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Abstract  
Aerodynamic database (DB) is one of the most important components of the flight simulation. To 

maintain high accuracy of the simulation, the DB should be constructed using high-fidelity analysis 

methods which requires a lot of time and cost. In this research the aerodynamic data fusion method (DF) 

is introduced to reduce the DB generation cost while preserving accuracy. Combination of space 

mapping and variable fidelity modeling is presented in this paper. Demonstration of the method is shown 

for 2D airfoil and 3D fighter aircraft DB. The method shows that the prediction errors improved 19%. 

 

 

 

1. Introduction 

Modern flight simulation is used in various fields. From entertain games to simple descriptions of flying, to precise 

simulation to training pilots, it is used for a variety of purposes. The flight simulation consists of look-up-tables, and 

the precision of the flight simulation depends on the precision of the tables. In the case of flight simulation for fun, a 

small look-up-table may be used, or performed based on simple calculations that do not consider aerodynamics.  

However, flight simulation for pilot training and aircraft development must have very high precise precision. These 

high fidelity aircraft flight simulation is a very important technology in a modern aircraft's lifecycle. Simulation is used 

during aircraft design, certification and pilot training stages. Simulation for certification and pilot training should 

describe the exact same flight characteristic as the actual flight. An aerodynamic database plays a very important role 

in accurately describing actual flight. Wind tunnel experiments or high fidelity aerodynamic analysis data are used to 

construct these important aerodynamic DB. But the process of obtaining data is quite expensive and time-consuming 

work. Many methodologies have been developed to reduce such time and cost. 

 

 

 

2. Data Fusion 

One of them, data fusion method, combines data of various fidelity to produce one high fidelity data. Among such data 

fusion methods, Variable Fidelity Modeling (VFM) is a method of predicting high fidelity data based on scaling. Since 

the method making scaling function depends on the Gaussian Process (GP), it is difficult to predict the region that GP 

cannot predict well. The method of reducing the error of the VFM technique is the same as the method of reducing the 

GP prediction error. In this study, to reduce non-linearity of GP prediction, Space Mapping (SM) was proposed before 

performing VFM.  
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Figure 1 : SM & VFM process [5] 

 

2.1 Space Mapping Technique 

Space mapping (SM) is one kind of surrogate model. It is used for finding optimum points or min / max points. SM is 

more suitable to find a minimum / maximum point at specific area of interest rather than constructing global surrogate 

model. Most other surrogate model method match the high fidelity data with low fidelity data through modification of 

the response values. But the SM achieves same purpose by modifying the input variables. 

There are two major steps performing SM. The first step is to obtain correlation factor that maps peak points of low 

fidelity samples to peak points of high fidelity samples. And second step is to perform the global SM after expanding 

the correlation factor to whole design space. 

In the first step, the process of obtaining the correlation factor begins with the definition of input variable as following 

low fidelity and high fidelity sample points. 

𝛟𝑯𝑭 = {𝝓𝒉𝟏, 𝝓𝒉𝟐, … . . , 𝝓𝒉𝒍}
𝑻 (1) 

𝛟𝑳𝑭 = {𝝓𝒍𝟏 , 𝝓𝒍𝟐, … . . , 𝝓𝒍𝒌}𝑻 (2) 

 

The response of this input variables is represented as RHF(𝜙𝐻𝐹), RLF(𝜙𝐿𝐹), respectively. And assume that there is 

relationship between ϕ𝐿𝐹 and ϕ𝐻𝐹 as follow 

𝛟𝐋𝐅 = 𝑷(𝝓𝑯𝑭) (3) 

 

Assuming that the relation p(x) has an inverse function, it can be written as follows. 

Min (∥ 𝐑𝐇𝐅(𝑷(𝝓𝑳𝑭)−𝟏) − 𝑹𝑳𝑭(𝝓𝑳𝑭) ∥) (4) 

 

Where ∥.∥ is the Euclidean distance. Finding the P(𝑥) function satisfying above equation is the core of SM. In this 

study, simple linear relation function was used as follow. In first step, we can calculate the correlation factor at two 

peak points. 

𝛟𝐋𝐅 = 𝒂𝝓𝑯𝑭 (5) 

 

For example, for cl max peak points, in case of low fidelity sample’s cl max is located Angle of attack 14, but in case 

of high fidelity sample’s cl max is located Angle of attack 10. 
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Figure 2 : SM example sample points 

With Eq. (5), and peak point locations (14 deg for low fidelity, 10 deg for high fidelity), we can calculate a correlation 

factor  𝒂  for cl max peak point. With this method, calculate correlation factor for two peak points. 

The second step is to extend the correlation factor to whole design space. Since each peak point is mapped, all points 

that are not mapped yet should be adjusted to match the peak point mapping result smoothly. This process is the process 

of compressing and stretching the input variables. As you can see above, for cl min peak point should move to -6 deg 

from -10 deg, for cl max peak point should move from 14 deg to 10 deg. In that means low fidelity samples points 

between -10 deg to 14 deg are should compressed. And the sample points at both ends (below -10 deg, upper 14 deg) 

should stretched. 

 

Figure 3 : SM example full mapping with                             Figure 4 : SM example result [5] 

Lagrange interpolation       

With two end points and peak points, Lagrange interpolation is used to link unmapped points to smoothly with mapped 

peak points. Full mapping was performed as above figure. In above figure, x axis are original input variables and y 

axis are mapped input variables. As you can see, peak points are well mapped from -10 deg to -6 deg and 14 deg to 10 

deg. And the other points are mapped smoothly. As you can see above right figure, low fidelity’s peak points are 

mapped well to location of high fidelity’s peak points. 

 

2.2 Variable Fidelity Modeling 

Variable Fidelity Modeling (VFM) is a kind of data fusion technique. It is a technique to produce high fidelity data by 

fusing various fidelity data. Generally, it takes a lot of time and effort to obtain high fidelity data. On the other hand, 

low fidelity data can be obtained relatively easily and quickly. The advantages of such high & low fidelity analysis are 

can be gathered through data fusion technique. Among data fusion method, the VFM is a method of obtaining data by 

combining the advantages of the precision of high fidelity analysis and fast time of low fidelity analysis. 
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VFM technique is a scaling based prediction technique. Scaling can be classified into three types. 

First, Additive scaling, assuming that high fidelity function is sum of low fidelity samples and scaling factor function 

γ̃(x) as below equation. 

�̃�𝒉𝒊𝒈𝒉(𝒙) = 𝒇𝒍𝒐𝒘(𝒙) +  �̃�(𝐱) (6) 

 

Second one is multiplicative scaling, assuming that high fidelity function is made of multiply of low fidelity and 

scaling factor function β̃(x). 

�̃�𝒉𝒊𝒈𝒉(𝒙) = �̃�(𝐱)𝒇𝒍𝒐𝒘(𝒙) (7) 

 

Last one is hybrid scaling, it is combined method of additive & multiplicative with weight factor w as below Eq. 

�̃�𝒉𝒊𝒈𝒉(𝒙) = 𝐰 �̃�(𝐱)𝒇𝒍𝒐𝒘(𝒙) + (𝟏 − 𝒘)( 𝒇𝒍𝒐𝒘(𝒙) +  �̃�(𝐱))(8) 

 

3. Data Fusion For 2D Airfoil Aerodynamic DB 

3.1 High & Low fidelity sample data for 2D Airfoil Aerodynamic DB 

The sample data to be used for the numerical examples of VFM and SM are shown below. 

 
(a)                                                                                        (b) 

 

 
(c) 

Figure 5 : Lift coefficient (a), Drag coefficient (b), Moment coefficient (c) input airfoil coefficient 
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For the numerical example, the Clark Y airfoil was selected which is relatively simple to analysis rather than the full 

size aircraft configuration. As low fidelity data, Java Foil which is based on the panel method was used. Because Java 

Foil is a tool consider compressibility correction according to Karman and Tsien, analysis result can be inaccurate at 

high mach number. Ansys Fluent, one of the computational fluid dynamic analysis tools commonly used to get 

aerodynamic data, was used for high fidelity data. 301x100 C type mesh with the RANS solver, Yplus 1.0, and Spalart 

Allmaras turbulence model was used. 

For low & high fidelity data, because of limitation of compressibility of Java foil, from mach 0.1 to 0.6 with 0.1 step, 

from Angle of Attack(AOA)  -20 deg to +20deg with 1 deg step data was used for prediction as represented wireframe 

surface in above figure. 

For high fidelity data, from mach 0.1 to 0.6 with 0.05 step, from AOA -20 deg to +20 deg with 2 deg step. 

For numerical validation of the data fusion method, only data of mach 0.1, 0.35 and 0.6 was used and represented dot 

in above figure. And it was used for comparison between prediction and full high fidelity data  

 

3.2 Variable Fidelity Modeling Airfoil Aerodynamic Data Fusion 

The results of the data fusion using VFM for the high fidelity data prediction with mach 0.1, 0.35, 0.6 and low fidelity 

data at mach from 0.1 to 0.6 are as shown below 

 

 

 

(a)                                                                                        (b) 

 

(c) 

Figure 6 : Lift coefficient (a), Drag coefficient (b), Moment coefficient (c) VFM prediction result 
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The Mean Absolute Error(MAE) and the maximum error are shown in the following table. Errors are calculated with 

VFM prediction and already known total CFD data. 

 

 

Table 1 : VFM Prediction Error 

 MAE Max. Error [%] 

C𝑙 7.65 × 10−2 0.2313 [14.4%] 

C𝑑 1.114 ×  10−2 0.0235 [17.4%] 

C𝑚 0.758 ×  10−2 0.0371 [127.2%] 

 

As you can see above table, the prediction result of list and drag coefficient are relatively better than moment coefficient. 

The size of the error is also important but should also pay attention to where the maximum error occurs. The part where 

the error mainly occurs is where the data has a peak. As shown in the figure below, the maximum prediction error 

occurs at max peak or min peak for cl and cm. 

 

 

Figure 7 : Cl (left), Cm (right) Max. Error 

Those kinds of error can be occurred when predicting scaling factor function with GP model which is one of the 

surrogate model that are the basis of VFM  

It can be assumed that this error is due to the difficulty in predicting scaling factor function with dramatic changes due 

to the nature of GP. Thus, to reduce these errors, the peak point can be matched first with SM, and then the VFM 

prediction can be performed. 

 

3.3 Space Mapping & Variable Fidelity prediction 

The above prediction using only VFM confirmed that the GP did not predict well for when the sample data has sudden 

changes. In order to reduce this error, after matching peak point with SM, VFM was performed as follow. 

 

Table 2 : SM + VFM prediction error 

 MAE Max. Error [%] 

C𝑙 5.563 ×  10−2 0.2674 [16.6%] 

C𝑑 0.709 × 10−2 0.0222 [8.8%] 

C𝑚  0.614 ×  10−2 0.0328 [112.5%] 
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In the case of cl, maximum error was increased, but MAE was decreased. In case of cd, maximum error and MAE was 

decreased. However, in case of cm, the MAE and maximum error are reduced, but the error is still quite large. It is too 

large to use as coefficient. The error was caused by the fact that the trend of the low fidelity data and high fidelity data 

do not match at all. The VFM method has a characteristic that it follows the trend of low fidelity data in prediction 

other than the region where high fidelity data exists. Due to the characteristics of the VFM, the prediction results are 

improved with SM-VFM, but it can be confirmed that is still insufficient. 

 

Table 3 : Error Comparison 

 VFM MAE SM-VFM MAE Improvement 

C𝑙 7.65 ×  10−2 5.563 ×  10−2 27.6 % 

C𝑑 1.114 ×  10−2 0.709 ×  10−2 36.4 % 

C𝑚 0.758 ×  10−2  0.614 ×  10−2 19 % 

 

 

 

(a)                                                                                                 (b) 

 

 
(c) 

Figure 8 :  Lift coefficient (a), Drag coefficient (b), Moment coefficient (c) SM-VFM prediction 
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4. Constructing Fighter Aircraft Aerodynamic DB 

4.1 Configuration of fighter aircraft 

To obtain aerodynamic data for data fusion, the F-16C fighter aircraft, which is considered data publicly available than 

others, was selected. The configuration data of F-16C was completed through CATIA, one of the 3D CAD (Computer 

Aided Design) programs, by referring to NASA Technical Paper (TP) 3355 [3] written in 1998. Based on NASA TR 

3355, 3D CAD model was created like below. 

 

Figure 9 : F-16C NASA report(left) [3], F-16C CAD model(right) 

4.2 High & Low fidelity sample data  

High and low fidelity data generation for data fusion was computed using Ansys Fluent and DATCOM (Digital Data 

Compendium) analysis tool. In case of CFD, from -20 deg to +50 deg was selected for the angle of attack for subsonic, 

and from -6 deg to +6 deg was selected for supersonic region. The range of angle of attack was selected within F-16C 

operation area which is referred from F-16C’s operational manual. In case of low fidelity data, subsonic and supersonic 

analysis data was obtained within range of -20 deg to +35 deg, because of the limitation of DATCOM analysis tool, 

the data of transonic (Mach 0.61 ~ Mach 1.09) region was excluded. 

High Fidelity Analysis used 3D CAD model of F-16C that was transformed into unstructured mesh using Ansys ICEM 

CFD. With Yplus = 1, there are 72 layer of Prism mesh that grow from the initial height at the wall surface into the far 

field with the mesh ratio of 1.12. 

 

 

Figure 10 : Ansys analysis Mesh 

The far field is made with spherical shape to ensure a considerable homogeneous distance from the far-field to the 

model for all required angle-of-attack and side-slip angle DOE of high-fidelity analysis. The total mesh for the full 3D 

model is 5,810,163. The numerical analysis is done with Ansys Fluent using  RANS analysis method. Double precision 

3D Density-based solver with kω-SST turbulence model is selected to solve both compressible and non-compressible 

cases of this analysis. 
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(a)                                                                                                 (b) 

 
(c) 

Figure 11 : Lift coefficient (a), Drag coefficient (b), Moment coefficient (c) input F16C coefficient 

4.2 Fighter aircraft aerodynamic Data Fusion 

It can be confirmed that all coefficients except the two points of the moment coefficient which CFD calculation error 

occurred are well predicted. Extrapolation in the subsonic region over angle of attack +35 deg and extrapolation in the 

transonic region are also physically predicted well. 

  

(a)                                                                                                     (b) 
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(c) 

Figure 12 : Lift coefficient (a), Drag coefficient (b), Moment coefficient (c) Fighter aircraft data fusion result 

 

5. Conclusion and Future plan 
In this study, Space Mapping and Variable Fidelity Modeling was performed with airfoil and F-16C data. With small 

amount of high fidelity data, predicted data was created. It is confirmed with Clark Y airfoil data that the SM and VFM 

combined prediction has lower prediction error in Mean Absolute Error than VFM only result. 

Using Clark Y airfoil data, In the prediction using VFM, MAE was 7.65 ×  10−2,  1.114 ×  10−2 and  0.758 ×  10−2, 

respectively, and the SM-VFM was performed. As result, the MAE decreased to 5.563 ×  10−2,  0.709 ×  10−2 and 

0.614 ×  10−2 which was 27.6%, 36.4%, 19% 

Using F-16C data, data fusion was performed. The number of F-16C data was 420 in low fidelity and 28 in high fidelity. 

Although there is no data to verify the prediction result of F-16C, numerical comparison was not made, but it was 

confirmed that physically correct data was obtained with only 6.6% of high fidelity data. 

Based on those kinds of method, we will construct full F-16C aerodynamic database including alpha, beta, mach sweep.  

With predicted aerodynamic database, flight simulation will be performing and compare the result with the certification 

regulations to see whether virtual flight certification is possible. 
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