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Abstract 
Fast and accurate prediction of aerodynamic flow fields is essential for efficient aircraft design but 
remains challenging for complex transonic wing configurations. This study advances the use of machine 
learning for aerodynamic modeling by developing a generalizable dataset and applying Transformer-
based neural network architectures to realistic wing geometries. A comprehensive dataset of transonic 
swept wings is constructed using a geometric parameterization approach inspired by engineering needs, 
covering a wide range of wing shapes and operating conditions. Two Transformer-based models are 
then investigated: the Vision Transformer (ViT) and the Physics-embedded Transformer (PeT), which 
incorporates physics-aware tokenization and attention mechanisms. The models are trained on the 
proposed dataset, and results show that Transformer-based models significantly outperform a U-Net 
baseline in predicting surface pressure and friction distributions, as well as integrated aerodynamic 
coefficients. The model implementations and an interactive prediction tool are released at 
https://github.com/YangYunjia/flogen, supporting future applications in data-driven aerodynamic 
design workflows. 

1. Introduction

Fast and accurate prediction of flow fields around transonic wings is essential for accelerating aerodynamic design in 
modern aircraft. Although computational fluid dynamics (CFD)-based optimization methods, particularly those 
utilizing adjoint techniques for gradient evaluation, have been applied for efficient wing shape optimization, they 
remain computationally expensive. This is especially true for multipoint and robust optimization tasks, which require 
repeated aerodynamic evaluations across various design points[1,2]. 

Surrogate modeling is a compelling alternative for reducing computational cost in aerodynamic shape optimization. 
With the rapid advancement of deep neural networks, these models can be trained to predict aerodynamic coefficients 
and flow fields from input geometries. Once trained, they can replace CFD simulations either partially or entirely 
within the optimization loop, significantly accelerating the design process. This paradigm, commonly referred to as 
data-based optimization (DBO)[3,4]. 

The principal advantage of DBO lies in the reusability of pretrained models across multiple optimization cases. 
Although building the training dataset and training the model can be time-consuming, these costs can be amortized 
over numerous optimization tasks. Achieving this level of reusability, however, requires models that are generalizable 
across diverse geometries and operating conditions. In recent years, researchers successfully trained general models 
for two-dimensional aerodynamic components, which has led to some notable success of DBO[3-8].  

However, DBO’s application to three-dimensional configurations such as wings remains limited, mainly because of 
the difficulty in building a general ML model for reliable wing flow field prediction. While there have been recent 
efforts to construct such models, many rely on simplified or constrained wing geometries, which hinders their general 
applicability. For example, some studies use datasets with fixed geometries and only vary flow conditions[9-17], while 
others perturb a baseline wing to generate training data[18-20], which is short of the generalization needs of DBO. In 
our previous work[21], we established a dataset for single-section wings, which, while a step forward, still lacks the 
complexity of realistic configurations. 

Another bottleneck is the inadequacy of conventional ML architectures for handling large-scale datasets that span a 
broad range of geometries and flow conditions. Traditional approaches, including dynamic mode decomposition 
(DMD), multilayer perceptrons (MLPs), convolutional neural networks (CNNs), Fourier neural operators (FNOs), and 
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graph neural networks (GNNs), do not scale effectively for such demanding tasks. This motivates the exploration of 
advanced architectures like Transformers. 

To overcome these challenges, this study introduces a simplified yet expressive geometric parameterization scheme 
grounded in realistic wing configurations. Using this scheme, we construct a comprehensive dataset of transonic swept 
wings encompassing a wide range of geometric parameters and design conditions. Building on this foundation, we 
develop and compare two state-of-the-art Transformer architectures for predicting wing surface flow fields from 
geometry: the Vision Transformer (ViT) [22] and a physics-embedded Transformer (PeT) [23], which incorporates a 
physics-embedded attention mechanism. The results demonstrate the advantages of the Transformer-based model 
architectures, which significantly enhance prediction accuracy across diverse wing configurations. 

2. Dataset for swept wings 

In this work, we construct a comprehensive dataset of wing surface flow fields based on several representative 
configurations commonly found in the aircraft industry. The selected planform geometry includes the characteristic 
“Yehudi break” [24], or “kink”. The dihedral angle, twist angle, thickness, and camber are varied along spanwise 
according to given patterns. These variations allow the dataset to encompass a broad spectrum of realistic wing 
geometries, making it well-suited for training surrogate models for data-based optimization (DBO). 

2.1 Sampling of wing geometries 

2.1.1 Wing geometric parameters 

We begin by introducing the geometric parameters used to describe the wing, which are divided into two components: 
those characterizing the sectional airfoils and those defining the planform shape. A wing is constructed by stretching 
the sectional airfoils along the spanwise direction.  

In principle, the airfoils at each spanwise station could differ entirely, leading to an extremely high-dimensional 
parameter space. To balance generality and simplicity, we identify common spanwise variation patterns and 
incorporate them into the wing geometry description. 

Specifically, each wing geometry in the dataset is generated from a single baseline airfoil, parameterized using a 9th-
order Class-Shape Transformation (CST) method. The upper and lower surfaces are represented independently, 
resulting in 20 shape parameters.  
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The airfoil can also be described with its normalized thickness and camber line: 
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Since thickness and camber are essential to determining an airfoil’s aerodynamic performance, the spanwise 
distribution of maximum thickness and maximum camber is prescribed as functions of the spanwise station η, i.e., 
tmax(η) and δmax(η). This allows the construction of airfoil sections across the span based on the baseline airfoil and 
these distribution functions: 
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The second group of parameters defines the planform shape, as illustrated in the three-view diagram in Figure 1. From 
the top view, the wing can be seen as a combination of a trapezoidal part (OAGF, marked by right slash lines) and an 
extra surface part between the root and the kink (△ABE). The trapezoidal part shape is determined with three 
parameters: the aspect ratio 2

1/2 trap 1/22 / 4 / (FG OA)AR b S b= = + , taper ratio FG OATR = , and the leading-edge 
sweep angle ΛLE. The extra surface can be determined with the kink location and root adjustment ratio AB ACκ = .  
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It is worth mentioning that in the present study, the fuselage location is fixed at 10% span, and only the exposed part 
of the wing to the air is simulated. The simulation part corresponds to the light blue area (O'B'EGF). The reference 
area of the wing is the projection area of the simulation part.  

 
Figure 1: Three-view diagram of a typical kink wing 

Besides the parameters above, there are two more parameters that control the y-positions and the rotation angles of 
every section airfoil, which are the dihedral angle ΓLE(η) and the twist angle αtw(η), respectively. For modern wings, 
they always vary along spanwise to achieve the best aerodynamic performance. 

2.1.2 Summary of the parameters of several typical wings 

Based on the definitions of wing parameters in the last section, three wing benchmark models and two real-world 
aircraft wings are studied, and their wing parameters are listed in Table 1. The benchmark models include the DPW-
W1 from the AIAA Drag Prediction Workshop (DPW), the DLR-F6 model from the German Aerospace Center, and 
NASA's Common Research Model (CRM). The real-world wings are from the Airbus A320 and Boeing 787. The 
DPW-W1 is a one-segment wing, and the others have a kink. To ensure consistency across all cases, the reference 
wing areas have been recalculated based on the total projected area, as the sources employed differing definitions. 

Table 1: Geometric parameters of typical wings 

Parameter DPW-W1 DLR-F6 CRM A320 B787 
Cruise Mach number 0.76 0.75 0.85 0.775 0.85 / 0.90 

maximum relative thickness at centerline 0.1350 0.1629 0.1542 0.1394 0.1449 

ratio of maximum thicknesses at kink and centerline — 0.7316 0.6822 — 0.6472 

ratio of maximum thicknesses at tip and centerline 1.0000 0.7306 0.6161 0.7166 0.6056 

taper ratio 0.55 0.38 0.275 0.33 0.18 

swept angle (deg) 15.00 25.15 35.00 25.00 32.20 

dihedral angle at tip (deg) 0.5 5.2 6.5 4.4 6.0 

aspect ratio 8.0 9.28 8.38 8.79 9.20 

kink location (%) — 40.1 37.0 39.2 37.4 

root adjustment — 1.00 0.67 1.00 0.88 

twist angle at tip 2.90 6.14 10.47 3.82 — 
reference [25] [26] [24] [27] Pianoa 

a obtained from the free sample of the software Piano: https://www.lissys.uk/samp1/b787.html 
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As mentioned above, the dihedral angle, twist angle, maximum thickness, and camber along spanwise are varied. 
Figure 2 summarizes these spanwise distributed parameters for the DLR-F6, CRM, and A320 wing models. 

 
Figure 2: Spanwise distribution of dihedral angle, maximum thickness, and twist angle for typical kinked wings 

2.1.3 Sampling of wing geometry parameters 

By analyzing the five representative wing configurations, we determine the typical parameter ranges and use them as 
the basis for sampling to establish our dataset. 

The first step involves generating the CST coefficients for the baseline airfoils. For this purpose, we utilize an existing 
database from our previous study. The CST coefficients are sampled using the Output Space Sampling (OSS) method 
[28], which aims to produce geometric variations that exhibit diverse and representative pressure distribution patterns. 
A total of 1 420 sets of CST coefficients are obtained. Figure 3 presents the corresponding normalized thickness t(x/c) 
and camber lines δ(x/c) of the sampled airfoils. 

 
Figure 3: Normalized thickness and camber lines of the baseline airfoils 

The spanwise distributions of four geometric parameters—dihedral angle, twist angle, maximum thickness, and 
maximum camber—are determined using cubic spline interpolation based on five spanwise control points (CPs). As 
illustrated in Figure 4, the CPs are numbered from 0 to 4, extending from the centerline to the tip. Specifically, CPs 
#0, #2, and #4 are positioned at the root, kink, and tip, while CPs #1 and #3 are located middle between adjacent points. 

Among these parameters, the dihedral angle is defined by CPs #2 and #4. The leading-edge y-coordinates are initialized 
to zero at the centerline and increase linearly toward the kink, with a slope defined by the ratio yLE(η) / b(η) = 
tan(ΓLE,kink), where b(η) is the vertical distance from the kink to the root. Beyond the kink, the y-coordinates of the 
leading edge are determined by an additional parameter yLE,tip / b1/2 = tan(ΓLE,tip), which defines the tip position. The 
intermediate segment between kink and tip is generated using a cubic spline with a slope matched to the linear segment 
to ensure continuity. 
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The distribution of maximum thickness tmax(η) is defined using CPs #0, #2, #3, and #4. The thickness at CP #0, along 
with the ratios of thickness values at the remaining control points relative to CP #0, denoted t0, rt,2, rt,3, and rt,4, are 
used to construct the spline. Similarly, maximum camber distribution δmax(η) is defined from CPs #0 to #4, with values 
fixed at zero for CP #0 and at δ0 for CP #3. The maximum cambers at CPs #1, #2, and #4 are expressed as ratios relative 
to δ0, denoted rδ,1, rδ,2, and rδ,4. Twist angles are also specified at all five CPs, with the twist at CP #0 set to zero. The 
angles at outer control points are defined as incremental deviations from the root.  

 
Figure 4: Spanwise control points and the variables to generate distributed wing parameters 

With this parameterization, each wing geometry is fully defined by its baseline airfoil’s CST coefficients and 18 
additional parameters governing spanwise distribution. The CST coefficients are sampled using OSS, while the 18 
spanwise parameters are randomly sampled within the ranges inferred from the five reference wing configurations, as 
summarized in Table 2. For each set of CST coefficients, two independent sets of spanwise parameters are sampled, 
resulting in a total of 2 840 distinct wing geometries. Figure 5 shows the top view of typical wings in the dataset.  

Table 2: Sampling ranges of the wing geometric parameters 

Parameter Symbol Range Parameter Symbol Range 

sweep angle ΛLE 25° 40° thickness ratio at CP3 rt,3 0.90 0.98 

dihedral angle (tip) ΓLE, tip 4° 6° thickness ratio at CP4 rt,4 0.92 1.00 

dihedral angle (kink) ΓLE, kink 0.5° 6° camber ratio at CP1 rδ,1 0.3 0.8 

aspect ratio (trap.) AR 8 11 camber ratio at CP2 rδ,2 0.5 1.0 

taper ratio (trap.) TR 0.15 0.40 camber ratio at CP4 rδ,4 0.0 0.8 

kink location ηk 36% 42% twist angle at CP1 αtw,1 –4° –2° 

root adjustment κroot 50% 110% twist angle at CP2 αtw,2 –4° –2° 
root max. relative 

thickness t0 0.14 0.17 twist angle at CP3 αtw,3 –3° –1° 

thickness ratio at CP2 rt,2 0.60 0.70 twist angle at CP4 αtw,4 –3° –1° 
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Figure 5: Top views of wings in the dataset 

2.2 Sampling of wing operating conditions 

For each wing geometry, eight operating conditions are randomly sampled. The freestream Mach number ranges from 
0.75 to 0.90, and the angle of attack varies between 2° and 12°. The Reynolds number and freestream temperature are 
fixed at 20 million and 300 K, respectively, for all simulations. 

2.3 Simulation of the wing flow fields 

Reynolds-Averaged Navier–Stokes (RANS) simulations are performed using the open-source CFD solver suite 
developed by the MDOLab1. 

2.3.1 Mesh generation 

The surface mesh for each wing is generated using an in-house meshing tool. As illustrated in Figure 6, the wing 
surface is divided into eight structured blocks: four on the inner segment (from root to kink) and four on the outer 
segment (from kink to tip). For each segment, the blocks represent the lower surface, leading-edge region, upper surface, 
and trailing edge, respectively. Along the airfoil circumferential direction, the blocks have 117, 9, 117, 9 mesh cells. 
In the spanwise direction, the inner and outer segments contain 41 and 125 cells, respectively. The mesh is refined near 
the leading and trailing edges in the circumferential direction and near the wing tip in the spanwise direction.  

For the wing tip, the geometry and surface mesh from the standard L1 mesh of the NASA CRM model [29] are adapted. 
The tip mesh is scaled and rotated to align with each wing's tip section. Each surface mesh consists of 45 120 cells in 
total. 

 
Figure 6: Surface computation mesh of the wings 

 
1 https://mdolab.engin.umich.edu/software 
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The volume mesh is then extruded from the surface mesh using the pyHyp. The extrusion contains 81 layers in the 
normal direction, extending up to 50 times the root chord. This results in a full 3D mesh with approximately 3.65 
million cells.   

2.3.2 CFD simulation 

The flow field around each wing is computed using ADflow [30]. A “3w” multigrid strategy is adopted to accelerate 
convergence: 500 solver cycles are applied on the coarser multigrid levels, followed by up to 3 000 cycles on the 
original fine mesh. Initially, the approximate Newton-Krylov (ANK) solver is used to solve the linear systems; once 
the total residual drops below 1×10−8, the solver switches to the Newton-Krylov (NK) method. Convergence is 
declared when the residual falls below 1×10−10. All other solver settings follow the default configuration. 

During the simulation, the lift coefficient is monitored to ensure steady-state convergence. Only cases with lift 
coefficient fluctuations below 0.0005 over the last 10 outer iterations are included in the final dataset. As a result, a 
total of 19,381 valid wing flow fields are obtained. 

2.3 Postprocess 

From the converged simulations, surface pressure and friction coefficient distributions are extracted for model training 
and evaluation. The friction coefficient is decomposed into two components: the streamwise part Cf,τ in the x–y plane, 
and the spanwise part Cf,z, in the z-direction. The values of the coefficients are nondimensionalized with their maximum 
and minimum values. 

To ensure consistent data representation across all geometries, surface values are interpolated from the original CFD 
grid to a uniform reference grid. Along the airfoil circumferential direction (i-direction), a fixed set of normalized 
chordwise positions {(x/c)i} s is used for both the upper and lower surfaces. The grid is truncated near the trailing edge 
to retain only two cells for numerical stability. 

In the spanwise direction (j-direction), the wing surface is sampled on 128 evenly spaced cross-sectional planes. Tip 
regions are excluded from the dataset. This interpolation procedure results in a final surface grid of 256 × 128 points 
per wing. Validation tests confirm that omitting the tip and interpolating the grid introduces less than 0.1% error in 
global aerodynamic coefficients.  

3. Transformer architectures for wing flow field prediction 

In this section, a Transformer architecture with a physics-embedded attention mechanism is proposed as the backbone 
of the wing surface flow field prediction model.  

3.1 Vision Transformer (ViT) 

3.1.1 Overall architecture 

The Transformer architecture was introduced by Google in the paper Attention Is All You Need[31]. As shown in Figure 
7, the typical Transformer model consists of an encoder-only structure. Each transformer layer comprises two sublayers: 
a multi-head self-attention mechanism and a position-wise feedforward network, both followed by residual connections 
and layer normalization. It significantly speeds up training and inference compared to former recurrent neural networks 
(RNNs), while also improving the model’s ability to capture global dependencies across tokens, regardless of their 
positional distance in the sequence. 

While the Transformer architecture was originally designed for sequential data like text, its success inspired researchers 
to explore its application to computer vision tasks. Before Transformers, CNNs were the major trend to deal with 
images and field data, but they also suffer from limitations similar to RNNs: each CNN layer processes only a small 
neighborhood of the input. As a result, capturing long-range dependencies and global contextual information typically 
requires stacking many layers, thereby increasing model depth and complexity. 
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Figure 7: Architecture of the Transformer 

The ViT extends the Transformer architecture to computer vision tasks. As illustrated in Figure 8, ViT divides an input 
image into a sequence of fixed-size patches, treating each patch as a token analogous to a word in natural language 
processing. These patch tokens, along with a learnable class embedding, are then fed into a standard Transformer 
encoder stack for representation learning and prediction. 

 
Figure 8: Spanwise distribution of dihedral angle, maximum thickness, and twist angle for typical kinked wings 

3.1.2 Attention mechanism 

The self-attention is the core of the Transformer. It determines how much each token should focus on every other token 
in the input sequence and helps the model learns the global correlation between every token.  

The attention in the Transformer is realized with a query-answer mechanism. Suppose the input sequence has M tokens 
with each has Nhidden dimensions, a value vector vi with dimension of D is calculated for each token with shared weights, 
and formulate a value matrix V of size M × D. Meanwhile, a query vector qi and a key vector ki are calculated for each 
token, also with shared weights. They contribute to the query and key matrices Q and K. Then, for every position of 
token j, the query vector qj is compared with the key vectors of every token {ki}i=0, … M, and the output is calculated by 
summing up the value vectors with weights decided by the similarity between qj and the key vectors.  

The scaled dot-product attention is the most commonly used approach to describe the similarity: 

 1Softmax ( )T
j i j i

i
iAtt q k v

D
= ⋅∑   (4) 

 
where Softmax is used to normalize the attention weights, and D1/2 is the scaling factor to prevent large dot products. 

The formula can be written in matrix form: 
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This mechanism allows each token to attend to every other token in the sequence, dynamically adjusting the attention 
weights based on contextual relevance. To further enhance expressivity, the original Transformer uses multi-head 
attention, which projects the queries, keys, and values into multiple subspaces and performs parallel attention 
operations. The outputs of all heads are then concatenated and linearly transformed. This allows the model to jointly 
capture information from different representation subspaces. 

3.1.3 Tokenization for field data 

As shown in Figure 9, an input of size H × W × C (height, width, channels) is divided into a grid of non-overlapping 
patches, each of size PH × PW. This results in M = (H × W) / (PH × PW) patches. Each patch is then flattened into a 
vector of size PH × PW × C and linearly projected into a lower-dimensional embedding space of dimension Nhidden using 
a learnable matrix. This gives a sequence of patch embeddings, serving as input tokens to the Transformer.  

 
Figure 9: Architecture of the ViT 

Since the Transformer treats all input tokens equally, fixed or trainable positional embeddings are added to the input 
token sequence before feeding it into the Transformer encoder to preserve positional information. The most common 
fixed positional embedding is the sinusoidal one. It uses a combination of sine and cosine functions of different 
frequencies to ensure each patch is associated with a unique, continuous vector that preserves relative spatial distances. 

To be specific, given the patch index (I, J) and the embedding dimension w, 
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The trainable position embedding, on the other hand, simply uses a learnable matrix of shape M × Nhidden to be added 
element-wise to the respective input token embedding. They are expected to retain information about the spatial origin 
of each patch, thereby helping the self-attention layers distinguish between different patch locations and model the 2D 
structure of the image effectively. 

3.2 Physics-embedded Transformer (PeT) 

ViTs segment images or field data into discrete patches, a process that inherently disrupts the physical continuity 
between neighboring regions. This patch-based tokenization can obscure critical local interactions and undermine the 
physical priors essential for accurately predicting physical fields. As a result, there is a clear need for tokenization 
strategies and attention mechanisms that embed physical knowledge and better preserve the underlying spatial and 
physical relationships within the data. 
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A more physically consistent tokenization strategy involves projecting the entire input field into a low-dimensional 
embedding space using weighted projections, where the projection weights themselves are learnable. This approach 
was first introduced in the Transolver framework [23]. A schematic of the proposed PeT architecture is shown in Figure 
10. PeT retains the overall Transformer structure but incorporates a physics-informed tokenization process and 
modifies the standard attention mechanism to reflect spatial and physical dependencies more accurately. 

 
Figure 10: Architecture of the PeT 

Technically, the input wing mesh 1{ }N H W
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The weight wi,j indicates the degree that the i-th mesh point belongs to the j-th slice, and the Softmax guarantees that 
the weights of every mesh point have a sum of 1, i.e.,  ,1
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Then, the global input data on the mesh points (physical space) is projected to the feature space with the weights for 
every slice j: 
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where hidden1 N

jz ×∈  serves the token in the attention calculation. The attention calculation among the encoded tokens 
zj to obtain z'j with Equation (5). Afterwards, they are de-sliced back to the mesh point with the same slice weight wi,j. 
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PeT also adopts the multi-head attention strategy, where distinct slice weights are computed for each head, and 
attention is applied independently across the heads. 

4. Experiments and results 

In this section, we compare the two Transformer-based model architectures, ViT and PeT, with a conventional U-Net 
architecture for fast prediction of wing surface flow fields using the proposed dataset.  

DOI: 10.13009/EUCASS2025-675



RAPID AERODYNAMIC PREDICTION OF WINGS 
     

 11 

4.1 Experiment setup 

4.1.1 Baseline U-Net 

U-Net, built upon CNN layers, is one of the most widely adopted architectures for flow field prediction. In this study, 
we employ the U-Net configuration from our previous work [21] as the baseline model. Specifically, it consists of a 
symmetric encoder–decoder structure. Skip connections are incorporated by storing feature maps from the encoder’s 
contracting path and concatenating them with the corresponding levels in the decoder’s upsampling path. Operating 
conditions are incorporated into the model by concatenating them with the latent representation between the encoder 
and decoder stages. 

Both the encoder and decoder consist of six ResNet groups. The network is designed such that feature map operations 
occur along the airfoil circumferential direction, while the spanwise dimension remains unchanged. Each ResNet group 
in the encoder includes a residual block for downsampling followed by a standard residual block. The airfoil-
circumferential resolution is reduced by half at each group. In the decoder, the first residual block of each ResNet 
group is replaced with an upsampling block implemented using convolutional layers and linear interpolation, 
effectively doubling the resolution at each level. The decoder concludes with a final convolutional layer that reduces 
the hidden channels to three, corresponding to the predicted output variables. 

Two versions of the U-Net baseline are implemented in this study, differing in the number of hidden dimensions. 
Detailed configurations of both models are provided in Table 3. 

Table 3: Implementations of U-Nets 

Model name Dimensions after encoder blocks Dimension after decoder blocks Trainable parameters 

U-Net-128 16, 32, 32, 64, 64, 128 128, 64, 64, 32, 32, 16 9 226 778 

U-Net-256 32, 64, 64, 128, 128, 256 256, 128, 128, 64, 64, 32 24 569 882 

4.1.2 ViT and PeT implement  

To ensure a fair comparison, we set the Transformer-based model with the number of layers Nlayer as 5 and the channel 
of hidden features Nhidden as 256, which ensures their parameter are comparable to the baseline U-Nets. Additionally, 
the number of attention heads and tokens is fixed at 8 and 32, respectively, in line with common practices in the 
literature.  

Multiple architectural variants are evaluated in this study. For the ViT architecture, we examine different strategies for 
partitioning the structured mesh into input patches, comparing square patches (PH = PW) and stripe patches (PH > PW), 
where W corresponds to the spanwise direction (j-direction in the mesh), and H denotes the airfoil-circumferential 
direction. We also compare the use of learnable positional embeddings versus fixed sinusoidal embeddings.  

For the PeT architecture, we focus on the design of the layers ( )⋅  used to compute slice weights. Two variants are 
explored: (1) flattening the structured input and applying a shared point-wise linear layer, and (2) using a convolutional 
layer with kernel size 3, stride 1, and padding 1 to preserve spatial context. The configurations of all tested models are 
summarized in Table 4.  

Table 4: Implementations of Transformer-based models  

Model name Positional embedding Slicing approach ( )⋅  Trainable parameters 

ViT-sq-sin Fixed sinusoidal Square (32 × 32) — 6 056 704 

ViT-sq-lrn Learnable Square (32 × 32) — 6 064 896 

ViT-st-sim Fixed sinusoidal Stripe (128 × 8) — 6 056 704 

PeT-pw — — Point-wise 3 776 459 

PeT-CNN — — CNN (k = 3) 9 019 339 
 
 
 

DOI: 10.13009/EUCASS2025-675



RAPID AERODYNAMIC PREDICTION OF WINGS 
     

 12 

4.1.3 Training setup and error measurement 

For model training, the dataset is split such that 90% of the wing geometries are used for training and the remaining 
10% for evaluation. The loss function is defined as the mean squared error (MSE) between the model predictions and 
the ground-truth distributions obtained from CFD simulations. All models share the same training configuration: a 
mini-batch size of 4, the Adam optimizer, and a learning rate schedule based on the one-cycle policy. Specifically, the 
learning rate increases from 1 × 10−6 to 1 × 10−4 in the first half of training and then decreases back to 1 × 10−6 in the 
second half. Training is performed over 100 epochs, with mini-batches shuffled randomly at the beginning of each 
epoch. 

To ensure robustness, the training process is repeated three times using different random 90% splits of the training data 
and distinct initializations of the model parameters. For each trained model, performance is evaluated on the held-out 
test set. For each sample, the relative mean absolute error (MAE) is computed for each predicted coefficient and 
normalized by the corresponding coefficient range. The final test error is reported as the average of these normalized 
MAEs across all test samples, as follows: 

  
( ) ( )
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, 0
, ,CFD CFD

0
,,

1 100%, , ,
max min

s

H W

N
i j

p f f z
ns

i ji j
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−
= × =

−

∑
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In addition to surface field errors, the mean absolute errors in key aerodynamic coefficients, including the lift, drag, 
and pitching moment about the leading edge, are also evaluated for further validation of predictive accuracy.  

 Model CFD
,

0

1 , , ,
sN

L D M z
ns

x x x x C C C
N =

∆ = − =∑   (11) 

4.2 Model performance 

Table 5 presents the mean prediction errors from three cross-validation runs across six evaluation metrics for all models 
on the test wing geometries.  

Table 5: Model prediction errors on the test wing geometries 

Group Model name δCp δCf,τ δCf,z ΔCL ΔCD ΔCM,z 

Baseline 
U-Net 

U-Net-128 0.762% 0.477% 0.540% 0.01291 0.000929 0.01434 

U-Net-256 0.729% 0.461% 0.509% 0.01234 0.000879 0.01382 

ViT 

ViT-sq-sin 0.821% 0.570% 0.607% 0.00822 0.000698 0.00939 

ViT-sq-lrn 0.617% 0.465% 0.505% 0.00446 0.000401 0.00506 

ViT-st-sim 1.784% 1.059% 1.060% 0.02547 0.001974 0.02988 

PeT 
PeT-pw 0.702% 0.518% 0.583% 0.00581 0.000564 0.00653 

PeT-CNN 0.560% 0.405% 0.477% 0.00447 0.000426 0.00498 

PeT over U-Net –26.4% –15.1% –11.6% –65.4% –54.1% –65.3% 
 
The Transformer-based models significantly outperform the baseline U-Net in all measured aspects. Specifically, when 
comparing the PeT-CNN model to the U-Net-128, which has a similar number of trainable parameters, the PeT model 
achieves a reduction of 11% to 26% in surface quantity prediction errors and a 54% to 65% reduction in errors for 
integrated aerodynamic coefficients. 

Between the two Transformer architectures, the PeT architecture achieves higher accuracy in predicting surface 
distributions, while the ViT architecture performs better in predicting global aerodynamic coefficients. Notably, given 
that ViT contains significantly fewer trainable parameters than PeT, it may be considered a more efficient and scalable 
solution for this problem. This performance difference may be attributed to the nature of the input data: since it is 
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defined on a structured mesh, ViT’s patch-based representation is more naturally aligned, whereas PeT is better suited 
for field data defined over irregular domains such as point clouds. 

Among the ViT variants, the implementation using learnable positional embeddings consistently yields lower 
prediction errors compared to fixed sinusoidal embeddings. This suggests that the structured mesh input already 
encodes sufficient positional information, and the addition of external sinusoidal embeddings may interfere with this 
representation, thereby degrading performance. Furthermore, the use of non-square patch partitioning significantly 
worsens ViT’s accuracy, indicating that maintaining consistent patch aspect ratios is crucial for effective spatial 
encoding. 

For the PeT architecture, the two implementations of slice weight computation result in relatively similar performance. 
The CNN-based implementation slightly outperforms the point-wise linear approach. However, considering its 
substantially larger number of parameters, the performance gain may not justify the additional computational cost. 

Figure 11 presents two examples demonstrating the performance of the PeT-CNN model on the test dataset. Even 
though both wing geometries were entirely unseen during training, the PeT-CNN model accurately predicts the surface 
pressure coefficient distributions when compared to high-fidelity CFD results. Key aerodynamic features—such as 
shock waves, suction peaks, and even flow separation regions—are well captured by the model, highlighting its ability 
to generalize to new geometries. 

These results confirm that the pretrained PeT-CNN model can provide fast and reliable predictions for complex wing 
flow fields. To facilitate practical application, we have also developed an interactive interface capable of generating 
wing surface flow fields and aerodynamic coefficients based on input geometries. The interface is available through 
our GitHub repository: https://github.com/YangYunjia/flogen. 

 
 

 
Figure 11: Surface pressure coefficients prediction results of the PeT-CNN architecture 
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5. Conclusion  

Fast prediction of wing surface flow fields is critical for efficient aircraft design. This study advances flow field 
prediction models toward real-world wing configurations through two key contributions: (1) the construction of a 
general wing flow field dataset based on representative and engineering-practical transonic wing geometries, and (2) 
the development of Transformer-based neural network architectures, the ViT and PeT, for fast and accurate surface 
flow prediction. 

Extensive experiments show that both Transformer-based models significantly outperform the baseline U-Net across 
all evaluation metrics. PeT demonstrates superior accuracy in resolving detailed surface features, while ViT performs 
better in estimating integrated aerodynamic coefficients with a much smaller model size. Architectural choices such as 
learnable positional embeddings and square patch slicing are shown to be critical in maximizing performance.  

Reflecting on the development of CFD in the late 20th century, we recall that it too began with two-dimensional 
simulations and gradually evolved to handle three-dimensional wings and eventually complex, realistic configurations, 
and ultimately accepted as a vital tool in aircraft design. We believe that machine learning technologies are poised to 
follow a similar trajectory, and with continued advancement, will become a powerful and trusted component in the 
future of high-efficiency aircraft design. 
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