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Abstract
This article shows a brief and practical application of control techniques to improve the stability and
behavior of an aircraft whose dynamic modes do not meet the airworthiness requirements referred to
Flying Qualities. Specifically, some control laws will be designed in order to change the closed-loop poles
of a DC-8 and make them satisfy the standards of the American standards MIL-STD-1797A, which have
remained almost the same since the 1980s and also have become a basis to other normatives.

1. Introduction

Dynamic stability and maneuverability of an aircraft are some of its most important features, not only for safety reasons
and the structural loads it has influence in, but also due to the accelerations and frequencies passengers have to deal
with and therefore affect their comfort. Both qualities are closely related to the aerodynamic, geometric and inertial
characteristics of the airplane, which are responsible for the kind of response to external perturbations such as vertical
or lateral gusts (stability) and deflections of the control surfaces (maneuverability).

Despite that dependence between the dynamic response and the the aircraft properties, it can be improved by
the use of Stability Augmentation Systems (SAS). As it will be explained in detail later, the dynamic behavior of the
airplane is determined by the roots of its characteristic equation, which define the evolution of the translation and
rotation degrees of freedom during the time and, consequently, the stable or unstable nature of the dynamic modes. By
using control laws that apply forces and moments proportional to and against the motion variables, the coefficients of
the stability quartic change from their open-loop values to new ones, so the roots are modified as well.

2. Mathematical model

2.1 Euler’s equations

Assuming the aircraft behaves as a perfectly rigid body, without any kind of strain and ignoring aeroelastic effects, the
physic problem is reduced to a system of six degrees of freedom, correspondent to the three translations of the center
of gravity and the three rotations around it. So, the resulting system of six differential equations are compound by the
three scalar components of the linear momentum equation and the angular momentum equation.

Although the mass varies with time due to the fuel ejection in the engines, its variation during the time the in
which the transient response is acting is so low that we can neglect it and consider the mass constant in our study. For
the same reason, the tensor of inertia in body axes will be considered constant too. The equations of motion in inertial
axes and vectorial form are:

~F = m
d~V
dt

(1)

~G =
d~h
dt

, ~h = I~w (2)
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The motion variables have a physical meaning easier to understand in body-fixed axes, as well as a more sim-
plified form because of the invariability of the moments and products of inertia. Since the previous equations are only
valid for inertial axes with no angular velocity, those have to be corrected to take into account the inertia forces and
moments by using the Coriolis theorem, which correlates a derivative in inertial axes with the derivative in non inertial
ones:

~̇A
∣∣∣∣
1

= ~̇A
∣∣∣∣
0

+ ~w01 × ~A (3)

Hereafter, the forces, linear velocity, angular moment around the center of gravity and angular velocity are
expressed in body-fixed axes and designated as it follows:

~F = (Fx, Fy, Fz)T , ~V = (u, v,w)T , ~G = (L,M,N)T , ~w = (p, q, r)T (4)

By applying the Coriolis theorem to the previous equations and developing them scalarly, the Euler’s equations
are obtained:

Fx = m(u̇ − rv + qw) (5)

Fy = m(v̇ + ru − pw) (6)

Fz = m(ẇ − qu + pv) (7)

L = Ix ṗ − Jxzṙ + (Iz − Iy)qr − Jxz pq (8)

M = Iyq̇ + (Ix − Iz)pr + Jxz(p2 − r2) (9)

N = Izṙ − Jxz ṗ + (Iy − Ix)pq + Jxzqr (10)

2.2 Stability derivatives

The incremental aerodynamic forces and moments that are experienced by the airplane due to its perturbed movements
can be expressed, according to the unsteady aerodynamics, as the sum of the contributions of the instantaneous values
of the motion variables and their evolution along time since the start of the perturbed movement. This fact allows them
to be defined through a Taylor expansion, and be linear if only the first derivatives are considered.

∆F = Fu∆u + Fu̇∆u̇ + Fv∆v + Fv̇∆v̇ + ... (11)

As a result, each force and moment are function of the degrees of freedom and their first derivatives, and the
constants of proportionality are called stability coefficients:

Fxi =
∂F
∂xi

∣∣∣∣∣
s
, F ẋi =

∂F
∂ẋi

∣∣∣∣∣
s

(12)

Although it might seem that each force depends on every degree of freedom, the reference condition of study
of longitudinal movement ensures that the derivatives of the longitudinal forces and moments respect to the lateral-
directional degrees of freedom are null. Analogously, the derivatives of the lateral-directional terms respect to the
longitudinal variables are zero.

∆Y,∆L,∆N = f (∆v,∆p,∆r,∆v̇,∆ṗ,∆ṙ,∆δa,∆δr,∆δ̇a,∆δ̇r) (13)

∆X,∆Z,∆M = f (∆u,∆w,∆q,∆u̇,∆ẇ,∆q̇,∆δe,∆δ̇e) (14)

In addition, some stability derivatives are usually insignificant in most commercial airplanes and can be ignored.
To sum up, the forces and moments of perturbation can be expressed as it follows:

∆X = Xu∆u + Xw∆w + Xδe∆δe (15)
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∆Y = Yv∆v + Yp∆p + Yr∆r + Yδr ∆δr (16)

∆Z = Zu∆u + Zw∆w + Zq∆q + Zẇ∆ẇ + Zδe∆δe (17)

∆L = Lv∆v + Lp∆p + Lr∆r + Lδaδa + Lδ̇a
∆δ̇a + Lδr ∆δr (18)

∆M = Mu∆u + Mw∆w + Mq∆q + Mẇ∆ẇ + Mδe∆δe + Mδ̇e
∆δ̇e (19)

∆N = Nv∆v + Np∆p + Nr∆r + Nδa∆δa + Nδr ∆δr + Nδ̇r
∆δ̇r (20)

2.3 Linearization of the dynamic equations

The problem studied is the evolution of the movement of an airplane during the time after a perturbation, such as a
gust or the pilot’s action, that moves it away from its steady state to a transient movement. The subsequent motion
can be divided into the steady state, which dos not depend on the time, and and a perturbation whose value is small in
comparison to the steady value:

A(t) = As + ∆A(t) ,
∆A
A

<< 1 (21)

This division can be used as a basis to linearize the equations if the terms of order ∆A become the vari-
ables of study and the terms of order (∆A)2 and superior are not taken into account. Since the reference con-
dition of symmetrical, steady rectilinear flight that we are analyzing is characterized by the lack of accelerations
(u̇s = v̇s = ẇs = ṗs = q̇s = ṙs = 0) and angular velocities (ps = qs = rs = 0), as well as a null roll and yaw angle
(β = φ = 0).Finally, by introducing the perturbed variables into the equations, developing the trigonometric functions
taking into account that cos(A + ∆A) ' cos A − sin A∆A y sin(A + ∆A) ' sin A + cos A∆A, subtracting the equations in
the steady state and retaining only terms of order ∆A, the final system of differential equations is obtained:

−mg cos θs∆θ + ∆X = m(∆u̇ + ws∆q) (22)

mg cos θs∆φ + ∆Y = m(∆v̇ + us∆r − ws∆p) (23)

−mg sin θs + ∆Z = m(∆ẇ − us∆q) (24)

∆L = Ix∆ṗ − Jxz∆ṙ (25)

∆M = Iy∆q̇ (26)

∆N = Iz∆ṙ − Jxz∆ṗ (27)

∆p = ∆φ̇ − sin θs∆ψ̇ (28)

∆q = ∆θ̇ (29)

∆r = cos θs∆ψ̇ (30)

As the simplified equations show, there are two sets of equations which are decoupled one to another: the
longitudinal equations and the lateral-directional ones.
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2.4 Longitudinal modes

The system of equations that describe the longitudinal dynamics of an aircraft after a perturbation is:


m 0 0 0
0 m − Zẇ 0 0
0 −Mẇ Iy 0
0 0 0 1




∆u̇
∆ẇ
∆q̇
∆θ̇

 =


Xu Xw −mws −mg cos θs

Zu Zw Zq + mus −mg sin θs

Mu Mw Mq 0
0 0 1 0




∆u
∆w
∆q
∆θ

 +


Xδe

Zδe

Mδe

0


{
δe

}
(31)

It is more common to express the system above in the form {Ẋ} = [A]{X} + [B]{u}, where {X} is the state vector,
{u} is the control vector, [A] is the state matrix and [B] is the control matrix. So, multiplying the previous matrices by
the inverse of the inertia matrix we obtain:


∆u̇
∆ẇ
∆q̇
∆θ̇

 =


Xu
m

Xw
m −ws −g cos θs

Zu
m−Zẇ

Zw
m−Zẇ

Zq+mus

m−Zẇ

−mg sin θs
m−Zẇ

Zu Mẇ
Iy(m−Zẇ) + Mu

Iy

Zw Mẇ
Iy(m−Zẇ) +

Mw
Iy

(Zq+mus)Mẇ

Iy(m−Zẇ) +
Mq

Iy

−mg sin θs Mẇ
Iy(m−Zẇ)

0 0 1 0




∆u
∆w
∆q
∆θ

 +


Xδe
m

Zδe
m−Zẇ

MẇZδe
Iy(m−Zẇ) +

Mδe
Iy

0


{
δe

}
(32)

This is a system of differential equations with constant coefficients, so the homogeneous solution of the motion
variables has the form ∆u = u0eλt , ∆w = w0eλt , ∆q = q0eλt , ∆θ = θ0eλt, where λ are the eigenvalues of the state
matrix. By calculating the determinant |A− λI| = 0 we obtain the so-called stability quartic, whose roots are the eigen-
values of the longitudinal dynamics and determine the damping and frequency of its modes. The real part of every pole
has to be negative in order to be dynamically stable. The eigenvectors {ξi} of each mode are obtained by calculating
[A − λiI]{ξi} = 0 for every eigenvalue, and they determine the relative amplitude and phase between every variable for
each mode.

Aλ4 + Bλ3 + Cλ2 + Dλ + E = 0 (33)

Typically, most commercial airplanes flying at high altitude happen to have two pairs of conjugate complex roots.

λ1,2 = −ε1 ± iw1 (34)

λ3,4 = −ε3 ± iw3 (35)

t1/2 =
ln 2
ε

, T2 = −
ln 2
ε

(36)

ε = ζwn , w = wn

√
1 − ζ2 → λ = −ζwn ± iwn

√
1 − ζ2 (37)

One pair of roots has both the real and the imaginary part significantly smaller that the other, and they are asso-
ciated to the so-called phugoid mode. This oscillatory mode is characterized by a poor damping and a low frequency,
with typical times to reduce a perturbation to its half and periods of roughly hundreds of seconds. This modes perturbs
mainly the pitch angle ∆θ and the longitudinal speed ∆u.

The other pair is called the short period and it is described as a fast oscillatory mode, with high frequency and
damping. Although it vanishes after a short time of approximately some seconds, it is very important not to exceed
or lack some levels of damping and frequencies and therefore the normative sets a range of admissible values for both
parameters. It affects mainly the pitch angle ∆θ and the angle of attack ∆α.
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2.5 Lateral-directional modes

Analogously to the symmetric case, the system of equations that rules the lateral-directional dynamics is:


m 0 0 0
0 Ix −Jxz 0
0 −Jxz Iz 0
0 0 0 1




∆v̇
∆ṗ
∆ṙ
∆φ̇

 =


Yv Yp + mws Yr − mus mg cos θs

Lv Lp Lr 0
Nv Np Nr 0
0 1 tan θs 0




∆v
∆p
∆r
∆φ

 +


0 Yδr

Lδa Lδr

Nδa Nδr

0 0


{

∆δa

∆δr

}
(38)

Again, it is better to express it in the form {Ẋ} = [A]{X} + [B]{u}:


∆v̇
∆ṗ
∆ṙ
∆φ̇

 =


Yv
m

Yp

m + ws
Yr
m − us g cos θs

IzLv+JxzNv

IxIz−J2
xz

IzLp+JxzNp

IxIz−J2
xz

IzLr+JxzNr

IxIz−J2
xz

0
IxNv+JxzLv

IxIz−J2
xz

IxNp+JxzLp

IxIz−J2
xz

IxNr+JxzLr

IxIz−J2
xz

0
0 1 tan θs 0




∆v
∆p
∆r
∆φ

 +


0 Yδr

m
IzLδa +JxzNδa

IxIz−J2
xz

IzLδr +JxzNδr

IxIz−J2
xz

IxNδa +JxzLδa
IxIz−J2

xz

IxNδr +JxzLδr
IxIz−J2

xz

0 0


{

∆δa

∆δr

}
(39)

Unlike the longitudinal case, most commercial airplanes have one pair of conjugate complex roots, which corre-
sponds to an oscillatory mode, and two real roots, corresponding to two pure exponential modes:

λ1 = −ε1 (40)

λ2 = −ε2 (41)

λ3,4 = −ε3 ± iw3 (42)

Usually, one of the real roots has a module much higher than the other one. It is associated to the roll mode,
which consists in a highly damped non-oscillatory mode that disturbs basically the roll angle ∆φ and rolling angular
velocity ∆p, being quite decoupled from the other modes. Its characteristic time is smaller than a second.

The smallest real root is associated to the spiral mode, which consists in a short non-oscillatory mode with a very
poor damping. Unlike the other modes, it is not strange to be divergent and even the normative allows it to be unstable
as long as the module of its negative damping is under a maximum value. It affects the sideslip angle β, roll angle φ
and yaw, and it is mainly excited by a perturbation in sideslip angle.

The pair of conjugate complex roots correspond to the Dutch roll mode, which can be considered as the lateral-
directional homologous of the short-period mode. It is an oscillatory mode of high frequency, with periods of typically
7-10 seconds, but with a significantly lower damping, having t1/2 of roughly 10 seconds. It presents a high coupling
among roll and yaw, being these two perturbation delayed around 90º. It is a critical mode for safety reasons, and
because of his lack of damping, the normative establishes minimum values for it, as well as its natural frequency and
their product.
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3. Open-loop analysis

It will be calculated the damping and frequency of each longitudinal and lateral-directional mode of a Douglas DC-8 for
two typical flight conditions: cruise and flight at maximum horizontal speed VNE . Then, these values will be checked
to see if they meet or not the requirements of MIL-STD-1797A. The evolution in the time of the motion variables will
be simulated too with Matlab.

3.1 Cruise

Figure 1: Response of the DC-8 to a deflection of 1º of the elevator and rudder in a flight condition of cruise

Table 1: Parameters of the dynamic modes of the DC-8 and adequacy with the normative in a flight condition of cruise

ζp ζsp CAP(s−2) τr(s) τs(s) ζd wd(s−1) ζdwd(s−1)
0.2410 0.3421 0.4520 0.7977 250 0.0793 1.4956 0.1186
√ √ √ √ √

X
√

X

As the table above shows, the damping of the Dutch roll is not enough as it would be expected and therefore the
design of control laws in order to increase it is necessary.
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3.2 Maximum horizontal speed VNE

Figure 2: Response of the DC-8 to a deflection of 1º of the elevator and rudder in a flight condition of VNE

Table 2: Parameters of the dynamic modes of the DC-8 and adequacy with the normative in a flight condition of VNE

τp1(s) τp2(s) ζsp CAP(s−2) τr(s) τs(s) ζd wd(s−1) ζdwd(s−1)
9.2764 -14.1043 0.3245 0.5219 0.7376 227.27 0.0854 1.5898 0.1358

- X X
√ √ √

X
√

X

The speed in that flight condition is so high that not only the Dutch roll is poorly damped, but the damping of the
short-period is too low as well. Apart from that, it can bee seen in the plots how the classical phugoid mode disappears
to originate two pure exponential modes, being one of them divergent and therefore inadmissible.

4. Control

Modify the aerodynamic properties and redesign the aircraft would be too costly at the stage of the project in which
the deficiencies in the transient response are detected, since they are difficult to estimate through calculations. The use
of stability augmentation systems (SAS) allows improving it once the aircraft is designed. These systems are based on
the negative feedback of the state vector, thereby applying forces and moments proportionally to the motion variables.

δs = δs pilot ± ∆δs S AS (43)

∆δs S AS = Ku∆u + Kw∆w + Kq∆q + ... (44)

As a result, the closed-loop poles vary and the dynamic behaviour can be improved.
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Figure 3: General scheme of a SAS. [1]

Figure 4: Possibilities of longitudinal and lateral-directional SAS. [1]

4.1 Pole-Placement Method

The Pole-Placement Method is a numerical method that lets the control designer select the desired closed-loop poles
and, as a consequence, the parameters of the dynamic modes. If the control vector is expressed as:

{u} = {v} − [K]{x} (45)

Where {v} is the entry without feedback, then the system of equations in state form can be written as:

{Ẋ} = [A − BK]{X} + [B]{v} (46)

So the actual equation that gives the new poles is |A− BK − λI| = 0. The method calculates the required gains to
make the desired poles be the roots of the new stability quartic. For univariable entries such as the longitudinal case,
the feedback matrix is unique and the four poles can be fixed only if all the motion variables are available to measure.
For multivariable entries like the lateral-directional case, the feedback matrix is not unique if there are more possible
feedbacks than variables.

5. Closed-loop analysis

In this section, the values of the parameters of the dynamic modes which did not satisfy the requirements will be
selected to suit them. To avoid the problem of the multiple possible feedback matrices for the lateral-directional
system, only the rudder deflection will be used for feedback and the obtained gains will be rounded to hundredths for
practical reasons.
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5.1 Cruise

Figure 5: Response of the DC-8 in closed-loop to a deflection of 1º of the rudder in a flight condition of cruise

[K] =

[
0 0 0 0
0 0.02 −0.82 0.03

]
(47)

The rudder deflection is used for feedback with the roll and yaw angular velocities and the roll angle. The new
parameters turn out to be:

Table 3: Parameters of the dynamic modes of the DC-8 in closed-loop and adequacy with the normative in a flight
condition of cruise

τr(s) τs(s) ζd wd(s−1) ζdwd(s−1)
0.8029 149.25 0.4066 1.4861 0.6042
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5.2 Maximum horizontal speed VNE

Figure 6: Response of the DC-8 in closed-loop to a deflection of 1º of the elevator and the rudder in a flight condition
of VNE

[K] =
[
0.02 0 −0.3 0.57

]
(48)

The elevator deflection is used for feedback with the longitudinal speed ∆u, the pitch angle ∆θ and the pitch
angular velocity ∆q.

[K] =

[
0 0 0 0
0 0.02 −1.02 0.04

]
(49)

All the lateral-directional variables are used for feedback except the sideslip angle, as well as in the cruise
condition.

Table 4: Parameters of the dynamic modes of the DC-8 in closed-loop and adequacy with the normative in a flight
condition of VNE

ζp wp(s−1) ζsp wsp(s−1) τr(s) τs(s) ζd wd(s−1) ζdwd(s−1)
0.3049 0.4782 0.5687 3.1708 0.7398 833.33 0.5024 1.5863 0.797
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6. Conclusions

Nowadays, the use of control systems in flight mechanics is mandatory as it solves the stability problems the aircraft
face without having to redesign the whole aerodynamic configuration. Commonly, the chosen control systems are
stability augmentation systems, which modify the transient response of the airplane to a perturbation in their steady
state, either external or produced by the control surfaces. These systems are mainly based on the negative feedback of
the motion variables, and the deflections of the control surfaces are proportional to them.

The most critical modes are the short-period and the Dutch roll. Both of them are oscillatory, have a high fre-
quency and perturb the rotation degrees of freedom, making them hazardous. Therefore, they have strict requirements
to meet regarding damping and frequency. At high speeds, they are likely to have an insufficient damping, specially
the Dutch roll, which can be mitigated with the use of a yaw damper.

The Pole-Placement Method is a powerful tool to estimate the required gains to establish the values of the
damping and frequencies of the dynamic modes, providing there are enough motion variables available to measure and
use it for feedback. The typical longitudinal variables used for feedback are pitch angle and pitch angular velocity,
although horizontal velocity ∆u should be used to stabilize the phugoid mode at very high speed. The most used
lateral-directional variables used for feedback are the roll and yaw angular velocities, since they increase the damping
of the Dutch roll, usually the main problem.
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