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Abstract
Of relevance in many industrial applications, Vibration-based methods have been proved to be an ef-

fective non-destructive alternative for characterizing welded structures. Recent numerical investigations
modeled the bond as a lumped mass connecting the (welded) portions of the structural element by linear
springs, and found good agreement with experiments, providing a quantitative estimation of the welding
rigidity. Here, we investigate the sensitivity of the proposed model to uncertain parameters, whose deter-
mination is not possible in any practical case, confirming its robustness and reliability for assessing the
integrity of welded structures.

1. Introduction

Over the past decades, the application of Vibration-based methods (VBM) has demonstrated to be a powerful alter-
native for characterizing welded structures, of interest in many engineering and industrial applications, particularly,
for permanent monitoring of the welding condition. VBM present the advantage of providing quantitative information
of the welding, compared to other extended Non-Destructive Testing (NDT) techniques, like ultrasound scanning or
radio-logical screening.1, 2

Recent numerical investigations3 modeled the bond as a lumped mass connecting the portions of the structural
element by linear springs, which oppose to shear force and bending moment, describing the vibrational response under
the effect of mechanical and inertia properties of the welding. Even more recent experiments4 have examined its
applicability to characterize simple welded structures, providing rigidities estimations that were compared to other
NDT approaches. However, part of the key parameters used for determining the welding characteristics, like the
rotational inertia resulting from the added mass during the welding process, were unknown to some extent. Although
good agreement was found between numerical predictions and experiments, differences of about 10 % in the natural
frequencies were often obtained. These discrepancies are attributed, at least in part, to the uncertainty of different
welding parameters and the associated simplifications used for their estimation.

Throughout this work, we analyze the sensitivity of the afore-mentioned model to such uncertain parameters
by applying inverse engineering techniques, and compare these results with general optimization procedures. In the
former case, this is understood as the process by which a designed structure has a desired dynamic response under
external loads or dynamic properties like natural frequencies, normal modes and damping coefficients. This process is
commonly defined in the literature as an inverse eigenvalue problem.

Some of the early researches in this area were presented by Vanhonacker (1980),5 Chen and Garba (1980)6 and
Belle (1982).7 Other subsequent investigations, like the works of He (1997)8 and Mottershead (1998),9 used structural
modifications, like adding point masses or stiffness modifications, to achieve the targeted natural frequencies. All these
approaches were applied to discrete systems made up of simple linear spring and mass elements. The inverse vibration
problem to continuous finite elements, on the other hand, was studied by Djoud and Bahai (2000, 2002),10, 11 and Bahai
and Aryana (2002),12 and later improved by using second order Taylor approximation in the inverse formulation.13

This method modified the mass and stiffness matrices at a local level and showed a high computational efficiency.
Design sensitivity analysis of structures, in this sense, deals with the calculation of the response derivatives to the

design variables. These derivatives, called the sensitivity coefficients, can be used in the solution of different problems
and, in particular, to assess the effects of uncertainties in the system response. Developments in methods for sensitivity
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analysis were discussed, for example, by Haug et al. (1986)14 and Haftka and Gurdal (1993).15 Later, it was found
that accurate results in terms of dynamic properties of the system can be achieved by the calculation of the analytical
derivatives of approximate analysis models.16

In this context, the present study can be framed within the sensitivity analysis of discrete linear systems under
dynamic loading to some physical or geometrical parameters. While some methods make use of finite differences with
respect to the design parameters to determine the gradient of mode shapes and natural frequencies, see e.g. Adelman
and Haftka (1986),17 using exact derivatives reduces the round-off and truncation errors related to the step size used,
and improves the method performance.

Here, the method based on the direct computation of the first derivative with respect to the design parameters is
used. Parameters considered for the welding problem are the mass and moment of inertia of the added material during
the welding process. In this sense, we propose a systematic investigation on how the afore-mentioned parameters,
whose experimental determination in any practical case is difficult or even not possible, affect the vibrational response.

Arising from the impossibility of adjusting all frequencies, a Finite Element Method (FEM) model including the
welded section is used. Based on measured data from different welded steel platens, which were welded with different
conditions, the welding section rigidities are adjusted to reproduce experimental results.4 Then, the sensitivity of the
calculated natural frequencies to the inertia parameters is analyzed, providing a quantification of their influence on the
welding characterization. This work confirms the applicability and reliability of the method for assessing the integrity
of welded structures, and further demonstrates somewhat the robustness of the welding quality determination.

The paper is structured as follows. In Sec. 2, the mathematical formulation used for modelling the welding and
the sensitivity analysis are reviewed. Then, in Sec. 3, the experimental setup and modal analysis procedure, and the
optimization method applied for determining the welding rigidities are described. Results are presented and discussed
in Sec. 4. Finally, conclusions are offered in Sec. 5.

2. Mathematical formulation

2.1 Welded beam model and Finite Element Method implementation

An Euler-Bernoulli beam of length L welded at x = l1 is considered (see Fig. 1). The welding is represented by
an added mass, of translational and rotational inertia mw and Iw, that is attached to both halves of the beam by a set
of massless springs, two translational and two torsional. These springs oppose to vertical displacement and rotation
between both sides of the beam, and are assumed to have equal rigidities of values k and kT at both sides of the added
mass, respectively.3, 4

Vibrational dynamics are given by18

EI
∂4w1

∂x4 + m
∂2w1

∂t2 = 0, 0 ≤ x ≤ l−1 ; (1a)

EI
∂4w2

∂x4 + m
∂2w2

∂t2 = 0, l+1 ≤ x ≤ L; (1b)

mw
∂2zw

∂t2 + k
(
2 zw − w−1 − w+

2
)

= 0, (1c)

Iw
∂2θw

∂t2 + kT

(
2 θw −

∂w−1
∂x
− ∂w+

2

∂x

)
= 0, (1d)

while the following equations apply at x = l1

EI
∂2w−1
∂x2 − kT

(
θw −

∂w−1
∂x

)
= 0, x = l−1 ; (2a)

EI
∂3w−1
∂x3 + k

(
zw − w−1

)
= 0, x = l−1 ; (2b)

EI
∂2w+

2

∂x2 − kT

(
θw −

∂w+
2

∂x

)
= 0, x = l+1 ; (2c)

EI
∂3w+

2

∂x3 + k
(
zw − w+

2
)

= 0, x = l+1 . (2d)

Here, zw and θw are the generalized coordinates for the translation and rotation of the lumped inertia, w1 and w2 are
the beam deformations on 0 ≤ x ≤ l−1 and l+1 ≤ x ≤ L, and EI and m are the beam flexural stiffness and mass per unit
length, respectively. Superscripts ‘∓’ refer to the left and right-sided limits as x→ l1.
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Figure 1: Welded beam model for the experimental setup detailed in Sec. 3.1. The welding is represented by linear
springs and a lumped inertia to mimic the rigidity and the added mass of the welding connection. The clamp boundary
condition is modeled by two linear springs opposing to translation and rotation of the fixed end. Here, 〈◦〉′ stands for
∂〈◦〉/∂x.

For the experimental setup described in Sec. 3, the attachment at x = 0 is modelled by two massless springs (see
Figs. 1 and 2) that oppose to the beam displacement and rotation

EI
∂2w1

∂x2 + kbc
T
∂w1

∂x
= 0, x = 0; (3a)

EI
∂3w1

∂x3 − kbc w1 = 0, x = 0; (3b)

while zero-stress boundary condition is assumed at the free end x = L

∂2w2

∂x2 =
∂3w2

∂x3 = 0, x = L. (4)

The dynamic response enclosed in Eqs. (1–4) is solved by means the Finite Element Method. We consider two
classical FEM objects for the beam portions: the beam bending element for the stiffness matrix, and the lumped mass
for the mass matrix.19 The bond element, on the other hand, is represented by the following mass and stiffness matrices

Mw =



0 0 . . .
0 0 . . .

mw 0 . . .
Iw 0 . . .

sym 0 0
0



, Kw =



k 0 −k 0 . . .
kT 0 −kT 0 . . .

2 k 0 −k 0
2 kT 0 −kT

sym k 0
kT



, (5)

respectively. These matrices are assembled with FEM regular elements to obtain the global stiffness and mass matrices,
denoted by K and M.

Assuming harmonic motion ∝ eiωt, the characteristic equation for negligible damping is

det
(
K − ω2M

)
= 0, (6)

whose roots are the natural frequencies ω of the structure, depending on the following dimensionless parameters

δ =
k L3

EI
, δT =

kT L
EI

, δbc =
kbcL3

EI
, δbc

T =
kbc

T L
EI

, λ =
L
l1
− 1, s =

mw

mL
, rθ =

Iw

mL3 . (7)

Remark that structural damping is neglected because, for typical metallic materials as the steel used in experiments
(see Sec. 3.1), this value is between 1–2 % at most. Therefore, results will be barely affected at leading order.
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Previous analysis of Salgado Sánchez et al. (2016)3 found that 102 elements were enough to reproduce the
analytical solution of Eqs. (1–4) with less than a 0.2 % error. Therefore, 102 elements will be used for the results
discussed throughout this paper.

In order to calculate welding structural properties, we use an inverse procedure for the solution of Eq. (6). From
experiments, natural frequencies and the welding location λ are measured, while rough estimations are used for the
inertia properties s and, in particular, rθ. Following the work of Rafael de la Cruz et al. (2019),4 we calculate them
based on the measured added mass value and assuming an oval spatial distribution. Given this set of parameters, the
values of δ = kL3/(EI) and δT = kT L/(EI) can be obtained afterwards by optimization, searching for the minimum
error between calculated and measured natural frequencies. These obtained rigidities, therefore, will have certain
degree of uncertainty, provided the unknown precise values of the welding inertia. We investigate here the system
sensitivity to this inertia, as detailed below.

For further details of the FEM implementation, refer to the works of Salgado Sánchez et al. (2016)3 and Rafael
de la Cruz et al. (2019).4

2.2 Inverse eigenvalue problem formulation

The mass and rigidity matrices depend on various design parameters, an inverse engineering design deals with which
values are the most adequate so that the designed physical system displays the specified or desired dynamic properties
(natural frequencies and/or modal shapes).

Let us consider the (reduced) eigenvalue problem

K {φi} = λi M {φi}, (8)

where the eigenvalues λi are the squared natural frequencies, and the eigenvectors {φi} are the normal modes, satisfying

{φi}T M {φi} = 1, (9)

after their normalization.
If the solid rigid motion is not considered, rigidity and mass matrices are positive defined and symmetric. Fur-

thermore, if they are smooth and with continuous derivative with respect to the design parameters, then the associated
natural frequency and normal mode also have continuous derivative with respect to the design variables. Premultiplying
equation (8) by {φi}T , we obtain

{φi}T K {φi} = λi {φi}T M {φi}. (10)

Let K and M, and consequently their eigenvalues and eigenvectors, depend on a certain design (physical or
geometrical) parameter bk. A small perturbation with respect to its nominal value b̂k can be expressed as

bk = b̂k + ε ∆bk, (11)

where ε is the perturbation parameter and ∆bk the finite (small) increment, so that the system response can be linearized.
After combining Eqs. (11) and (10), the following leading order equation is derived

∂λi

∂bk
= {φi}T

(
∂K
∂bk

)
{φi} − λi {φi}T

(
∂M
∂bk

)
{φi}. (12)

We call Sik = ∂λi/∂bk to the resulting non-squared matrix, whose columns and rows are given by the number of
natural frequencies to be optimized or placed at the desired values, and by the (number of) selected parameters of the
design process, respectively. For the present work, three measured frequencies are used, while the design parameters
considered are the inertia properties of the added mass mw and Iw. Therefore, Sik is a 2 × 3 matrix.

Let us define the difference between the ith measured and calculated eigenvalue as

∆λi = (ωexp,i)2 − (ωi)2, (13)

where ωexp,i is the measured natural frequency and ωi is the calculated natural frequency with the estimated values of
the design parameters in a first guess. Then, the sensitivity of the system to design variables is obtained as

∆bk = S−1
ik ∆λi, (14)

where the largest value of ∂λi/∂bk will show the most sensitive element for the ith eigenvalue.
If it is assumed that the first time calculated eigenvalues and eigenvectors of the system are obtained from an

initial FEM model, thus obtained by an initial guess of the unknown design parameters, the required change in the
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1Figure 2: (a) Sketch of the experimental setup for modal analysis. (b) Frequency Response Function (FRF) including
the coherence γ̂2 and amplitude |̂H| functions. Platen and support resonances are highlighted by light and dark gray
bands, respectively.

Table 1: Platen characteristics as function of the welding param-
eters: intensity (A) and speed, providing different weld qualities:
good, medium and poor.

# Intensity (A) Speed Quality

1 75 Slow Good

2 75 Fast Medium

3 50 Fast Poor

4 75 — Discontinuous

welding properties to achieve the structure measured frequencies can be obtained (see Djoud and Bahai (2002)11). This
procedure allows to optimize welded structures that require small modifications (less than 10 %) in the computed and
measured natural frequencies.

We note that sensitivity of eigenvectors with respect to welding parameters is not considered here, consistently
with real applications where mode shapes are usually left out of the analysis. This, however, can be generalized by
applying the method presented in Lee et al. (1999).20

3. Experiments

3.1 Experiment setup and modal analysis

The heart of the experiment is a test platen attached to a real wall in a cantilever configuration, as sketched in Fig. 2(a).
The platen is vibrated by hitting it with a hammer, and the dynamic response is measured by an accelerometer. Both
driving and recording devices datasets are processed by an analyzer that registers and treats their signals.

Six platens, made of steel1 are tested. Each platen has an effective length of 200 mm and is 30 mm wide and 6
mm thick, displaying a cross section moment of inertia I = 5.4 · 10−10 m4 and a mass per unit length m = 1.476 kg
m−1. Platens #1–4 are selected to perform a single welding at (nearly-)identical positions; while two platens are used
for reference, with no welding performed.

Different welding qualities are applied to each welded platen. Weldings are executed manually by electric arc,
permitting for controlling two main parameters: intensity and soldering velocity. Two intensities are regulated: 75 and
50 A. Based on the electrode characteristics (size and type) and the thickness of the platen, we consider an intensity
of 75 A as suitable,2 while 50 A is found to be less adequate. Welding speed is varied from low to fast, providing
accurate welded elements and less precise solderings, respectively. For clarity, welding details in the different platens
are summarized in Table 1, including a descriptive evaluation.

1Measured mean density ρ = 8200 kg m−3 and Young’s Modulus E = 231 GPa.
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The test structural components are screwed to the clamping support and hit uniformly in 6 predefined locations.
All measured data is processed with the digital analyzer, which is configured with a sampling frequency of 6000 Hz and
a total register time of 1.37 s, complying with the standard procedure of modal analysis.21 This yields the frequency
response of the structure and measurements of the experimental data quality i.e., coherence. We illustrate in Fig. 2(b)
the typical Frequency Response Function (FRF) of an experiment. This response features both the three first platen
resonances of interest, and clamping modes.

For the experiments, geometry parameters are L = 200 mm and λ = 0.428, while inertia parameters, estimated
as commented above, are fixed first to mw = 0.002 kg and Iw = 5 · 10−6 kg m2. Starting from this initial guess, welding
rigidities can be calculated as explained hereafter.

3.2 Procedure to determine the welding stiffnesses

We start measuring resonances on reference and welded platens, referred to fref and fexp, with the associated geometrical
λ, and inertia parameters s, rθ of corresponding experiments.

First, reference platens are used to characterize the clamping support. We proceed iteratively in order to match
numerical predictions f and experimental fref results by means of an active-set optimization technique, based on the
gradient calculation. This yields the equivalent rigidities at the support δbc, δbc

T , which are assumed constant between
experiments. Following an analogous approach, welding stiffnesses δ, δT are calculated to best reproduce the experi-
mental resonances fexp.

Let us define the relative errors εi between the ith frequency calculated fi and measured fexp,i as

εi =

∣∣∣fi − fexp,i
∣∣∣

∣∣∣fexp,i
∣∣∣
, (15)

to construct the following objective function F to be minimized

F = ε2
1

(
1 +

10−2

|ε2ε3| + C

)
+ ε2

2

(
1 +

10−2

|ε1ε3| + C

)
+ ε2

3

(
1 +

10−2

|ε1ε2| + C

)
, (16)

where C = 10−10 is a small constant to avoid the potential division by zero. At convergence, the relative error at the
nth iteration ε(n) is below

ε(n) =

∣∣∣F(n) − F(n−1)
∣∣∣

∣∣∣F(n−1)
∣∣∣

< 10−6, (17)

and stiffnesses are determined. We note that the application for reference platens results from the straightforward
change (exp)→ (ref).

It is generally well-known the sensitivity of optimization techniques to the selected objective function, in partic-
ular, for multi-objective optimizations. The aim of this work is to reproduce the vibrational response of the test welded
beams at their first three natural frequencies. We select Eq. (16) to obtain similar errors in all natural frequencies. Note
that Eq. (16) has local theoretical minima along εi = ε j, while it is penalized otherwise.

4. Results and discussion

4.1 Clamping support characterization

Based on the formulation of Sec. 2, two equivalent translational and torsional springs (see Fig. 1) model the clamping
support, whose rigidities can be calculated as explained Sec. 3.2. The following dimensionless clamping stiffnesses

δbc = 1089.1, δbc
T = 6.261 (18)

are obtained. Table 2 summarizes the results for the clamped support characterization. As anticipated above, the
numerical error in the calculated natural frequencies is ε = 1.68 % and almost identical in all of them.

The non-dimensional clamping stiffness have not a very high value. For an ideal cantilever beam, these values
tend to infinity, far from the obtained ones, in the order of 103 for translation and of 101 for rotation. This fact,
however, does not affect the objective of the present work, since the characterization of the clamping will be carried on
throughout all the results presented. These rigidities, therefore, are fixed from now on.
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Table 2: Characterization of the non-ideal support: measured
natural frequencies fref, numerical frequencies f, relative errors
(in absolute value) |ε| and non-dimensional rigidities δbc, δbc

T .

fref (Hz) f (Hz) |ε| (%) δbc δbc
T


95.9

635.0
1709.0




94.3
624.4

1737.6




1.68
1.68
1.67

 1089.1 6.261

(a) – Welding rigidities characterization (b) – Inertia parameters adjustment

Platen fexp δ δT f |ε| f̂ + ∆f m̂w + ∆mw Îw + ∆Iw |ε + ∆ε|
# (Hz) (–) (–) (Hz) (%) (Hz) (g) (kg m2) (%)

1


96.2

603.5
1423.5

 1.413 ·105 5.896


99.6

581.5
1473.0




3.55
3.65
3.47




99.4
584.5

1465.0

 3.4 1.01 ·10−6


3.29
3.15
2.92



2


94.8

586.2
1331.3

 5.346 ·104 4.170


99.3

554.6
1403.6




4.80
5.42
5.43




99.2
557.0

1397.3

 3.0 1.00 ·10−6


4.61
4.99
4.96



3


92.3

562.8
1258.9

 1.251 ·105 3.055


99.0

525.1
1344.1




7.25
6.69
6.79




98.7
527.4

1336.0

 3.5 1.02 ·10−6


6.97
6.29
6.10



4


96.4

602.3
1333.6

 6.467 ·104 4.604


99.4

562.9
1423.0




3.15
6.53
6.72




99.7
566.6

1427.5

 1.3 1.0 ·10−6


6.97
6.29
6.10



Table 3: Results obtained by the optimization of Eq. (16). (a) Welding rigidities characterization: measured natural
frequencies fexp, design rigidities δ, δT , design numerical frequencies f and associated errors ε (in absolute value). (b)
Inertia parameters adjustment: adjusted frequencies f + ∆f, adjusted inertia parameters m̂w + ∆mw, Îw + ∆Iw, and errors
ε + ∆ε (in absolute value) after the adjustment.

4.2 Welding rigidities characterization

As a first step, the measured natural frequencies of welded beams are used to determine the values of the non-
dimensional rigidities δ and δT by means of the procedure detailed above. We remark that the initial guesses given
in Sec. 3 of the welding mass mw = 0.002 kg and moment of inertia Iw = 5 · 10−6 kg m−2 are used.

Note that these parameters are estimated, provided the controlled environment of the laboratory, by weighting
the platens in the case of the added mass, and assuming that it takes an oval shape distribution in the added moment
of inertia. For any real application, however, measuring such parameters will be certainly difficult or even not possible
and thus, they have to be roughly estimated. Therefore, the main objective of this paper is to ascertain how errors in
this approximation may influence the assessment of the welding properties.

Table 3(a) compiles the obtained results for the four platens, using the first guess of the parameters. Both
measured fexp and computed f natural frequencies, their relative error |ε| (in absolute value) and the calculated non-
dimensional rigidities δ and δT that minimize F are detailed.

From these results, it can be noticed that the all frequencies are similarly adjusted, providing relative errors
ranging between 3 and 7 % for different platens. In particular, platen #3 presents the higher errors of 7.25 % at the first
natural frequency. Although these results are somewhat affected by the guessed inertia properties, this initial approach
provides good accuracy with differences below 10 %, acceptable for any typical combination of experimental and
numerical work of this nature.

The obtained rigidities, on the other hand, capture fairly well the degradation of the welded section. In partic-
ular, for platens #1 and #3, decreasing rigidities are obtained as expected. For platen #4, the discontinuous welding
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procedure affects somewhat more the translational rigidity, while the associated torsional one displays a higher value
compared to the incorrectly welded platen #3. Results from platen #2, on the other hand, suggest that the given bond
was not welded with a medium quality as expected, providing the major reduction in δ.

One may compare these results to those that would be obtained if the FEM model is fitted to reproduce the
resonances of reference platens; a reduction of two orders of magnitude in both δ and δT once welded is found. We
remark that rigidity values in this ideal scenario are in the order of δ0 = 107 and of δT0 = 500 for translational
and torsional stiffnesses, respectively. Overall, the method is able to assess the degradation of the different structural
elements, captured in the change of δ and δT caused by the welding process.

Finally, compared to the recent work of Rafael de la Cruz (2019),4 where an analogous system was adjusted
by searching the minimum of |f − fexp| with genetic algorithms, the same order of magnitude (but different in values)
is obtained here in the rigidities, which suggest the reliability of the procedure. This supports, however, the afore-
mentioned sensitivity of the optimization process to the selected objective function.

4.3 Natural frequencies sensitivity to inertia parameters

Now, the objective is to verify the sensitivity of the results to the guessed parameters used in the model: the added
mass due to soldering and its moment of inertia. In a first evaluation, the system is linearized in the neighborhood of
the previous calculated design point, in particular, for platen #1.

The modified sensitivity matrix Ŝ, similar to the one presented in Sec. 2,

Ŝ =



∂ f1
∂mw

∂ f2
∂mw

∂ f3
∂mw

∂ f1
∂Iw

∂ f2
∂Iw

∂ f3
∂Iw

 =


−0.23 [g−1] −0.52 [g−1] −0.62 [g−1]

−0.24 · 105 [kg−1 m−2] −10.01 · 105 [kg−1 m−2] −1.9 · 105 [kg−1 m−2]

 Hz (19)

is obtained and evaluated at the design point, permitting the straightforward identification of the most sensitive modes.
In particular, the largest values of each row would be the most adequate frequency to be adjusted by the given parameter,
resulting in the smallest modification.

We adjust, for example, the third natural frequency by modifying mw to obtain

∆mw =
f3,exp − f3
∂ f3/∂mw

≈ 10 g. (20)

Setting-up this value in the model, the calculated set of natural frequencies is f = (96.62, 523.41, 1422.5) Hz, providing
an error in the third frequency of 0.007 %. This further improves the prediction of the first frequency reducing its error
to 0.4 %, while substantially degrading the second one.

This suggest that the optimization of all three frequencies together cannot be easily done by hand, since the
second frequency, in contrast to the other two, is always underestimated by the model. For this purpose, and provided
Ŝ that reveals the system sensitivity, we modify the optimization method used in previous sections to adjust mw and Iw

as described hereafter.

4.4 Determination of inertia parameters

The objective now is to reduce as much as possible the value of F and, therefore, the error of numerical predictions.
Remark that the rigidities of the welding (so-called design rigidities), δ and δT are kept constant and equal to the values
computed in Table 3(a).

Table 3(b) summarizes the obtained results for the four platens: updated natural frequencies f̂ + ∆f, their relative
errors |ε + ∆ε| (in absolute value) and adjusted inertia parameters m̂w + ∆mw and Îw + ∆Iw that minimize F . It can be
noticed that the error can just be reduced slightly, meaning that wrong evaluations of these parameters do not practically
affect the model resolution.

Furthermore, for the particular case of the inertia mass mw, the obtained values are consistent with the welding
quality. In platens #1–3, the operator executed the welding differently but the amount of additional agent was similar.
For platen #4, in contrast, the welding was executed by adding three discrete bond points, reducing the quantity of
additional mass. This effect is consistently captured by the present optimization.

From these results, it can be concluded that the proposed model is a reliable and robust method to evaluate the
quality of a welding. Errors of the order of 75 % in the added welding mass and of one order of magnitude in the
moment of inertia barely affect the differences between the measured and calculated frequencies, once suitable values
of the welding rigidities are determined. The model, however, cannot reduce the differences to even smaller values than
2.9 %, fact that, despite of being admissible for most of engineering process, suggests itself for further investigation.
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5. Conclusions

The sensitivity of a vibration-based method to evaluate mechanical properties on welded structures and assess their
integrity is examined.

The model is successfully used for characterizing welded cantilever platens, despite departing from rough es-
timations of the uncertain parameters of the welding, particularly, the added mass and the moment of inertia. The
different reduction of stiffness at the welded section, caused deliberately by the welding execution, is determined by
the use of a new objective function that searches the global error minimization by reducing equally partial errors in all
the natural frequencies considered in the analysis. Despite the novel approach, obtained rigidities are consistent with
previous analyses, suggesting the robustness of the model besides the underlying process used to optimize it.

System sensitivity to welding inertia is analyzed subsequently in the neighborhood of the design points, adjusting
their values to improve the model accuracy. The obtained modifications are in the order of 75 % in the added welding
mass and of one order of magnitude in the rotational inertia, while the achieved reduction in the error is just 0.5 % at
most. Furthermore, the obtained masses are able to predict consistently the added agent quantity during the welding.

From these results, it can be concluded that the proposed stiffness and lumped mass model, combined with its
optimization, is a reliable and robust approach to evaluate the quality of a welding. It is shown how rough estimations
of uncertain inertia parameters barely affect the differences between measured and predicted resonances and thus, the
calculated welding stiffnesses. The model, however, is not capable to reproduce experiments with less than a 2.9 %
error. This fact, despite of being admissible for most of engineering and industrial processes, suggests itself for further
investigation.
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