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Abstract

Traditional centralized operations struggle to scale with the complexity of large satellite constellations.
This work presents a decentralized multi-agent deep reinforcement learning approach for operating an
autonomous Space Situational Awareness constellation of 20 satellites. Four reward functions, with differ-
ent reward scaling factors, are evaluated using a mission goal term across three coordination topologies.
Developed strategies obtain similar or even outperform centralized rule-based and Mixed Integer Program-
ming benchmarks in tested scenarios, and generalize across coordination topologies despite being trained
in fully decentralized environments. Finally, space hardware inference confirms feasibility in modern sys-
tems, with execution times in the microsecond range.

1. Introduction

Managing large constellations is an increasingly challenging problem, due to the inherent complexity of space systems,
the growth in constellation size - with up to hundreds or thousands of participants -, and the rapidly growing amount
of objects and space debris in low Earth orbit (LEO)' . As a group of satellites working together as a system, a
constellation needs to be managed in a way that ensures all of its participants have their tasks correctly scheduled and
that they perform them properly. Spacecraft operators are responsible for this, as well as making sure that participants
do not have faults or resource problems, while preventing them from colliding with other objects or debris. Due to
these complex responsibilities, even in highly automated constellations like OneWeb and Starlink, satellite and flight
dynamics operators frequently face high workloads when managing a large number of assets>> . This highlights the
need for further techniques and methods to improve the coordination and management of large, distributed systems.
Task scheduling of such systems is very complex due to the number of objects in orbit and the increasing sizes of
constellations. There have been several proposals to address this issue using automated methods. These can be split
into two main categories, namely ground and onboard automation. Offline building of the tasks using methods like
Mixed Integer Programming (MIP), Ruled-Based or Machine Learning (ML) and then uplinking them through ground
stations is a common approach to ground automation* , while the on-board approach, which is the chosen one in this
work, gives satellites themselves decision-making capabilities to be able to evaluate their surrounding environment and
current state to perform their task scheduling® . Enhancing autonomy onboard enables these types of spacecraft to
take actions without the need to wait for ground commands, allowing quicker reactions to the changing environment of
Earth’s orbit. By allowing each satellite to choose between different operational modes autonomously, taking available
onboard information into account, task scheduling can be planned and executed in real-time.

Task and spacecraft planning of resource-constrained multi-satellites has traditionally been a centralized, ground-based
process. Spacecraft controllers have to prepare single schedules that dictate the actions of every satellite. This approach
is reaching its limits when handling hundreds of satellites, when the use of exact methods or combinatorial optimization
algorithms degrades the outcome of the missions®® .

This decentralized model of information distribution, where each satellite has partial and limited information about its
surrounding environment, can be modeled as a multi-agent reinforcement learning (MARL) scenario. MARL is based
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on Reinforcement Learning (RL), where agents (the satellites in our case) try actions in an environment and receive
rewards based on outcomes, learning optimal decision policies by trying to maximize these rewards over time® . The
training process is computationally heavy and complex due to the need to simulate the environment, the interactions
between satellites and update the policies themselves; however, the produced policies are relatively lightweight to
execute. Therefore, these policies can be inferred in resource-constrained systems, such as constellations of CubeSats,
running in a closed loop with few computational resources.

In the context of Space Situational Awareness (SSA), this work focuses on Space Surveillance and Tracking (SST),
since opportunistic detection in these environments can greatly benefit from a more reactive and responsive approach
to task scheduling. We formulate the constellation management problem as a group of observer small satellites, acting
as agents, equipped with imaging and inter-satellite link (ISL) capabilities. Their main objective is to take images of
other LEO orbiting target satellites and spread the information among them efficiently and collaboratively to enhance
SSA operations. This is modeled using a decentralized partially observable Markov Decision Process (Dec-POMDP)
framework, which has been widely studied in the area of MARL to formulate environments® .

The objective of this work is the development of a method that will allow large numbers of agents in LEO constellations
to interact and complete a set of SSA mission tasks in an efficient manner with the use of MARL. We analyze the
influence of different reward function terms and scaling factors in order to achieve better mission results. The main
contributions of this paper are as follows:

e We formulate the satellite tasking problem as a collaborative Dec-POMDP, where each agent is equipped with
inter-satellite links, power, storage, and specific imaging capabilities, and can choose between three operating
modes (idle, communicate, observe) depending on their current state.

o We explore how to choose the scale and components of the reward function, thus improving the effectiveness of
reward shaping in space missions.

e We evaluate the extensibility of our formulation across different levels of coordination topologies.

The structure of this paper is organized as follows. In Section 2, a brief overview of related studies is presented
alongside their importance. Section 3 provides a theoretical background to the RL methodology followed and the
simulation and reward function setup. Then, Section 4 describes our simulation results and provides insights on them.
Lastly, conclusions and suggestions for further improvements are presented in Section 5.

2. Related Work

Traditional satellite constellation management relies on centralized ground-based operations using research methods
that can be categorized into exact and non-exact approaches. For small-scale problems, classical exact methods like
MIP and Constraint Programming provide optimal solutions but lack scalability for large constellations'®!" . Non-
exact classical methods, including heuristic approaches such as Greedy Algorithm, Genetic Algorithms, Simulated
Annealing, and metaheuristics like Tabu Search and Ant Colony Optimization'? , offer better scalability at the cost of
optimality guarantees. Recent research has explored learning based techniques and RL for satellite scheduling, with
studies like the one from Herrmann et al.!* demonstrating competitive or superior performance compared to traditional
methods, though most of these approaches remain centralized and require ground-based control.

The scalability limitations of centralized control have motivated the development of Multi-Agent Systems (MAS),
where individual satellites act as autonomous agents capable of distributed decision-making'# . MAS approaches
can be broadly classified into centralized methods (with a central authority coordinating all agents) and decentralized
methods (where agents make independent decisions based on local information). Within this framework, market-based
approaches like Contract Net Protocols and Multi-Agent Reinforcement Learning (MARL) have emerged as promising
solutions. Unlike single-agent RL, MARL addresses the coordination of multiple learning agents, where each satellite
learns optimal policies while adapting to the concurrent learning of other agents in the system® . Zilberstein et al.®
employ constraint-based heuristics for scalable decentralized scheduling, while Messina et al.!> present consensus-
based task allocation methods. However, most existing MARL applications in satellite systems face limitations in
handling resource constraints and scaling beyond fixed constellation parameters.

3. Method

Our approach aims to decentralize decision-making and scheduling within the management of large constellations,
leveraging the capabilities of Deep Reinforcement Learning (DRL), which is the branch of RL that builds models
on deep neural networks (DNNs). This decentralized approach eliminates the need for a centralized model, allowing
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individual satellites to autonomously adapt and optimize their operations in real-time. By utilizing DRL, each satellite
in the network can learn and make decisions onboard based on local observations and interactions with others, leading
to a more flexible and resilient system.

Our problem space consists of a LEO constellation of small satellites, acting as collaborative agents, equipped with
imaging and inter-satellite link (ISL) capabilities. Their environment is populated with other orbiting objects in their
vicinity. Their main objective is to locate and track these objects and spread the collected information among them
to improve SSA. This aims to provide better outcome information and monitoring of space objects while optimizing
the use of resources within the constellation. This optimization of shared resources and onboard capabilities is espe-
cially interesting in small satellites with limited onboard resources that perform missions with opportunistic events.
Moreover, three coordination configurations are implemented in the simulation, depicted in Figure 1.
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Figure 1: Comparison of Satellite Coordination Models

3.1 RL Framework

Markov Decision Processes (MDPs)'® assume full observability, meaning agents have access to the complete state
of the environment. However, in many practical scenarios, including satellite operations, agents often operate under
partial observability, where they cannot access all relevant state information. This leads to the use of Partially Ob-
servable Markov Decision Processes (POMDP) problem space formulations, which are extensions of MDP designed
to handle situations where the agent must make decisions based on incomplete or uncertain information, described as
observations.

In a POMDP, the agent maintains a belief state, b(s), which is a probability distribution over possible states based on
the history of actions and observations. The objective is to find a policy 7 : B — A that maximizes the expected
cumulative reward, where B is the set of all possible belief states, and A the set of actions chosen.

In the context of autonomous constellation operations, each satellite must operate with its own information about the
environment. For instance, a satellite may not always have the same information or current status of another satellite
due to limited communication windows or sensor constraints. This scenario fits well within the decentralized partially
observable Markov Decision Process (Dec-POMDP) framework, as it inherently handles the challenges of partial
observability and the need for decentralized decision-making.

Dec-POMDPs account for the fact that each agent has only partial information and must make decisions that consider
the potential actions of other agents. This adds layers of complexity due to the need for coordination and the increased
computational challenges, as Dec-POMDPs are known to be of high computational complexity (2"0“))17 .

A multi-agent Dec-POMDP is formally defined by the tuple listed below (N, S, {A;}, P, {R;},v,{0;}, Z), to which we
include targets (T') for completeness. Notably, the transition probability function (P), and the observation probability
function (Z) are key theoretical components. While not explicitly modeled as probability distributions, they are embed-
ded in the simulation logic, as the probability of state and observation transitions is affected by simulation propagations.
The discount factor () is a predefined parameter that influences the weighting of future rewards in the cumulative re-
ward calculation, encouraging long-term planning. RL algorithms implicitly handle these elements during training, so
that the transition probabilities are effectively learned by the agent through interactions with the environment, as the
agent updates its policy based on observed state transitions and rewards. Each component of this tuple plays a specific
role in our satellite coordination system:

e N represents the number of agents in the system, corresponding to the observer satellites. For our case, 20 agents
were used.
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T denotes the number of objects in orbit, acting as target satellites in the simulation. In our setup, 100 target
satellites were simulated.

e S is the set of possible states of the environment, including all relevant variables such as satellite positions,
velocities, and communication statuses.

e {A;} denotes the set of actions available to each agent i. There are three available actions per timestep per agent.
These actions account for the activation of a flight mode, emulating a real-time scheduling process. The first
option represents idle mode, the second one tries to propagate the information throughout the communication
mode, and the last one accounts for activation of the payload, named observation mode.

e {R;} is the reward function for each agent i, providing feedback based on the actions taken and their outcomes.
This work presents four different reward functions, designed to align with mission objectives by associating
rewards with communicating with other observers or obtaining high-quality images of targets.

e {O;} represents the set of observations available to each agent i, as a subset of S, which includes partial informa-
tion about the state of other satellites and targets depending on their interactions.

e P is the transition probability function, describing the probability of moving from one state to another given the
current state and the actions of all agents. This encapsulates the physical dynamics of the satellites and their
interactions.

e v is the discount factor, reflecting the importance of future rewards compared to immediate ones. A higher value
emphasizes long-term planning. The chosen values after hyperparameter tuning range from 0.966 to 0.98, as we
try to encourage mission accomplishment in the long run.

e Z is the observation probability function, detailing the likelihood of receiving a particular observation given the
state and actions. This accounts for the partial and uncertain nature of information in the system.

The objective here is to find a set of policies {r;} (Equation 1) that maximize the expected cumulative reward for all
agents:

oo N
() = argmax | > ¥ > RiCsioaio) | i) (M

t=0 i=1

The observations gathered by each agent are summarized in Table 1. The actual availability of each parameter depends
on each agent’s current communications and observations. Therefore, these observations are dynamic and partial,
following the problem space formulation.

Table 1: Observation space parameters available to each Observer Satellite

Parameter Description Data Type
observer_satellites Own and contacted observer satellites orbital parameters ~Continuous
band Own communication band identifier (1-5) Discrete
availability Own availability status Binary
target_satellites Tracked target satellites’ position and velocity Continuous
battery Battery level of observers Continuous
storage Storage level of observers Continuous
observation_ status Observation status of target satellites Discrete
communication_status Communication status between observers Binary

Making use of this framework, we leverage centrally trained, decentralized executed agents for real-time decision-
making onboard the satellites studying the effect of four different reward functions, as presented in Section 3.3, with
actions taken only based on limited, rapidly changing information.

3.2 Simulation

This part is fundamental for accurately simulating the physical and functional attributes of the environment. As men-
tioned in previous sections, there are two primary types of satellites participating in our custom simulation: observer
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satellites, responsible for gathering data, observations, and making decisions based on them, and target satellites, which
serve as orbiting space objects.

The observation status of the targets comprises undetected (0), detected (1), being observed (2), and observed (3).
The final mission accomplishment is based on the average statuses that each agent has on the targets. In short, a
perfect mission score is a mission in which all observer satellites have all targets marked as observed. This can be
achieved either by direct observation or by obtaining the information via communication from another observer of the
constellation. In contrast, a simulation with all targets marked as undetected has a 0% mission score.

Observer satellites are deployed using a Walker-Delta constellation with 5 orbital planes, with an orbit height between
700 km and 800 km, and 56° of inclination. They are initialized in the simulations with arbitrary battery and storage
levels from 20% to 70%. We assume a small battery, with 80 Wh, and different power consumption rates for each
operational mode. For the storage system, we assume a total storage of 32 GB, and the size of captured data and
messages sent varies depending on the time per observation or the amount of novel information they share. In Table 2,
a short summary of the satellite configuration can be found.

Table 2: Observer Satellites Parameters

Parameter Value/Range Units
Orbital Parameters
Semi-major axis 7070-7170 km
Inclination 56.0 degrees
Eccentricity 0.001 -
Orbital planes 5 -
RAAN Distributed by plane  degrees
Argument of perigee 0.0 degrees
Power System
Maximum energy storage 80 Wh
Solar panel area 0.1 m?
Solar panel efficiency 0.3 -
Power consumption (standby) 7.5 W
Power consumption (communication) 9 \%%
Power consumption (observation) 19 W
Data & Communication
Maximum data storage capacity 32 GB
Observation data rate 1 Mbits/s
Communication bands 1-5¢ -
Optical Payload
Aperture diameter 0.09 m
Field of view 10 degrees

“Depending on coordination type

Regarding targets, they have orbit heights ranging from 600 km to 900 km, with randomized orbital parameters around
Sun-Synchronous Orbit (SSO), where the highest density of satellites and debris is for these orbits!® , but without
following any patterns or specific formation. They have an equivalent size of 1 m. A summary of the initial target
parameters can be found in Table 3.

Table 3: Target Satellites Parameters
Parameter Value/Range  Units

Orbital Parameters
Semi-major axis 6 970 -7 270 km

Inclination SSO ¢ degrees
Eccentricity 0-0.001 -

RAAN 0-180 degrees
True anomaly 0-360 degrees

“4With random variation between +5°

To ensure realistic and reliable simulation outcomes, the orbit propagation has been validated against the Astropy
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library'® . Communication and observation procedures are checked using precomputed positions and attitudes to verify
that these actions only take place in the correct situations, emulating situations in the border limits of ranges in which
they can take place.

Observer satellites are equipped with an optical payload featuring a 0.09 m aperture diameter, suitable for small satellite
platforms including CubeSats, and a 10° field of view, as depicted in Figure 2. This configuration enables detection of
1-meter objects up to a maximum range determined by the diffraction limit. The maximum observable distance for a
given object size, derived from the Rayleigh criterion, is:

a-d

Dmx:—
2442

)
where Dy« is the maximum observable distance in meters, a is the object size in meters, d is the aperture diameter
in meters, and A is the wavelength of light in meters. Using a wavelength of 700 nm (upper limit of visible light), the
maximum observable distance of 52.7 km is obtained for 1-meter targets.

Figure 2: Field of view of observer satellites.

During observing mode activation, the satellite’s power consumption increases to 19 W. The system scans all targets
within the 10° field of view, applying the 52.7 km detection range constraint. Among detectable targets, the system
selects the one with optimal pointing accuracy to maximize observation quality. The resulting data is stored locally
and flagged for constellation-wide sharing during future communication opportunities. The observation logic is sum-
marized in Algorithm 1.

Algorithm 1: Observation Logic

1: Initialize steps < 0

2: Get power_consumption « power_consumption_rates["observation"]

3: Initialize target « -1, best_pointing_accuracy « 0

4: for each target in targets do

5. if already observed target then

6: continue {Skip already observed targets}

7 end if

8: Calculate distance « distance_between(target, time_step)

9:  Calculate pointing_accuracy « evaluate_pointing_accuracy(target, time_step)
10:  if distance < maximum distance and pointing_accuracy > best_pointing_accuracy then
11: best_pointing_accuracy « pointing_accuracy
12: best_target « target
13:  end if
14: end for
15: if best_target > O then
16:  Observe the best target
17:  Update internal matrices
18:  Update Battery level
19:  Calculate reward("observation", observer, observation_result)

20:  reward < reward("observation", observer, observation_result)
21: else

22:  No observable targets

23:  reward « 0

24: end if
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Communications on the observers emulate UHF omnidirectional antennas, with a maximum range based on the ca-
pabilities of the components stated in Table 2, without attitude dynamics nor Doppler effect. An effective data rate
is computed based on antenna and transceiver powers, gains, and losses, assuming QPSK modulation, Bit Error Rate
(BER), and Free Space Loss (FSL) effects®® . For a communication to be successful, the transmitter has to activate the
communication mode, and the receiver has to be within range and in idle mode. If a receiver observer is processing an
observation or not available, the communication fails.

Communication bands can also be assigned to each observer, allowing a way of creating different network topologies
in the simulation. The are three coordination topologies implemented in the simulator: centralized, fully decentralized,
and constrained decentralized. In the centralized version, one random observer is initialized as a central node, being
the only one in the constellation able to propagate the information it receives from the rest of the constellation. For the
fully decentralized coordination, every node can communicate with each other, while for the constrained decentralized
configuration, satellites can only communicate between them if they share the same communication band 4 alternatives.
Moreover, communication can take place during more than one single timestep, accounting for large-sized packages
being sent. If the communication is interrupted or the signal is lost, the communication is assumed to have failed. A
pseudo-code formulation of the communication is presented in Algorithm 2.

Algorithm 2: Communication Process

. Initialize communication_done « False, max_steps « 0
. Get power_consumption < power_consumption_rates["communication"]
. Calculate data_to_transmit « current orbital parameters + contacted observers + observed targets
. for each other_observer in observer_satellites do
if other_observer == observer then
continue {Skip self communication}
end if
communication_done « False
steps « 0
10:  data_transmitted_this_timestep < 0
11:  total_data_transmitted < O
12:  while not communication_done and total_data_transmitted < data_to_transmit do

R A A S ol > s

13: Try propagate_information(i, other_observer, j, ...)

14: total_data_transmitted += data_transmitted

15: if communication_done or data_transmitted_this_timestep == 0 then
16: Update internal matrices

17: break

18: end if

19:  end while

20:  max_steps < max(steps, max_steps)

21: end for

22: Calculate reward("communication”, observer, communication_result)

23: reward « reward_function.calculate_reward("communication", observer, communication_result)
24: Update internal matrices

25: Update Battery level

3.3 Reward Functions

The success of the RL techniques heavily depends on the effective reward function (RF) design. This work implements
a Proximal Policy Optimization (PPO) algorithm with four different reward functions to determine which type leads
to better learning policies. They are designed taking into account the resources and goals of the constellation, each
of them having three main components: resources, actions, and mission goal. Additionally, a sensitivity analysis of
scaling factors of the mission goal term is carried out to see the effect on final mission results.

Presented in Table 4 is a list of parameters defined to shape the reward functions. The scaling factor values are adjusted
as suggested in literature®?! | so that the total return per agent has an order of magnitude not too small for gradients to
be significant enough, nor too big to avoid unstable behaviours.

In all presented cases, a common evaluation of the resources and the direct consequences of actions is made using the
terms in Equations 3 and 4:
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Table 4: Observation and Reward Function Parameters

Parameter Description

ot Observation at time ¢ for observer i
al Action at time ¢ for observer i

M;; Observation status of target j by observer i
T Total number of targets
o General reward scaling factor
k Resource consumption penalty factor

Dstandby Standby penalty

o) Communication success reward factor

Rmax Communication reward cap
U Failed action penalty factor

Fobs Fixed observation reward
A Quality of observation reward factor
E Energy level (from observations of)
S Storage level (from observations o')

Airansmitted Data transmitted (from observations oi)
Sensitivity Analysis

a Scaling Factor for mission state bonus

Resource Penalty:

i Emax - Eavailable Smax - Savailable
Rresource(oi) = _k( + 3)
Emax S max
Action-specific Rewards:

— Pstandby if ai = Standby
min(o - dyansmitted> Rmax)  if @@ = communication, successful

Raction(@;) = { —u if a! = communication, failed 4)
Tobs + A - Quality if al = observation, successful
- if @’ = observation, failed

To account for resource utilization and to encourage efficient energy and storage management, a proportional penalty
is given based on available resources. The communications reward is proportional to the amount of data sent, up to a
maximum reward cap. The observations are evaluated based on the quality of the observation, plus a small fixed reward
for each one.

In addition to the resource and action-specific rewards, the four reward functions implement an additional term to
evaluate the mission goal, as can be seen in Equation 5. The first and second reward function variations can be seen
as individual evaluations for the cooperative constellation mission, taking only individual observations into account
(Equations 6, 7), while the third and fourth reward functions evaluate the performance based on the collective achieve-
ments of the whole constellation (Equations 8, 9). Moreover, each pair of reward functions (1 - 2 and 3 - 4) has positive
and negative variations of both the individual and collective reward function approaches, resulting in a total of four
variations.

R} (0}, @}, M) = Riesource(0}) + Raciion(a}) £ Ruigsion(M) )
3.3.1 Reward Function 1: Individual Positive Reinforcement

Positive rewards for monitored targets based on individual observation matrices:

Poi i i i tj: Mi,; > O}l
RI(OZ, a;, Mi,j) =0 Rresource(oz) + Raction(af) +a- f (6)
3.3.2 Reward Function 2: Individual Negative Reinforcement
Negative rewards for undetected targets based on individual observation matrices:
S ‘ . [{j: M;; =0}
Rlz(oia a:, Mi,j) =0 [Rresource(oé) + Raction(a;) —a- + 7
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3.3.3 Reward Function 3: Collective Positive Reinforcement

Individual terms for resources and actions, plus a positive global collective mission goal term based on all observation
status matrices:
Rl3(0;7 a;a Mi,j) =0 [Rresource(oé) + Raction(a;) ta- H] s dist Mi,j = 3”] (8)

3.3.4 Reward Function 4: Collective Negative Reinforcement

Individual terms for resources and actions, plus a positive global collective mission goal term based on all observation
status matrices:
RZ(O;’ a;’ Mi,j) =0 [Rresource(oi) + Raclion(a;) —a- |{] 2 Vi, Mi,j * 3”] C))

To assess the effect of the bonus parameters on the final mission goal, « is varied to perform a sensitivity analysis
on the scaling factor of the mission bonus term. «@ can be seen as the weight of this mission term compared to the
resources and actions’ rewards. Six « values are explored: [0,0.1,0.5, 1,2, 5], with a value of 0 assigning no reward
for mission progression, 1 corresponding to the mission term having the same importance as resources and immediate
actions terms, and bigger values of 2 and 5 giving more relative weight to the final mission goal.

4. Results

To evaluate the performance of the proposed RL-based approach, two deterministic benchmark policies are imple-
mented as comparison baselines. These benchmark policies operate as centralized methods with perfect information
access, having complete knowledge of all system states, including battery levels, storage capacities, target positions,
and communication statuses across the entire constellation. This contrasts with the RL agents that operate under partial
observability and decentralized decision-making. The rule-based policy implements a hierarchical decision-making
strategy using predefined thresholds for battery and storage levels. This policy prioritizes energy conservation when
battery levels fall below 30%, encourages communication when storage exceeds 70%, and promotes observation when
battery levels are high and storage is low. The Mixed Integer Programming (MIP) policy formulates the action selection
as an optimization problem that maximizes expected utility while respecting resource constraints. Due to computational
complexity, this implementation uses a simplified approach with linear programming relaxation as a heuristic, calcu-
lating utilities for idle, communication, and observation actions based on the current system state and selecting the
action with the highest utility. Both benchmark policies operate using the same three-action space as the RL agents
(idle, communicate, observe) and are evaluated across all coordination configurations to provide comprehensive per-
formance comparisons against the learned policies.

RL trainings were carried out using 5 randomization seeds for 100 iterations for each of the 4 cases, with 6 different &
scaling factors ranging from O to 5, in the fully decentralized coordination environment. Each one of the 120 experiment
variations used over 30 M agent steps (more than 1.6 M environment steps) to train the policies. In other related works,
50 M training steps were used in their PPO policy’ . Due to the number of experiments carried out, the time taken per
iteration in our simulator, and the computing time limitations of the service provider, the limitation of 100 iterations and
5 seeds per run was chosen. Figure 3 depicts the results of the training, displaying the average value and deviations of
the 5 different training seeds for each case. Here, the complexity of reward function design can be seen by noticing that
directly increasing the scaling factor does not necessarily lead to higher returns, with « values of 0.1 and 1.0 reaching
the highest rewards during training instead of the 2.0 and 5.0 cases.

Results summarized in Figure 4 show the evaluation of 15 simulations per coordination topology, scaling factor, and
reward function type, using different seeds from the training ones. For all experiments, the seed with the greatest
returns in training is the one chosen. Mission accomplishment is calculated based on the average observation status of
targets among all agents, thus accounting for both the observation and the communication performance. The results
demonstrate a hierarchy across coordination scenarios: centralized coordination achieves mission accomplishment
rates higher than 60% for most cases, reaching values of up to 100%; constrained decentralized coordination shows
performances between 35-75%, while fully decentralized coordination drops to 30-45% for most cases.

A striking observation from the trained policies is their superior performance when deployed in coordination scenar-
ios different from the fully decentralized environment in which they were trained. For instance, policies trained in
fully decentralized coordination achieve mission accomplishment rates 1.2-2x higher when deployed in centralized
coordination, with some configurations reaching performance levels comparable to or exceeding the benchmark exact
methods. This transfer learning capability suggests that the RL agents develop fundamental coordination strategies
that are robust across different network topologies. The Individual Positive reward function demonstrates particular ef-
fectiveness in this cross-deployment scenario, maintaining high performance across all coordination levels for a=1.0.
From their side, the benchmark methods, while maintaining consistent performance across coordination scenarios, are
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Table 5: PPO Algorithm Configuration Summary

Parameter Value
Learning Rate (Ir) 0.0001-0.0002
Discount Factor (y) 0.966-0.98
Train Batch Size 4096
Minibatch Size 256
Number of Epochs 30
Rollout Fragment Length 128
Framework PyTorch
Hidden Layers [256, 256]
Activation Function tanh
Number of Targets 100
Number of Observers 20
Duration 86400
Reward Type 1-4

“Duration in seconds (24 hours)

constrained by their reliance on perfect information access and centralized execution, making them less realistic for
deployment in real large-scale distributed constellations.

The sensitivity to the « scaling factor reveals characteristics of the different reward formulations. Individual-based
reward functions show contrasting behaviors: Individual Positive (IP) exhibits high sensitivity to « variations with per-
formance differences of up to 60% between @=0.0 and a=1.0 in centralized scenarios, while Individual Negative (IN)
demonstrates more stability across @ values. Similarly, collective reward functions show this pattern, with Collective
Negative (CN) maintaining more consistent performance than Collective Positive (CP) across different « settings. This
stability of negative reward functions suggests they inherently provide more robust policies that are less sensitive to the
mission-resource balance parameter, making them potentially more suitable for mission scenarios where the optimal
balance between exploration and resource conservation is unknown a priori.

Resource utilization analysis shows that RL approaches achieve comparable or slightly superior resource conservation
compared to benchmark methods, with remaining resources consistently maintained at 60-70% across all coordination
topologies and reward functions. The stability of resource levels across different a scaling factors indicates that the
learned policies effectively balance mission execution with resource preservation.

The difference in operating mode selection between fully decentralized, constrained decentralized, and centralized
cases reveals distinct behavioral patterns across coordination topologies. In centralized coordination, RL methods
demonstrate diverse action distributions with balanced use of observe and communicate actions, particularly evident
in Individual Positive (IP) and Individual Negative (IN) cases where observation payload activities comprise 30-50%
of total mission time. However, as coordination becomes more decentralized, all methods converge toward higher idle
percentages, with fully decentralized scenarios showing 85-95% idle time across most configurations. The benchmark
methods (Rule-Based and MIP) maintain consistently high idle percentages in the range of 95-98% across all coordi-
nation levels, suggesting conservative resource management strategies. Notably, negative reward functions (IN, CN)
maintain more balanced action distributions even in constrained and centralized scenarios, with observation percent-
ages remaining around 20% of mission time in constrained decentralized coordination, demonstrating their ability to
maintain mission-critical activities under communication limitations.

The more stable behaviour of negative reward functions aligns with the work presented by Miiller?! , which suggests
shifting the potential functions of rewards towards values equal to or lower than zero leads to faster convergence and
better optimal decisions. Our reward functions were deliberately designed to produce negative values in most of the
timesteps to enhance exploration, and the results demonstrate that this approach not only drives thorough exploration
during training but also produces more robust, stable and generalizable policies.

To validate the feasibility of onboard deployment, the trained policies were evaluated on an NVIDIA Jetson Orin
Nano operating in 7 W power mode, a configuration specifically designed for resource-constrained applications. This
computing platform has been identified as a promising candidate for Al-enabled nanosatellite missions due to its
balance of size, computational capability and power efficiency?? . Performance evaluation consisted of continuous
inference testing over extended periods, measuring the time required for action selection given observation inputs.
The empirical results demonstrate an average inference time of approximately 50 us per decision, confirming that the
developed neural network policies can be executed in real-time on low-power onboard systems without compromising
mission-critical response times. This computational efficiency, combined with the 7W power consumption, makes the
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Figure 3: Training performance across different scaling factor values.

approach viable for deployment in power-constrained satellite platforms.

5. Conclusion

This research contributes to the growing field of autonomous space systems by demonstrating that decentralized, on-
board Al-driven approaches can reduce dependence on ground-based control systems for large SSA satellite constella-
tions. The findings show that multi-agent reinforcement learning provides a viable framework for spacecraft coordina-
tion problems, with negative reinforcement strategies offering superior stability and robustness in resource-constrained,
mission-critical environments. The demonstrated transfer learning capabilities and reward function stability represent
important steps toward more autonomous satellite constellation operations, offering a pathway to more scalable, effi-
cient, and robust space systems that can adapt to varying and opportunistic operational conditions.

This work presents an application of decentralized multi-agent deep reinforcement learning for autonomous satellite
constellation management in collaborative space situational awareness missions under dynamic and uncertain con-
ditions. We formulated the satellite constellation coordination problem using a Dec-POMDP framework, enabling
realistic modeling of partial observability and communication constraints inherent in space environments. The com-
prehensive evaluation of four distinct reward functions and a sensitivity analysis of the mission goal reward term reveals
insights about reward function design and coordination strategies for satellite constellations.

The approach addresses scalability limitations of traditional centralized satellite operations by demonstrating effective
coordination for a constellation of 20 observer satellites tracking 100 target objects. RL methods achieve comparable or
superior resource conservation compared to benchmark approaches, maintaining 60-70% remaining resources across
all coordination topologies while adapting their operational behavior to communication constraints. Action distribution
analysis reveals that negative reward functions maintain more balanced operational modes even under communication
limitations, with observation activities remaining above 20% in constrained scenarios.

Hardware validation on an NVIDIA Jetson Orin Nano operating using 7 W power mode confirms practical feasibility
for current and future satellite missions, with inference times in the order of microseconds per decision, meeting
the computational constraints of modern space systems. This computational efficiency, combined with low power
consumption, makes the approach viable for real-time deployment in power-constrained satellite platforms.
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Figure 4: Mission accomplishment in percentage for 15 simulations, N=20, T=100.
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