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Abstract
This work introduces a novel satellite station-keeping (SK) strategy for geostationary Earth orbit using
DACEyPy, a Python-based open-source library leveraging differential algebra (DA). DACEyPy enables
fast software prototyping for high-order, feedback optimal control through polynomial approximations
of orbital dynamics, ensuring robustness and efficiency. The approach is tested on both energy-optimal
and fuel-optimal problems, adapting to perturbations in real time with minimal computation. DACEyPy
also broadens access to advanced DA methods, supporting mission analysis and control across diverse
aerospace applications through an open-source, flexible framework.

1. Introduction

The Geostationary Earth Orbit (GEO) is a distinct orbital zone characterized by circular, equatorial trajectories at an
altitude where a satellite’s orbital velocity matches the rotational speed of the Earth. This alignment allows the satellite
to remain stationary relative to a fixed point on the Earth’s surface, enabling ground-based antennas to maintain a
continuous and stable communication link. Consequently, GEO is especially advantageous for applications such as
weather monitoring and telecommunications.5 However, the increasing utilization of this orbital region has resulted in
congestion, making it one of the most tightly regulated areas in space due to its high strategic and commercial value.
As reported in,9 the number of objects occupying GEO is nearing 1000, prompting the Inter-Agency Space Debris
Coordination Committee to establish a designated protected region within GEO.14 Given this rapid growth, active
management of operational satellites in GEO is crucial to maintain their assigned positions and to ensure safe operation
alongside other spacecraft. To this end, operational GEO satellites execute a sequence of predefined maneuvers known
as Station-Keeping (SK). The objective of SK is to avoid collisions and to keep satellites within their allocated latitude
and longitude boundaries.23

1.1 State-of-the-art in Station Keeping Maneuvers Design

The design of Station-Keeping (SK) maneuvers is a well-established topic in the literature. Various approaches are
employed depending on the type of thrusters installed on the spacecraft. Impulsive SK, for instance, is a standard pro-
cedure in which maneuver plans are calculated on the ground and then transmitted to the satellite in orbit.22 Typically,
SK maneuvers are divided into North/South and East/West components to separately manage inclination and longitude
control.23 It is important to note that SK maneuvers are primarily intended to counteract minor orbital drifts. Therefore,
they do not demand high levels of thrust and can be effectively carried out using low-thrust electric propulsion systems.
When simplifying assumptions are used, analytical SK control laws can be obtained.24 To counteract the effect of
their poor accuracy, closed-loop control methods were developed in the past few decades.13 In17 the authors explored
a direct optimization method for geostationary SK formulated as a constrained linear quadratic optimal control prob-
lem. Alternatively,6 introduced a novel formulation of the equations of motion to design SK maneuvers using convex
optimization. Finally,11 reconstructs the actual motion of a GEO object using a linearized state-space representation,
providing a detailed analysis of the perturbing potentials across various reference frames. This framework enables the
formulation of a minimum-fuel geostationary SK problem by incorporating switching system theory and enforcing
operational constraints.10, 12

This paper will leverage the open source library DACEyPy to develop several optimization strategies for semi-
analytic SK design. The DACEyPy library, presented in detail in Sec. 2.2, is a Python implementation of Differential
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Algebra (DA), a technique that is used to operate in the computer environment directly on Taylor polynomials rather
than on floating point numbers. To begin, fundamental concepts regarding the adopted dynamics and DA are introduced
in Sec. 2. Then, Sec. 3 provides an overview of the methodology for the proposed SK strategy. Initially, a semi-
analytical method for the solution of the energy-optimal control law is introduced in Sec. 3.2. Subsequently, Sec. 3.3
extends the approach to retrieve a minimum fuel solution. The results are reported in Sec. 4. Finally, a summary of the
conclusions and suggestions for further developments are presented in 5.

2. Background Concepts and Materials

The GEO orbit is defined as circular and equatorial with a period of 24 h. To describe such dynamics, spherical
coordinates can be adopted thanks to the definition of the Earth Centered Earth Fixed (ECEF) frame. In this reference
frame one axis (K) points to the North Pole, while the other two rotate with the Earth, and are defined such that Î
follows the Greenwich Meridian, while Ĵ completes the frame.

Figure 1: Representation of the ECEF frame.

A set of spherical coordinates can be adopted to describe the motion: r is the distance of the satellite from the
Earth center; λ is the longitude of the satellite; while ϕ is the latitude. This set of coordinates allows to describe the
nominal unperturbed GEO motion as a fixed point (rGEO, λn, ϕn = 0◦). If perturbations are present (or a control
acceleration), their influence can be computed by taking the gradient of the total potential in spherical coordinates
as shown in literature.3 Defining the state x = [r λ ϕ v λ̇ ϕ̇] and a control acceleration vector u = [ur, uλ, uϕ], the
dynamics is formulated as:

ẍ = f(x,u, t) =



ṙ = ṙ

λ̇ = λ̇

ϕ̇ = ϕ̇

v̇ = −
µE

r2 + rϕ̇2 + r(λ̇ + ωE)2 cos ϕ2 + ap
r (r, λ, ϕ) + ur

˙̇λ = 2ϕ̇(λ̇ + ωE) tan ϕ − 2
v
r

(λ̇ + ωE) +
1

r cos ϕ
ap
λ(r, λ, ϕ) +

1
r cos ϕ

uλ

˙̇ϕ = −2
v
r
ϕ̇ − (λ̇ + ωE)2 sin ϕ cos ϕ +

1
r

ap
ϕ(r, λ, ϕ) +

1
r

uϕ

(1)

with µE representing Earth’s gravitational constant (i.e., 398600 km3/s2) and ap
i represent the perturbing accelerations

acting on each i-th coordinate. The drift from the center of the nominal GEO position is caused by such perturbation.
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This work includes the most crucial ones for this orbital regime:26 Earth’s nonhomogeneous mass distribution, third-
body effects caused by both Sun and Moon, and solar radiation pressure (SRP).

2.1 Basics of Differential Algebra

Differential Algebra (DA)19 is a framework dedicated to the manipulation —in a computer environment— of high-
order Taylor expansions directly, rather than of floating point numbers. In this algebra of polynomials, the operations
of integration, derivation, and polynomial inversion are well-defined operations.2

Consequently, if a sufficiently differentiable function f(x) of m variables is provided, DA can compute its Taylor
expansionM f (δx) up to an arbitrary order n with fixed effort by using DA variables (i.e., δx) to perturb the evaluation
point x. DA has several possible applications that can be found in literature, but in this work it was leveraged to obtain
polynomial maps of the flow of Ordinary Differential Equations (ODE)1 and Two-Point Boundary Value Problems
(TPBVP).15

Every mathematical process relying only on algebraic operations can be computed in DA environment. When
this is done the final outcome of the sequence of operations is the arbitrary order expansion of the flow of the process.
For example, the ODE ẋ = f (x, t) with set initial state x0 can be integrated using numerical methods to retrieve the
Taylor expansion of the ODE flow. In particular, the nth order Taylor expansion of the flowMk(δx0) is retrieved at each
integration step k if the initial state x0 is declared as a DA variable [x0] = x0 + δx0.

Berz and Makino18 and later DACE20 implemented a version of DA in different programming languages. In this
work, we leverage the latter to propose DACEyPy1, an open-source Python implementation of DACE which is publicly
available on GitHub. This library combines the computational efficiency of the DACE compiled core with Python’s
extensive ecosystem of open-source modules for added flexibility.

2.2 DACEyPy Features

This paper introduces DACEyPy, an open-source Python interface to a DA core written in C. This has been achieved by
building on the capabilities of the C++ interface (i.e., DACE) but enhancing its usability and extending its functionality
thanks to a more accessible programming language. An overview of the core components and additional features is
illustrated in Fig. 2.

Figure 2: Code scheme for DACEyPy.

Thanks to its Python-based implementation, DACEyPy offers improved accessibility for entry-level program-
mers and seamless integration with Python’s extensive ecosystem, particularly for postprocessing and visualization.
Unlike the C++ version, which relies on custom classes for tensor operations, DACEyPy uses standard numpy arrays,
eliminating the need for ad-hoc vector and matrix classes. This has been highlighted in Fig. 2: the base functionali-
ties (light blue background) are shared with the C++ implementation, while tensor operations (darker blue) are more
naturally supported in DACEyPy through native Python tools.

1https://github.com/giovannipurpura/daceypy.git
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Beyond ease of use, DACEyPy introduces new capabilities that not present in the original DACE. A key addition
is an object-oriented numerical integrator supporting multiple high-order Runge-Kutta schemes with adaptive step siz-
ing. This feature is especially valuable for custom implementations, as DA techniques require full access to the code to
correctly operate on DA objects. The integrator is highly configurable, allowing users to define custom dynamics, tol-
erances, and event-handling functions, and is also modular, supporting the use or development of alternative integration
methods.

DACEyPy also brings several advanced DA methods, drawn from current research, into a publicly available
framework. For instance, it includes multiple techniques to expand solutions of ODEs as functions of time, either via
a modular Picard-Lindeöf operator or through enhancements to the numerical integrator that allow expansion in both
initial and final times through appropriate scaling of the dynamics.1 Furthermore, it provides a flexible framework for
adaptive domain splitting (ADS),28 supporting user-defined applications and handling both temporal and state-space
splits automatically. All newly introduced features are accompanied by tutorials replicating published state-of-the-art
results. Fig. 3 shows and example application of ADS used to propagate initial uncertainty sets subject to standard
orbital dynamics.

Figure 3: Long term propagation of large initial set of orbital states using ADS.

In addition, another example in Fig. 4 shows how ADS can solve convergence issues for high-order polynomial
maps in extremely nonlinear conditions.

3. Station Keeping Approach

In this work, DA is used to implement a SK strategy for GEO orbit. A sequential concept to SK design, similar
to methods applied in other in-orbit operations such as hovering and inspection,21, 29 is proposed in this paper. The
method consists of a sequence of controlled arcs and uncontrolled drift phases with the aim of keeping a spacecraft
within its assigned GEO box. The free drifting phase (FD) owed to orbital perturbations begins from a target state xT

and lasts until the GEO slot is violated. Then, the satellite is controlled to a new target point x′T , from which it will be
subject to the next FD phase.

As a consequence, the problem can be split in two main building blocks. First, find the sequence of optimal target
points that maximize the free-drift time within the GEO slot, illustrated in Sec. 3.1. Secondly, solve the optimal control
problem to reach each of the selected target points in the sequence. This second step includes both an energy-optimal
solution (i.e., Sec. 3.2 as well as the expansion of the fuel-optimal one (i.e., Sec. 3.3).

3.1 Selection of target states

The objective of the first step of the optimization is to generate an optimal sequence of targets that reduce the total
number of control cycles to a minimum by maximizing the FD duration over a fixed planning horizon. To do so, an
iterative optimization procedure is setup.

The first iteration starts from the reference time of the analysis. To initialize the optimization, an analytical
initial guess of the state that provides maximum FD according to an approximated dynamic model is provided as in
Reference.7 Then, MATLAB® fmincon is used to adjust the optimal initial state of the FD. The optimization scheme
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Figure 4: ADS convergence compared to single high-order polynomial maps.

uses an event function to detect violation of the GEO slot boundaries and varies the initial conditions (within the
admissible region) to obtain the maximum feasible FD period tmax

FD and the optimal target state xT . After identifying
the target state, the reference time is shifted by tmax

FD + tC , where tC represents the control time, and the optimization
procedure is repeated.

Due to the time-varying nature of the perturbations, each optimization will produce a different target state, and
the procedure ends once the total time reaches the length of the planning time window tspan. While this approach implies
a significant computational burden, the optimization can be precomputed and stored for later use: this eliminates the
need for real-time optimization if the planning horizon is sufficiently long (e.g., 1 year).

This approach was applied for SK in a GEO slot characterized by λ and ϕ bands of 0.1◦, using a tspan of 1 year
and a tC of 1 day. The SK scenario is set to start on January 1st, 2023. In this case 14 control cycles were retrieved.
The duration of the numerical FD stages are reported in Table 5.

Figure 5: Length of FD and controlled phases from the optimized targets xT
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3.2 energy-optimal Control Solution

The first method to solve the optimal control problem needed during the control phases is an energy-optimal Control
Problem (EOP). Given the dynamical system described by Eqs. 1, the dynamics can be split in free and controlled
components as f(x, t,u) = f̂(x, t) + B(x)u. The objective function for this scenario is set to minimize the energy:

J =
1
2

∫ t f

t0
u⊤u dt (2)

The TPBVP that solves the EOP is obtained through the gradient of the Hamiltonian formulated using the costate
l following Reference.4 The set of ODEs defining the TPBVP with the prescribed initial and final conditions x(t0) = x0
and x(t f ) = xT becomes: 

ẋ = f̂(x, t) + B(x)u

l̇ = −∇f̂(x, t)⊤l − ∇(B(x)u)⊤l
u = −Bv

⊤(x)lv

(3)

where the subscript v represent the part of the vector/array associated only to the velocity components of the state. The
solution of this problem is achieved without iterations typical of direct shooting techniques through DA.

The control problem’s objective is to find l0 that matches matches all the constraints and boundary conditions.
Thanks to DA, an arbitrary order n Taylor series expansion of the solution of the optimal control problem with respect
to the initial and final states can be performed if the initial states and costates are initialized as DA variables:

[x0] = x0 + δx0 (4a)
[l0] = l0 + δl0 (4b)

Using the techniques described in Sec. 2.1, the solution at t f is expanded with respect to the starting conditions, as in.8[
x f

l f

]
=

(
x f

l f

)
+

(
Mx f

Ml f

) (
δx0
δl0

)
(5)

To obtain the variation of initial costates that results in a solution of the EOP, one can subtract the constant parts from
this map. Then, the components related to the final state can be extracted and augmented with the identity map Ix0 .
Afterwards, one can leverage the polynomial map inversion techniques offered natively by DA to obtain:(

δx0
δl0

)
=

(
Mx f

Ix0

)−1 (
δx f

δx0

)
(6)

Evaluating the second part of Eq. 6 on the initial and final state deviations it is possible to recover the correction δl0
that needs to be applied to the initial estimate of the costate to obtain the solution of the optimal control problem.

The method can be further improved using a multifidelity approach. For the given application scenario, it is
possible to separate the non-autonomous perturbations from the autonomous ones. The advantage of this approach is
that the polynomial expansion of time-independent problems can be precomputed at a high expansion order and can
be stored without the need to recompute it for every iteration. In this case, the geopotential dynamics is autonomous
and can therefore be used to generate a time-independent high-order polynomial map of the costate. To carry out
this expansion, the center of the reference GEO slot (i.e., xn = [rGEO, λn, ϕn, 0, 0, 0]) is chosen as an expansion point.
Starting from the ballistic solution characterized by the initial costate lbal

0 = 06×1, the flow can be expanded from the
initial epoch of the control tCi up to tC f = tCi + tC . However, this can also be approximated as t0 = 0 and t f = tC in
the autonomous case, and the solution can therefore be used at any time with a control time horizon of tC . Then, the
boundary constraints to match the target state xT are imposed as δx f = xT − x f , together with an initial perturbation
defined as δx0 = xCi − xn, where xCi contains the position and velocity of the satellites when the control starts. Using
these, one can immediately retrieve the initial costates that solve the autonomous problem δlGG

0 through Eq. 6.
Starting from the solution of the reference autonomous problem, one can further correct it to account for time-

varying elements of the dynamics (e.g., SRP and third-body). This correction can be executed at lower order since the
bulk of nonlinearity is carried by the geopotential perturbation. This choice in turn allows for a significant reduction in
computational burden. A first-order DA propagation of the dynamics is requeired from tCi to tC f . The initial conditions
of state and costate are also set as xn and lGG

0 to obtain the linear (L superscript) final state xL
f . Consequently, the 1st

order feedback of the overall (autonomous and non-autonomous) motion is given by:
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{
δxL

f
δlL

f

}
=

[
Φxx Φxl
Φlx Φll

] {
δxL

0
δlL

0

}
(7)

δlL
0 = Φ

−1
xl [δxL

f −ΦxxδxL
0 ] (8)

with δxL
f = xT − xL

f and δxL
0 = δx0. Since the propagation is only carried out linearly, the polynomial map notation of

Eq. 5 is here abandoned in favor of the classic State Transition Matrix (STM) notation Φ. The final control action can
be determined by:

l0 = lGG
0 + δl

L
0 (9)

3.3 Fuel-optimal Control Expansion

Once the energy-optimal solution is available, the reference solution of the corresponding fuel-optimal problem is
obtained via numerical continuation using the energy-optimal solution as an initial guess to ease convergence. Sub-
sequently, DA techniques are developed to build up a robust control trajectory capable of counteracting potential
uncertainties or additional perturbations that allow to avoid costly recomputation of optimal control solutions.

Following the EOP formulation in Sec. 3.2, the equations can be modified to deal with this different control
problem. Once the propulsion system has been characterized by its specific impulse Isp and its maximum thrust Tmax,
the spacecraft mass variation due to propellant consumption can be expressed with a 1st order ODE that is added to Eq.
1: 

ẋ = f(x, α̂, u, t) = f̃(x, t) +
Tmax

m
u B(x) α̂

ṁ = −
Tmax

Ispg0
u

(10)

where u is a throttle factor ∈ [0, 1], whereas the thrust direction is defined as α̂ = [αr, αλ, αϕ].
The formulation of the solution to this problem can be derived as in25 starting with the definition of the objective

function:

J =
Tmax

Ispg0

∫ tC f

tCi

u dt (11)

As in the previous section, this can be used to retrieve a TPBVP subject to initial and final constraints x(t0) = x0
and x(t f ) = xT but with the added transversality condition lm(t f ) = 0 since the final mass is unconstrained. The
optimality conditions are obtained with the Pontryagin Maximum Principle27 as:

α̂ = −
B⊤v (x) lv∥∥∥B⊤v (x)lv

∥∥∥ (12)

u = 0 i f ρ > 0
u = 1 i f ρ < 0

(13)

with switching function

ρ = 1 −
Ispg0

m
||B⊤v (x)lv|| − lm (14)

The solution to this problem gives rise to the standard bang-bang discontinuous structure of the control profile charac-
teristic of fuel-optimal problems. In this paper this solution is achieved numerically from the energy-optimal solution
through the continuation procedure presented in.16

When additional perturbations or uncertainties are present, the spacecraft deviates from the computed reference
trajectory. As a result of this deviation, the onboard numerical control law cannot be applied as originally planned,
and the solution would typically need to be recomputed. To avoid this extra step and instead determine a robust,
accurate, and optimal correction that can be implemented onboard, DA techniques can be employed once again. These
techniques provide the necessary adjustments to the initial costates and the switching times of the controls. This can
be attained by following the procedure outlined in,16 whose main steps we recall for convenience.

1. The states, costates, and first switching time are initialized as DA variables about [x0] = xCi+δx0, [l0] = lFOP
0 +δl0,

and [ts,1] = ts,1 + δts,1.
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2. The controlled dynamics are propagated according to the reference solution from tCi to [ts,1]: at the end of this
expansion, the polynomial map regarding the state (i.e., [x1] and [m1]) and costate (i.e., [l1] and [lm1 ]) at the first
switch are available as functions of the initialized DA variables. By substituting these maps in the switching
function of Eq. 14 its expansion can be obtained:

[ρ1] = 0 + δρ1 = 1 −
Ispg0

[m1]

∥∥∥Bv([x1])⊤[lv1 ]
∥∥∥ − [lm1 ] (15)

3. To retrieve the switching time correction as a function of initial state and costate variation it is possible to build
and invert the following map, while imposing the resulting switching condition is still satisfied as δρ1 = 0:


δρ1
δx0
δl0
δlm0

 =

Mρ1

Ix0

Il0
Ilm0



δx0
δl0
δlm0

δts,1

 (16)

4. Finally, extracting the last row of the inverse polynomial map it is possible to have:

[ts,1] = ts,1 + δts,1 = ts,1 +M
ρ1=0
ts,1

(δx0, δl0, δlm0 ) (17)

The same map can be substituted inside the expansion of state and costate to retrieve the expansion only as
function of initial states and costates variation [x1] = x1 +Mx1 (δx0, δl0, δlm0 ,M

ρ1=0
ts,1

(δx0, δl0, δlm0 )) and [l1] =
l1 +Ml1 (δx0, δl0, δlm0 ,M

ρ1=0
ts,1

(δx0, δl0, δlm0 )).

5. At this point, the procedure can restart from step 1, initializing the second control switching time as a DA variable
[ts,2] = ts,2 + δts,2 and propagating [x1] and [l1] at the previous switch from [ts,1] to [ts,2]. The process continues
for the whole bang-bang sequence until the last switching time [ts f ] is retrieved only as a function of the initial
states and costates:

ts,i = ts,i + Mρi=0(δx0, δl0, δlm0 ) (18)

6. The last segment of the sequence going from [ts f ] to tC f is expanded as in Step 2 to obtain [x f ] = x f +

Mx f (δx0, δl0, δlm0 ) and [l f ] = l f +Ml f (δx0, δl0, δlm0 ).

At this point, it is possible to build and invert the square extended polynomial map:

δx0
δx f

δlm f

 =

Ix0

Mx f

Mlm f


δx0
δl0
δlm0

 (19)

The initial guess of the costates can finally be obtained by substituting the boundary conditions δx f = [x f ] − xT and
δlm f = 0 in the inverse of this polynomial map.

4. Numerical Results

The numerical results obtained by running the energy-optimal multifidelity control solution and the fuel-optimal one
for 1 year of SK operations are reported here. The parameters adopted for the satellite are reported in Table 1.
The sequence of target points is selected according to the results of Sec. 3.1. First, the numerical exact solution is
obtained with a single shooting method implemented in Python and it is used as the benchmark. The results obtained
from the reference solution for 1 year of SK operations are reported in Fig. 6.
The box constraint is violated during the controlled arcs since path constraint are not imposed during control.
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Parameter Value
m [kg] 3000
As [m2] 100
Cr 1.5
λn [deg] 60 E
ϕn [deg] 0
rn [km] 42165.8
Isp [s] 3800
Tmax [N] 0.33

Table 1: Satellite properties

59.94 59.96 59.98 60 60.02 60.04 60.06 60.08

Longitude [deg]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

L
a

ti
tu

d
e

 [
d

e
g

]

Free drift Tracks Control Tracks End free drift End control Selected Target points

Figure 6: Groundtrack of the GEO satellite following the nominal numerical shooting solution.
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Figure 7: Target states matching error.

4.1 Energy-optimal Control Results

For the multifidelity approach, a 4th order DA expansion of the autonomous system dynamics is precomputed and
stored. The outcome of the application of this method is presented in Fig. 8. As can be better observed in Fig. 9, the
SK constraints are infringed by approximately 0.025◦ also on the western edge of the GEO assigned slot due to the
small but non-negligible error in final target matching reported in Fig. 7.
To reduce this violation, one can shorten the control time horizon at the cost of increased fuel consumption. Alterna-
tively, one can consider a safety factor in the GEO slot boundaries, which may cause a reduction in FD time, and may
consequently reduce the overall optimality of the strategy.

To conclude this section, an analysis on the time and fuel cost for these algorithms is presented. This analysis is
performed using Python on an Intel Core i7-1065G7 1.50 GHz, running Windows 11 Home 64 bit. Fig. 10 highlights
the efficiency of the multifidelity method in obtaining a solution in a timely fashion.
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Figure 8: Groundtrack of the GEO satellite adopting the multifidelity method for 1 year of SK.

Figure 9: Longitude evolution for the multifidelity energy-optimal method.

The multifidelity control approach is much faster than the numerical shooting reference. In fact, the time-independent
map can be precomputed and used onboard for every control cycle (i.e., the time for its computation is not included in
this figure). It is clear from Fig. 10 that the application of the high-order autonomous map together with the integration
and evaluation of the STM takes on average less than one second. The total computation cost is reported together with
the mass and ∆v budget for 1 year SK in Table 2.

Shooting Multifidelity
Mb [kg] 5.586 5.858
∆v [m/s] 69.404 72.787

Total Computational Time[s] 24.094 12.217

Table 2: Total costs metrics for 1 year of SK operations

4.2 Fuel-optimal Control Results

The solution of the fuel-optimal control problem is numerically intensive; therefore, it is desirable to do it as rarely as
possible. In case a fuel-optimal reference guidance is obtained with a numerical continuation method presented in Sec.
3.3, expanding it with DA allows some flexibility to variations of initial conditions without having to recompute the
reference.

The entire 1 year SK strategy described in the previous section is translated to fuel-optimal structure using
the method described in.16 The fuel-optimal numerical reference retrieves a total mass budget of 4.893 kg/year, and a
cumulative ∆v of 60.846 m/s/year. As expected, both of these figures are below those obtained using the energy-optimal
control. Every cycle has its own switching sequence with different number of commutations and thrust duration, as can
be seen in Fig. 11.
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Figure 11: Control Thrust in a Year SK using energy-optimal control (left) and fuel-optimal control (right).

Then, each of the 14 fuel-optimal control strategies is expanded to the second order according to the procedure
described in Sec. 3.3. These polynomial maps can help to obtain a robust controller capable of reacting to small initial
state variation while enforcing the bang-bang control structure typical of fuel-optimal problems. Secondly, they allow
for quick estimation of the impact of variations in key system parameters. For example, it would be possible to use this
approach to investigate the impact of varying solar reflection coefficient.

In this work, this method was used to test the effect of navigation uncertainties. For each initial time of the
controlled phases during the SK window, a diagonal position covariance matrix Pi is generated using a range of standard
deviations for σr, σϕ and σl. 100 random samples are then taken from these distributions as initial state variations
δx0 = δxCi for each maneuver phase. These are substituted in the control adaptation equation described in Sec. 3.3 to
obtain corrected controls. For every possible deviation from the initial nominal point, a new optimal bang-bang profile
arises. Fig. 12 highlights how the throttle u changes for different samples in the same control phase.

Then, it is possible to obtain an envelope of fuel mass for each maneuver. The results of this sensitivity analysis
are presented in Table 3.

5. Conclusions

This paper presented an open-source software DACEyPy and its application to solve the SK problem in GEO. The
SK strategy outlined in this paper was designed to counteract drifts resulting from perturbing forces affecting the
GEO satellites. The analysis focuses on the most impactful disturbance sources typical of this regime. The proposed
algorithm improves fuel efficiency by reducing the frequency of control maneuvers and increasing the duration of
uncontrolled motion, taking advantage of natural FD dynamics.

The algorithm is structured into two main parts. The first one, presented in Sec. 3.1, focuses on computing
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Figure 12: Control Profile Variation
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σϕ = σl = 0.01◦ 1.48% 0.29% 0.19%

σϕ = σl = 0.005◦ 0.93% 0.20% 0.11%

Table 3: Fuel mass variation for 1 year SK operations assuming different uncertainty levels.

optimized targets that define an overall optimal strategy for long SK durations. In the second one, optimal control
solutions to both energy- and fuel-optimal problems are described. For the solution of the energy-optimal problem, a
multifidelity approach is employed, using a high-order map of the autonomous dynamics that is precomputed and stored
for more efficient use. Whenever necessary, a linear correction term accounting for non-autonomous dynamics can be
computed directly on the satellite. However, the fuel-optimal solution is based on a numerical continuation scheme
starting from the energy-optimal solution. Then, this reference solution can be expanded using a DA technique that
expresses switching times as a function of initial state variations. This feature helps quantify the impact of modeling
inaccuracies or navigation errors on the total SK mass budget, enhancing the overall reliability of SK operations.

Despite promising results, the proposed method still presents some issues. One of the main problems is the
violation of the SK boundaries for the multifidelity method, which stems from the absence of path constraints in the
optimal control problem and from the lack of accuracy in the solution. Also, the methodology developed in this work
could be translated to other similar but interesting orbital regimes, such as the aerostationary orbit of Mars.
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