 6 δ,∣∣∣∣[0 0 1
]
C(t)W−1(t)ζ(t)

∣∣∣∣ 6 δ, ∀t ∈ [t0, t1], (34)

where δ is the half-width of the SK window and [t0, t1] the horizon on which the SK problem has to be solved. These
constraints are summarized as:∣∣∣Cϕλ(t)W−1(t)ζ(t)

∣∣∣ 6 δ2, with Cϕλ(t) =

[
0 1 0
0 0 1

]
and δ2 =

[
δ
δ

]
. (35)

As the propulsion system is a low thrust one, the force created by the thrusters is bounded by Fmax. The control
vector ū must fulfill the following constraint:

∀t ∈ [t0, t1], |ui(t)| 6
√

µ

ask

Fmax

m
= Umax, with i = R,T,N, (36)

with m the satellite mass.
Designing a miniminum fuel SK strategy requires to define the following performance index:

J(u) =

∫ t1

t0
|u(t)|dt (37)

The minimum fuel optimal SK problem reads thus:

Problem 1
min

u
J(u)

s.t.



ζ̇(t) = Ãζ(t) + D̃ + B̃u(t),
ζ(t0) fixed,
ζ(t1) free,
∀t ∈ [t0, t1],

∣∣∣Cϕλ(t)W−1(t)ζ(t)
∣∣∣ 6 δ2,

∀t ∈ [t0, t1], |ui(t)| 6 Umax, i = R,T,N.

(38)

◦

3. Solving the Optimal Control Problem using Differential Flatness

The previous section introduces the optimal control problem that formalizes the station keeping problem on a fixed
time horizon. A methodology is proposed here to solve problem (1) based on the flatness property of the dynamical
model (8).
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3.1 Differential Flatness

The differential flatness theory has been introduced by M. Fliess and co-workers at the beginning of the nineties (see
Fliess12, 13). This theory has been succesfully applied for solving the optimal control problem once the dynamic system
shows the flatness property (see Martin24).

Let us consider a very general finite dimensional non linear system of the form:

ẋ(t) = f (x(t), u(t)), (39)

where f is a sufficiently smooth vector field, u ∈ Rm is the control vector, x ∈ Rn is the state vector.

Definition 1 (Differentially flat system) System (39) is said to be a flat system if there exists a vector z ∈ Rm:

z = h(x, u, u̇, . . . , u(r))

such that the state vector x and the control vector u can be parametrized as:

x = φ(z, ż, . . . , z(q)),

u = ψ(z, ż, . . . , z(q+1)),

where h, φ and ψ are smooth vector fields, and r and q are integers.

The variable y is called a flat output for the system (39) (also called linearizing output) and is of dimension m,
exactly the numbers of inputs. Notice that according to the definition of a flat system, the state x and the control u
should satisfy the differential equation ẋ(t) = f (x(t), u(t)) and therefore, one have also the following relationship:

φ̇(t) = f (φ(t), ψ(t)).

3.2 Flat Output Computation

In Fliess,12 it has been shown that the controllability of a linear model is equivalent to its flatness property and ensures
the existence of flat outputs. The results state the flat outputs are the Brunovskii output of a any given controllable
linear time invariant system,

ẋ = Ax(t) + Bu(t). (40)

The Brunovskii canonical form of a controllable linear system takes the form of a block diagonal controllable
system:

˙̄x(t) = Āx̄ + B̄ū(t). (41)

Matrices (Ā, B̄) are given by:
Ā = diag(∆1, . . . ,∆ν),

B̄ =


b1 0 . . . 0 0 . . . 0
0 b2 . . . 0 0 . . . 0
...

...
. . .

...
. . .

...

0 0
. . . bν 0 . . . 0

 ,
(42)

where ∆i ∈ R
κi×κi and bi ∈ R

κi are expressed by:

∆i =


0 1 . . . 0
...

...
. . .

...
0 0 0 1
0 0 0 0

 , bi =


0
...
0
1

 , (43)

with κi, for i = 1, . . . , ν = rank(B) are the controllability indices of the system as defined by Rosenbrock28 and Sontag.31

These controllability indices must verify:
∑ν

i=1 κi = n.
This state space is obtained thanks to the feedback transformation:

x̄ = Mx,

ū = Kx + Lu
(44)
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The flat output z = [z1 . . . zν]T of the linear system (40) are its Brunovskii output that is described by:

z = C̄ x̄, where C̄ = diag(Λ1, . . . ,Λν), (45)

with Λi ∈ R
1×κi such that:

Λi =
[
1 0 . . . 0

]
. (46)

Noting that:

x̄ =



z1
...

z(κ1)
1
...

zν
...

z(κν)
ν


, ū =


z(κ1+1)

1
...

z(κν+1)
ν

 , and z̄ =

[
x̄
ū

]
, (47)

the original state vector x and the input vector u are computed in terms of the flat output z and its derivatives by inverting
(44):

x = M−1 x̄ =
[
M−1 0

]
z̄,

u = L−1Kx̄ + L−1ū =
[
L−1K L−1

]
z̄.

(48)

In the case of the dynamics (8) this procedure is applied to obtain a Brunovskii form such that the pair (Ã, B̃)
is controllable. In that case, ν = rank(B) = 3 and the controllability indices are κ1 = κ2 = κ3 = 2. It comes that the
matrices M, K and L can be computed such that the state vector ζ̄ verifies:

˙̄ζ = Āζ̄ + D̄ + B̄ū (49)

Matrices Ā and B̄ satisfy the Brunovskii characteristics:

Ā =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


, B̄ =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


, D̄ =



d̄1
d̄2
d̄3
d̄4
d̄5
d̄6


and C̄ =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (50)

As opposed to the system under Brunovskii form (41), the system given by Equation (49) has a drift term. This
term is removed by means of the following time varying transformation:

z1 = ζ̄1 − d̄1(t − t0) −
1
2

d̄2(t − t0)2,

ż1 = ζ̄2 − d̄2(t − t0),
z̈1 = ū1,

z2 = ζ̄3 − d̄3(t − t0) −
1
2

d̄4(t − t0)2,

ż2 = ζ̄4 − d̄4(t − t0),
z̈2 = ū2,

z3 = ζ̄5 − d̄5(t − t0) −
1
2

d̄6(t − t0)2,

ż3 = ζ̄3 − d̄6(t − t0),
z̈2 = ū3.

(51)

Doing so, the vector z = [z1 z2 z3]T is the flat output of the system (8). With the vector z̄ defined as:

z̄ =
[
z1 ż1 z2 ż2 z3 ż3 z̈1 z̈2 z̈3

]T
, (52)
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the transformation (51) is rewritten in matrix form as:

z̄ =

[
ζ̄ − ζ̄D(t)

ū

]
(53)

The state ζ̄ and the input ū are recovered the flat output and its successives derivatives by inverting Equation (51)
defining the flat outputs:

ζ̄1 = z1 + d̄1(t − t0) +
1
2

d̄2(t − t0)2,

ζ̄2 = ż1 + d̄2(t − t0),

ζ̄3 = z2 + d̄3(t − t0) +
1
2

d̄4(t − t0)2,

ζ̄4 = ż2 + d̄4(t − t0),

ζ̄5 = z3 + d̄5(t − t0) +
1
2

d̄6(t − t0)2,

ζ̄6 = ż3 + d̄6(t − t0),
ū1 = z̈1,

ū2 = z̈2,

ū3 = z̈3.

(54)

Applying then (48) leads to the original state and control vectors ζ and u.

3.3 Flat optimal control problem

In this section, the optimal control problem (1) is transformed into a linear program. This transformation is executed
by means of three step:

i set the genuine optimal control problem (1) in terms of flat outputs;

ii parametrize the flat outputs using B-splines basis;

iii discretize the constraints.

The interest of expressing the Problem (1) in terms of the flat output comes from a twofold fact. First, the
differential flatness ensures a Lie-Backlünd equivalence between the original system (8) and its Brunovskii form (49).
Moreover, for any flat system, any sufficiently smooth function t 7→ z(t) leads to time state trajectories t 7→ (ζ(t), u(t))
that satisfy the dynamic equation (8) and consequently (5). With these two arguments, the OCP (1) can be recast using
the z̄ coordinates instead of (ζ, u). Doing so, the dynamic constraint is removed since it is always satisfied by any
given trajectory t 7→ z̄(t). Consequently, the optimal control problem boils down to a geometric problem of finding a
time-parametrized curve in the z̄-space that links two points (initial and final conditions) while belonging to S z a given
subspace of z̄:

min
z̄

J(z̄)

s. t.:


z̄(t0) fixed
z̄(t f ) free
z̄(t) ∈ S z

(55)

The subset S z is defined by the path and control constraints γ(·) such that

S z = {z̄| γz(z̄(t)) ≤ 0}. (56)

with the function γz(z̄(t)) defined by the following set of inequality constraints:
∣∣∣∣∣∣∣
0 1 0
0 0 1

C(t)W(t)
[
M−1 0

]
z̄(t)

∣∣∣∣∣∣∣ 6 δ2,∣∣∣∣[L−1K L−1
]

z̄(t)
∣∣∣∣ 6 Umax,

∀t ∈ [t0, t1], (57)

Using flatness property of the system, the dynamic constraint of the optimal control problem has been removed.
Nevertheless, problem (55) remains a difficult problem due to the infinite dimensions of the problem. To deal with the
infinite dimension of the problem (55), a B-splines collocation method (Hargraves15) is applied to transform problem
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(55) into a computationally tractable linear programming (LP) (see Neckel27 and Milam25). Contrary to the polynomi-
als, the choice of the B-splines allows us to define flexible trajectories with high continuity level using a low number
of parameters.

This method consists in parametrizing the flat output z components such that:

zi(t) =

n∑
j=1

αi, jB j,k(t), i = 1, 2, 3 (58)

where the B j,k are a kth order B-splines basis of the piecewise polynomials of degree at most k−1 built on the breakpoints
sequence {ti}

p+1
i=1 such that

t0 = t1 < t2 < · · · < tp < tp+1 = t f . (59)

Thereby, the knots sequence T = {ti} is chosen to ensure a maximum continuity at interior knots:

T = {t1, . . . , t1︸    ︷︷    ︸
k times

, t2, t3, . . . , tp−1, tp, . . . , tp︸    ︷︷    ︸
k times

}. (60)

B-splines are defined by the Cox-de Boor iterative algorithm (Lee18). The αi, j coefficients are called control
points. After parametrization of flat outputs, the vector of all control points

α = (α1,1, . . . , α1,n, α2,1, . . . , α2,n, α3,1, . . . , α3,n) (61)

becomes the decision variable in the optimization problem.
Equation (58) and its derivatives up to order 2 can be rewritten in matrix form:

z1(t)
ż1(t)
z̈1(t)
z2(t)
ż2(t)
z̈2(t)
z3(t)
ż3(t)
z̈3(t)


=



B1,k(t) . . . Bn,k(t) 0 . . . . . . . . . . . . 0
Ḃ1,k(t) . . . Ḃn,k(t) 0 . . . . . . . . . . . . 0
B̈1,k(t) . . . B̈n,k(t) 0 . . . . . . . . . . . . 0

0 . . . 0 B1,k(t) . . . Bn,k(t) 0 . . . 0
0 . . . 0 Ḃ1,k(t) . . . Ḃn,k(t) 0 . . . 0
0 . . . 0 B̈1,k(t) . . . B̈n,k(t) 0 . . . 0
0 . . . . . . . . . . . . 0 B1,k(t) . . . Bn,k(t)
0 . . . . . . . . . . . . 0 Ḃ1,k(t) . . . Ḃn,k(t)
0 . . . . . . . . . . . . 0 B̈1,k(t) . . . B̈n,k(t)


α, (62)

and after reordering:
z̄(t) = R(t)α. (63)

Doing so, the relative equinoctial orbital elements are computed as:

x(t) = W(t)
[
M−1 06×3

] [ζ̄
ū

]
= W(t)

[
M−1 06×3

] (
z̄ +

[
ζ̄D(t)
03×1

])
= W(t)

[
M−1 06×3

] (
R(t)α +

[
ζ̄D(t)
03×1

])
= W(t)

[
M−1 06×3

]
R(t)α + W(t)M−1ζ̄D(t),

(64)

and the relative geographical position is given by:

y(t) = CϕλW(t)
[
M−1 06×3

]
R(t)α + CϕλW(t)M−1ζ̄D(t). (65)

The SK constraint (35) is then transformed in the two following linear constraints:CϕλW(t)
[
M−1 06×3

]
R(t)α 6 δ2 −CϕλW(t)M−1ζ̄D(t),

−CϕλW(t)
[
M−1 06×3

]
R(t)α 6 δ2 + CϕλW(t)M−1ζ̄D(t)

(66)

10

DOI: 10.13009/EUCASS2019-713



USING DIFFERENTIAL FLATNESS FOR SOLVING THE MINIMUM-FUEL LOW-THRUST GEOSTATIONARY
STATION-KEEPING PROBLEM

Likewise, the control created by the satellite thrusters is expressed as:

u(t) =
[
L−1K L−1

] [ζ̄
ū

]
=

[
L−1K L−1

] (
z̄ +

[
ζ̄D(t)
03×1

])
=

[
L−1K L−1

]
z̄ + L−1Kζ̄D(t)

=
[
L−1K L−1

]
R(t)α + L−1Kζ̄D(t),

(67)

and the constraint (36) is transformed to:
[
L−1K L−1

]
R(t)α 6 Umax − L−1Kζ̄D(t),

−
[
L−1K L−1

]
R(t)α 6 Umax + L−1Kζ̄D(t)

(68)

The constraints are enforced at a finite number of points {τ j} j=1,...,NC named collocation points. The choice of {τ j}

is then also a degree of freedom in the path planning design process. The descritize constraints read:
CϕλW(τ j)

[
M−1 06×3

]
R(τ j)α 6 δ2 −CϕλW(τ j)M−1ζ̄D(τ j),

−CϕλW(τ j)
[
M−1 06×3

]
R(τ j)α 6 δ2 + CϕλW(τ j)M−1ζ̄D(τ j)[

L−1K L−1
]

R(τ j)α 6 Umax − L−1Kζ̄D(τ j),
−

[
L−1K L−1

]
R(τ j)α 6 Umax + L−1Kζ̄D(τ j),

∀ j = 1, . . . ,NC . (69)

The objective function (37) is also discretized in the following way:

J(u) =

∫ t1

t0
|u(t)|dt,

=

∫ t1

t0

(
|uR(t)| + |uT (t)| + |uN(t)|)dt,

=
t1 − t0

NC

NC∑
j=1

(
|uR(τ j)| + |uT (τ j)| + |uN(τ j)| + |uR(τ j+1)| + |uT (τ j+1)| + |uN(τ j+1)|

)
.

(70)

In Equation (70), the control unknowns do not appear linearly, but with absolute values. In order to remove the
absolute values, auxiliary variables {wR j ,wT j ,wN j } j=1,...,NC are used, defining a new objective function:

J̃(wR j ,wT j ,wN j ) =

NC∑
j=1

(
wR j + wR j+1 + wT j + wT j+1 + wN j + wN j+1

)
, (71)

with new constraints for these auxiliary variables:u(τ j) − w j 6 0,
−u(τ j) − w j 6 0,

with w j =

wR j

wT j

wN j

 , ∀ j = 1, . . . ,NC , (72)

that can also be rewritten as:
[
L−1K L−1

]
R(τ j)α − w j 6 −L−1Kζ̄D(τ j),

−
[
L−1K L−1

]
R(τ j)α − w j 6 L−1Kζ̄D(τ j),

∀ j = 1, . . . ,NC . (73)

The vector of decision variables is augmen The auxiliary variables w j are new unknowns and are added to the
vector of decision variables. The augmented vector is:

ᾱ =
[
α wR1 . . . wRNC

wT1 . . . wNNC

]T
∈ R3n+3NC (74)

A last constraint is added in order to ensure that the trajectory starts at the given initial point. If x0 is the initial
point, the boundary constraint reads:

W(t0)
[
M−1 06×3

]
R(t0)α = x0 −W(t)M−1ζ̄D(t0). (75)

Finally, associated with B-splines collocation method, the flat optimal control problem can be stated as the
following linear programming problem:
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Problem 2

min
ᾱ

J̃(ᾱ)

s. t.:
∀ j = 1, . . . ,NC :



CϕλW(τ j)
[
M−1 06×3

]
R(τ j)α 6 δ2 −CϕλW(τ j)M−1ζ̄D(τ j),

−CϕλW(τ j)
[
M−1 06×3

]
R(τ j)α 6 δ2 + CϕλW(τ j)M−1ζ̄D(τ j)[

L−1K L−1
]

R(τ j)α 6 Umax − L−1Kζ̄D(τ j),
−

[
L−1K L−1

]
R(τ j)α 6 Umax + L−1Kζ̄D(τ j),[

L−1K L−1
]

R(τ j)α − w j 6 −L−1Kζ̄D(τ j),
−

[
L−1K L−1

]
R(τ j)α − w j 6 L−1Kζ̄D(τ j),

W(t0)
[
M−1 06×3

]
R(t0)α = x0 −W(t)M−1ζ̄D(t0)

(76)

◦

The latter problem shows the advantages of being linear and integration-free, what makes it numerically tractable.

4. Numerical results

The proposed transformation of the GEO SK fuel optimization problem into a linear programming problem is applied
on a 4000 kg satellite equipped with an electric propulsion system consisting of one thruster on each face producing a
maximum thrust level of 0.2 N each. The station keeping mean longitude is chosen to be `MΘ,sk = 218◦ and the half-
width SK window is equal to 0.5◦. Therefore, the dynamic matrix of the LTI system (8) can be numericaly evaluated
as:

Ã =



4.73 −3.15 −6.30 8.58 10−10 0 1.58
−2.36 1.58 −6.30 −6.27 10−10 0 −7.88 10−1

1.89 101 −1.26 101 −2.82 10−5 −8.84 10−10 −2.16 10−9 9.40 10−6

−1.28 10−9 1.28 10−9 0 0 −6.30 0
−3.65 10−11 −1.23 10−10 −9.57 10−10 6.30 1.57 10−6 −1.60 10−10

−1.89 101 1.26 101 6.30 −4.86 10−9 −2.55 10−9 −6.30


(77)

D̃ =
[
−1.40 10−3 −1.76 10−3 −6.26 10−6 0 −2.70 10−10 6.99 10−4

]T
(78)

Althoug the analytical expression of the dynamics is available, the litteral computation of the transformation
matrices M, K and L to obtain the flat outputs is too tedious and is not analytically tractable. However, these matrices,
as well as the initial dynamics matrices, depend only on the station keeping longitude that is fixed for a given spacecraft
mission. The numerical expression of these matrices is:

M =



−1.32 10−5 0 −1.59 10−1 0 0 0
−3.00 2.00 8.74 10−5 0 2.17 10−8 −2.22 10−5

−3.17 10−1 0 −1.18 10−7 0 0 0
−1.50 1.00 2.00 0 0 −5.00 10−1

0 0 0 −3.17 10−1 0 0
0 0 0 0 2.00 0


(79)

K =

−1.89 101 1.26 101 6.30 1.33 10−7 0 −6.30
3.78 101 −2.52 101 1.56 10−6 0 0 2.35 10−6

0 0 0 1.26 101 3.13 10−6 0

 (80)

L =

1 4.44 10−5 0
0 1 0
0 0 1

 (81)

Problem 2 is solved with a B-spline basis of degree 5 and 25 collocation points. Besides this, the time grid used
for the evaluation of the constraints ranges from 0 to 10 days with 500 points. The initial relative state vector chosen
for this study is:

x0 =
[
0 0 0 0 1.10−4 0

]T
. (82)

The flat outputs and their derivatives are displayed on Figures 1, 2 and 3 for z1, z2 and z3 respectively, as well
as their derivatives. The oscillations observed on the curves come from the high degree chosen for the basis of splines
function that lead to the control profile skeched on Figure 4. For a time horizon of 10 days, the ∆v requirement is
1.10 m/s.
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Figure 1: Flat output z1 with its first and second
derivatives: –: z1(t), - -: ż1(t), − · −: z̈1(t).
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Figure 2: Flat output z2 with its first and second
derivatives: –: z2(t), - -: ż2(t), − · −: z̈2(t).
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Figure 3: Flat output z3 with its first and second
derivatives: –: z3(t), - -: ż3(t), − · −: z̈3(t).
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Figure 4: Control profile.

The Figure 5 shows the spacecraft trajectory with the SK window. From Soop,32 it is well known that the C22
and S 22 terms of the potential steer the satellite away from its SK position. Spacecraft with a longitude equal to 118◦

tend to drift eastwards (the longitude decreases). The Figure 5 shows that the best way to control the spacecraft is to
drive it to the west part of the Sk window and let it drift toward the east direction. at the end of the SK horizon.
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Figure 5: Trajectory of the spacecraft in the station keeping window. ∗: initial point.

5. Conclusion

In this paper, the dynamic geostationary station-keeping problem for a satellite undergoing Earth non-spherical pertur-
bation potential harmonics up to degree and order 2 has been transformed to a linear optimization problem thanks to
two transformations. The first one involves the Floquet-Lyapunov theory for transforming a periodic bounded linear
time varying system in a linear time invariant system. The second transformation aims at transforming the previously
computed linear system in its Brunovskii canonical form. The novelty of our approach is to have designed a time
varying flat output expression for removing the constant drifting term of the relative geostationary dynamics. The flats
outputs have been parametrized by B-splines. The linear transformed station keeping problem has been solved for a
realistic telecommunication stallite equipped with an ideal propulsion system with one thruster mounted on each face
of the satellite.

A. Disturbing Gravitational Potential of the Earth

Kaula [?, chapter 3] derives the expression of the Legendre decomposition of the Earth disturbing potential. The
proposed study requires to compute these coefficients up to degree and order 2 in terms of the equinoctial orbital
elements defined by Equation 1.

In the following expressions, µ is the gravitational geocentric parameter and Re the mean Earth radius. In order
shorten the expression of the potentials, the following variables are used:

Cnκ+mΘ = cos
(
nκsk(t) + mΘ(t)

)
,

S nκ+mΘ = sin
(
nκsk(t) + mΘ(t)

)
,

with κsk(t) = `MΘ,sk + Θ(t), for n and mintegers. (83)

Cn` = cos
(
n`MΘ,sk

)
,

S n` = sin
(
n`MΘ,sk

)
,

for n an integer. (84)

14

DOI: 10.13009/EUCASS2019-713



USING DIFFERENTIAL FLATNESS FOR SOLVING THE MINIMUM-FUEL LOW-THRUST GEOSTATIONARY
STATION-KEEPING PROBLEM

The potential term of degree 2 and order 0, also known as the J2 term, reads:

VC20 (xeoe) =
µR2

eC20

a3

{  3(i2x + i2y)

(1 + i2x + i2y)2 −
1
2

 [ (3 +
27
8

(e2
x + e2

y)
) (

exCκ + eyS κ
)

(
9
2

+
7
2

(e2
x + e2

y)
) (

(e2
x − e2

y)C2κ + 2exeyS 2κ
)]

−
3
2

1
(1 + i2x + i2y)2

[ (
−1 +

1
8

(e2
x + e2

y)
) (

(i2x − i2y)(exCκ − eyS κ) + 2ixiy(eyCκ + exS κ)
)

(
2 − 5(e2

x + e2
y) +

13
8

(e2
x + e2

y)2
) (

(i2x − i2y)C2κ + 2ixiyS 2κ
)

(
7 −

123
8

(e2
x + e2

y)
) (

[ex(i2x − i2y) − 2eyixiy]C3κ + [ey(i2x − i2y) + 2exixiy]S 3κ

)
(
17 −

115
3

(e2
x + e2

y)
) (
− [4exeyixiy − (e2

x − e2
y)(i2x − i2y)]C4κ + 2[exey(i2x − i2y) + ixiy(e2

x − e2
y)]S 4κ

)]}
(85)

with C20 the Earth gravitational potential Legendre coefficient of degree 2 and order 0. Its value is given in Appendix
C.

The potential terms of degree 2 and order 1 read:

VC21 (xeoe) =
µR2

eC21

a3

3
(1 + i2x + i2y)2

{
[
9
4

+
7
4
(
e2

x + e2
y
)] [
− iy(3i2x − iy2 + 1)Cθ

((
C4κ + 1

)
(e2

x − e2
y) + 2exeyS 4κ

)
+ ix(i2x − 3i2y + 1)Cθ

(
−2exey

(
C4κ − 1

)
+ (e2

x − e2
y)S 4κ

)
− 2iy(3i2x − iy2 − 1)S θexey (C4κ + S 4κ − 1)

+ ix(i2x − 3i2y − 1)S θ(e2
x − e2

y) (C4κ + S 4κ + 1)

+ 2(i2x + i2y − 1)(iyCθ − ixS θ)
(
(e2

x − e2
y)C2κ + 2exeyS 2κ

) ]
+

[
3
2

+
27
16

(
e2

x + e2
y
)] [ [

ix(i2x − 3i2y + 1)Cθ + iy(3i2x − i2y − 1)S θ

] [
ey

(
−C3κ + Cκ

)
+ ex

(
S 3κ + S κ

)]
+

[
ix(i2x − 3i2y − 1)S θ − iy(3i2x − i2y + 1)Cθ

] [
exC3κ + eyS 3κ

]
− exCκ

[
iy
(
i2x − 3i2y + 3

)
Cθ + ix

(
i2x + 5i2y − 1

)
S θ

]
+ eyS κ

[
iy
(
5i2x + i2y − 1

)
Cθ − ix

(
3i2x − i2y − 3

)
S θ

] ]
+

1

(1 − e2
x − e2

y)
3
2

[
C2κ

(
iy(i2y − 3i2x − 1)Cθ + ix(i2x − 3i2y − 1)S θ

)
+ S 2κ

(
ix(i2x − 3i2y + 1)Cθ − iy(i2y − 3i2x + 1)S θ

)
+ (i2x + i2y − 1)(iyCθ − ixS θ)

]}

(86)
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and:

VS 21 (xeoe) =
µR2

eS 21

a3

3
(1 + i2x + i2y)2

{
[
9
4

+
7
4
(
e2

x + e2
y
)] [

iy(3i2x − iy2 − 1)Cθ

(
−2exey

(
C4κ − 1

)
+ (e2

x − e2
y)S 4κ

)
+ ix(i2x − 3i2y − 1)Cθ

(
(e2

x − e2
y)
(
C4κ − 1

)
+ 2exeyS 4κ

)
+ iy(3i2x − iy2 + 1)S θ(e2

x − e2
y) (C4κ + S 4κ + 1)

+ 2ix(i2x − 3i2y + 1)S θexey (C4κ + S 4κ − 1)

− 2(i2x + i2y − 1)(ixCθ + iyS θ)
(
(e2

x − e2
y)C2κ + 2exeyS 2κ

) ]
+

[
3
2

+
27
16

(
e2

x + e2
y
)] [ [

iy(3i2x − i2y − 1)Cθ − ix(i2x − 3i2y + 1)S θ

] [
ey

(
−C3κ + Cκ

)
+ ex

(
S 3κ + S κ

)]
+

[
ix(i2x − 3i2y − 1)Cθ + iy(3i2x − i2y + 1)S θ

] [
exC3κ + eyS 3κ

]
− exCκ

[
iy
(
i2x − 3i2y + 3

)
S θ − ix

(
i2x + 5i2y − 1

)
Cθ

]
+ eyS κ

[
ix

(
3i2x − i2y − 3

)
Cθ − iy

(
5i2x + i2y − 1

)
S θ

] ]
+

1

(1 − e2
x − e2

y)
3
2

[
C2κ

(
ix(i2x − 3i2y − 1)Cθ − iy(i2y − 3i2x − 1)S θ

)
− S 2κ

(
iy(i2y − 3i2x + 1)Cθ + ix(i2x − 3i2y + 1)S θ

)
− (i2x + i2y − 1)(ixCθ + iyS θ)

]}

(87)

with C21 and S 21 the Earth gravitational potential Legendre coefficients of degree 2 and order 1. Their values are given
in Appendix C.

The potential terms of degree 2 and order 2, read:

VC22 (xeoe) =
µR2

eC22

a3

3
(1 + i2x + i2y)2

{
−1

2
+

e2
x + e2

y

16

 [(i4x − 6i2xi2y + i4y
)(

exCκ+2Θ − eyS κ+2Θ

)
+ 4(i2x − i2y)ixiy

(
exS κ+2Θ + eyCκ+2Θ

)
+ exCκ−2Θ − eyS κ−2Θ

]
+

[
1 −

5
2

(e2
x + e2

y) +
13
16

(e2
x + e2

y)2
] [(

i4x − 6i2xi2y + i4y
)
C2κ+2Θ + 4(i2x − i2y)ixiyS 2κ+2Θ

]
+

[
7
2
−

123
16

(e2
x + e2

y)
] [(

i4x − 6i2xi2y + i4y
)(

exC3κ+2Θ + eyS 3κ+2Θ

)
+ 4(i2x − i2y)ixiy

(
exS 3κ+2Θ − eyC3κ+2Θ

)
+ exC3κ−2Θ − eyS 3κ−2Θ

]
+

[
17
2
−

115
6

(e2
x + e2

y)
] [(

i4x − 6i2xi2y + i4y
)(

(e2
x − e2

y)C4κ+2Θ + 2exeyS 4κ+2Θ

)
+ 4(i2x − i2y)ixiy

(
(e2

x − e2
y)S 4κ+2Θ − 2exeyC4κ+2Θ

)
+ (e2

x − e2
y)C4κ−2Θ − 2exeyS 4κ−2Θ

]
+ 4

[
9
4

+
7
4

(e2
x + e2

y)
] [(

(i2x − i2y)C2Θ + 2ixiyS 2Θ

)(
(e2

x − e2
y)C2κ + 2exeyS 2κ

)
+ 4

[
3
2

+
27
16

(e2
x + e2

y)
] [(

(i2x − iy)2C2θ + 2ixiyS 2Θ

)(
exCK + eyS K

)]
+

2

(1 − e2
x − e2

y)
3
2

[
(i2x − i2y)C2Θ + 2ixiyS 2Θ

]}

(88)
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and:

VS 22 (xeoe) =
µR2

eS 22

a3

3
(1 + i2x + i2y)2

{
−1

2
+

e2
x + e2

y

16

 [ − (
i4x − 6i2xi2y + i4y

)(
exS κ+2Θ + eyCκ+2Θ

)
+ 4(i2x − i2y)ixiy

(
exCκ+2Θ − eyS κ+2Θ

)
+ exS κ−2Θ + eyCκ−2Θ

]
+

[
1 −

5
2

(e2
x + e2

y) +
13
16

(e2
x + e2

y)2
] [
−

(
i4x − 6i2xi2y + i4y

)
S 2κ+2Θ + 4(i2x − i2y)ixiyC2κ+2Θ

]
+

[
7
2
−

123
16

(e2
x + e2

y)
] [(

i4x − 6i2xi2y + i4y
)(
− exS 3κ+2Θ + eyC3κ+2Θ

)
+ 4(i2x − i2y)ixiy

(
exC3κ+2Θ + eyS 3κ+2Θ

)
+ exS 3κ−2Θ − eyC3κ−2Θ

]
+

[
17
2
−

115
6

(e2
x + e2

y)
] [(

i4x − 6i2xi2y + i4y
)(
− (e2

x − e2
y)S 4κ+2Θ + 2exeyC4κ+2Θ

)
+ 4(i2x − i2y)ixiy

(
(e2

x − e2
y)C4κ+2Θ + 2exeyS 4κ+2Θ

)
+ (e2

x − e2
y)S 4κ−2Θ − 2exeyC4κ−2Θ

]
+ 4

[
9
4

+
7
4

(e2
x + e2

y)
] [(

2ixiyC2θ − (i2x − iy)2S 2Θ

)(
(e2

x − e2
y)C2κ + 2exeyS 2κ

)
+ 4

[
3
2

+
27
16

(e2
x + e2

y)
] [(

2ixiyC2θ − (i2x − iy)2S 2Θ

)(
exCK + eyS K

)]
+

2

(1 − e2
x − e2

y)
3
2

[
2ixiyC2θ − (i2x − iy)2S 2Θ

]}

(89)

with C22 and S 22 the Earth gravitational potential Legendre coefficients of degree 2 and order 2. Their values are given
in Appendix C.

B. Linearized Linear Time Varying GEO Dynamics

The matrices of the linearized dynamics (5) are given by:

A(t) = AK + AC20 (t) + AC21 (t) + AS 21 (t) + AC22 (t) + AS 22 (t), (90a)
D(t) = DK + DC20 (t) + DC21 (t) + DS 21 (t) + DC22 (t) + DS 22 (t), (90b)

AK = γK



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0


, (91a)

DK = δK

[
0 0 0 0 0 1

]T
, (91b)

γK = −
3
2

√
µ

a3
sk

, δK =

√
µ

a3
sk

− ωe, (91c)
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AC20 = α20



0 S κ Cκ 0 0 0
7
4 S κ − 3

2 S 2κ − 1
2 (1 − 3C2κ) 0 0 − 1

2Cκ

− 7
4Cκ

1
2 (1 + 3C2κ) 3

2 S 2κ 0 0 − 1
2 S κ

0 0 0 − 1
2 S 2κ

1
2 (1 + C2κ) 0

0 0 0 1
2 (C2κ − 1) 1

2 S 2κ 0
7
2 − 13

4 Cκ − 13
4 S κ 0 0 0


, (92a)

DC20 = α21

[
0 − 1

2 S κ
1
2Cκ 0 0 −1

]T
, (92b)

α20 =

√
µ

ask

3R2
eC20

a3
sk

(92c)

AC21 = α21



0 0 0 4(CκC` − S κS `) 4(S κC` + CκS `) 0
0 0 0 6S 2

κC` −6CκS κC` 0
0 0 0 −6CκS κC` 6C2

κC` 0
7
4CκC` − 3

2C2
κC` − 3

2CκS κC` 0 0 1
2 (S κC` + CκS `)

7
4 S κC` − 3

2CκS κC` − 3
2 S 2

κC` 0 0 1
2 (S κS ` −CκC`)

0 0 0 11S κC` −1CκC` 0


, (93a)

DC21 = α21

[
0 0 0 1

2CκC`
1
2 S κC` 0

]T
, (93b)

α21 =

√
µ

ask

3R2
eC21

a3
sk

(93c)

AS 21 = β21



0 0 0 4(S κC` + CκS `) 4(S κS ` −CκC`) 0
0 0 0 6S 2

κS ` −6CκS κS ` 0
0 0 0 −6CκS κS ` 6C2

κS ` 0
7
4CκS ` − 3

2C2
κS ` − 3

2CκS κS ` 0 0 − 1
2 (S κC` + CκS `)

7
4 S κC` − 3

2CκS κC` − 3
2 S 2

κC` 0 0 1
2 (CκC` − S κS `)

0 0 0 −11S κS ` 11CκS ` 0


, (94a)

DS 21 = β21

[
0 0 0 − 1

2CκS ` − 1
2 S κS ` 0

]T
, (94b)

β21 =

√
µ

ask

3R2
eC21

a3
sk

(94c)

AC22 = α22



10S 2` S κ2Θ − 21S 3κ2Θ Cκ2Θ + 21C3κ2Θ 0 0 −8C2`

− 7
4
(
S κ2Θ + 7S 3κ2Θ

)
17S 4κ2Θ − S 2` −5C2` − 17C4κ2Θ 0 0 1

2
(
Cκ2Θ + 21C3κ2Θ

)
− 7

4
(
Cκ2Θ − 7C3κ2Θ

)
5C2` − 17C4κ2Θ −17S 4κ2Θ − S 2` 0 0 1

2
(
− S κ2Θ + 21S 3κ2Θ

)
0 0 0 −S 2` + S 2Θ −C2` −C2Θ 0
0 0 0 C2` −C2Θ −S 2` − S 2Θ 0

−21C2`
11
4
(
−Cκ2Θ + 7C3κ2Θ

) 11
4
(
S κ2Θ + 7S 3κ2Θ

)
0 0 −12S 2`


,

(95a)

DC22 = α22

[
−4S 2`

1
2
(
S κ2Θ + 7S 3κ2Θ

) 1
2
(
Cκ2Θ − 7C3κ2Θ

)
0 0 6C2`

]
, (95b)

α22 =

√
µ

ask

3R2
eC21

a3
sk

(95c)

with: C2Θ = cos(2Θ),
S 2Θ = sin(2Θ),

Cκ2Θ = cos(κsk − 2Θ),
S κ2Θ = sin(κsk − 2Θ),C3κ2Θ = cos(3κsk − 2Θ),

S 3κ2Θ = sin(3κsk − 2Θ),

C4κ2Θ = cos(4κsk − 2Θ),
S 4κ2Θ = sin(4κsk − 2Θ).

(96)
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AS 22 = β22



−10C2` −Cκ2Θ + 21C3κ2Θ S κ2Θ + 21S 3κ2Θ 0 0 −8S 2`
7
4
(
Cκ2Θ + 7C3κ2Θ

)
−17C4κ2Θ + C2` −5S 2` − 17S 4κ2Θ 0 0 1

2
(
S κ2Θ + 21S 3κ2Θ

)
− 7

4
(
S κ2Θ − 7S 3κ2Θ

)
5S 2` − 17S 4κ2Θ 17C4κ2Θ + C2` 0 0 1

2
(
Cκ2Θ − 21C3κ2Θ

)
0 0 0 C2` + C2Θ −S 2` + S 2Θ 0
0 0 0 S 2` + S 2Θ C2` −C2Θ 0

−21S 2` − 11
4
(
S κ2Θ + 7S 3κ2Θ

)
− 11

4
(
Cκ2Θ + 7C3κ2Θ

)
0 0 12C2`


,

(97a)

DS 22 = β22



4C2`

−
1
2
(
Cκ2Θ + 7C3κ2Θ

)
1
2
(
S κ2Θ − 7S 3κ2Θ

)
0
0

6S 2`


, (97b)

β22 =

√
µ

ask

3R2
eC21

a3
sk

(97c)

B(t) =



0 2 0
S κ 2Cκ 0
−Cκ 2S K 0

0 0 1
2Cκ

0 0 1
2 S κ

−2 0 0


, (98)

C(t) =

ask −askCκ −ask 0 0 0
0 0 0 2S κ −2Cκ 0
0 2S κ −2Cκ 0 0 1

 . (99)

C. Physical Parameters

This appendix gives numerical values for the physical parameters involved in the proposed article. In the sequel, the
unit d stands for "day".

The physical and orbital parameters of the Earth are:

• geocentric gravitational parameter: µ = 3.986 105km3/s2 = 2.9755 1015km3/d2,

• mean rotation rate: ωe = 7.2921 10−5rad/s = 6.3004rad/d,

• coefficient of the spherical decomposition of the Earth gravitational field: see the Table ?? (these values have
been taken from the reference Vallado33),

• sidereal angle Θ(t): using the computation algorithm from Vallado,33 for January 1st, 2034, the value of the
sidereal angle is: Θ0 = 1.7579 rad. If t denotes the elapsed time since January 1st, 2034, the sidereal angle at
time t is computed as: Θ(t) = Θ0 + ωet (for dates before the reference date, t has to be counted negatively),

• geostationary semi-major axis: ask = 42165.8km.
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