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Abstract
The increasing accumulation of space debris presents a critical challenge to the sustainability and safety

of space operations, necessitating the development of effective mitigation strategies. Orbital gaming offers
a strategic framework for planning and executing debris removal missions, wherein spacecraft must operate
efficiently to optimize debris clearance while minimizing resource expenditure. This study employs a
nonlinear model of spacecraft motion, which provides a more accurate representation of general orbital
relative motion compared to the Tschauner-Hempel (TH) or Clohessy-Wiltshire (CW) equations, as it
accounts for nonlinear terms and reduces modeling errors.

To address the constraints imposed by fuel consumption in space missions, an objective function is
formulated to balance fuel usage and target proximity. Furthermore, to overcome challenges associated
with nonlinear dynamics, a single-network adaptive dynamic programming (ADP) method is proposed to
derive the optimal control strategy for spacecraft navigation. The convergence of the algorithm is rigor-
ously established, demonstrating its capability for online learning and rapid convergence. This enables the
efficient computation in multi-body orbital game scenarios.

The effectiveness of the proposed algorithm is validated through extensive numerical simulations,
which highlight its ability to adaptively optimize spacecraft trajectories in real-time, effectively balancing
fuel efficiency and mission objectives. These simulations underscore the algorithm’s robustness and scal-
ability, showcasing its potential to significantly enhance the operational efficiency of space debris removal
missions. This work not only advances the theoretical understanding of orbital dynamics and control but
also provides a practical and scalable solution to the pressing issue of space debris management, thereby
contributing to safer and more sustainable space exploration.

1. Introduction

1.1 Background and Motivation

The proliferation of space debris in Earth’s orbit has emerged as one of the most critical challenges confronting the
global space community.1–4 Since the inception of the space age, thousands of satellites, launch vehicle upper stages,
and mission-related objects have been deployed into orbit. Over time, collisions, explosions, and fragmentation events
have generated millions of debris fragments, ranging from large defunct satellites to minuscule paint flecks. The
majority of these objects reside in low Earth orbit (LEO), where the density of operational satellites and debris is
highest. Even the smallest fragments, traveling at velocities exceeding 7 km/s, possess sufficient kinetic energy to
cause catastrophic damage to active spacecraft, thereby threatening both crewed and uncrewed missions.

The escalating congestion of the orbital environment has led to an increased risk of collision, which can, in
turn, trigger cascading fragmentation events—a phenomenon known as the Kessler Syndrome.5, 6 In this scenario, each
collision generates additional debris, further elevating the probability of subsequent collisions and potentially rendering
entire orbital regions unusable for decades or even centuries. The ramifications of such a runaway process would
be severe, jeopardizing not only scientific and commercial space activities but also critical infrastructure supporting
navigation, communications, weather forecasting, and Earth observation.
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Recognizing the gravity of this situation, space agencies and international organizations have established guide-
lines for debris mitigation, such as post-mission disposal and passivation measures. However, these passive strategies
alone are insufficient to curb the exponential growth of debris, particularly as the number of launches and mega-
constellations continues to rise. Active debris removal (ADR) has thus been identified as an essential component of
a comprehensive solution to preserve the long-term sustainability of space operations.7, 8 The development of effi-
cient, reliable, and cost-effective ADR technologies is now a top priority, necessitating advances in orbital mechanics,
autonomous guidance and control, and mission planning.

In this context, the design of optimal strategies for debris removal missions is of paramount importance. Such
strategies must account for the nonlinear and uncertain nature of orbital dynamics, the limited resources available to
spacecraft (notably fuel), and the potential for adversarial or unpredictable behavior by non-cooperative targets. The
integration of game-theoretic approaches and advanced control algorithms offers a promising avenue for addressing
these challenges, enabling the formulation of robust and adaptive solutions capable of operating effectively in the
complex and dynamic space environment.

1.2 Literature Review

Over the past decades, a variety of methods have been proposed for space debris removal, including mechanical cap-
ture (e.g., robotic arms, nets, harpoons), contactless techniques (e.g., laser ablation, ion beams), and drag augmentation
devices.9–11 While these approaches have demonstrated varying degrees of technical feasibility, they often face sig-
nificant limitations related to mission complexity, cost, reliability, and scalability. For instance, mechanical capture
methods require precise rendezvous and docking maneuvers, which are challenging in the presence of tumbling or
non-cooperative debris. Contactless methods, on the other hand, may be constrained by power requirements and effec-
tiveness at different altitudes.

Concurrently, substantial research has focused on the modeling and control of spacecraft relative motion.12–14

Classical approaches such as the Clohessy-Wiltshire (CW) and Tschauner-Hempel (TH) equations provide linearized
descriptions of relative dynamics, suitable for near-circular orbits and small separations. However, these models be-
come increasingly inaccurate for larger distances, high-eccentricity orbits, or aggressive maneuvers, necessitating the
adoption of nonlinear models that capture the full complexity of orbital motion. Recent advances in nonlinear control,
adaptive dynamic programming (ADP), and reinforcement learning have enabled the development of more flexible and
robust guidance strategies.

Game-theoretic frameworks have also gained traction in the context of space operations, particularly for scenarios
involving multiple agents with potentially conflicting objectives. Orbital pursuit-evasion games, for example, model the
interaction between a chaser spacecraft and a maneuvering target, providing a foundation for the synthesis of optimal or
near-optimal control policies. Despite these advances, significant gaps remain in the integration of nonlinear dynamics,
resource constraints, and multi-agent interactions within a unified and computationally tractable framework. This
research aims to address these gaps by leveraging a nonlinear orbital gaming approach and advanced ADP techniques.

1.3 Contributions and Paper Outline

The principal contributions of this work are as follows:

• Nonlinear Orbital Gaming Framework: This work formulates the space debris removal problem as a nonlinear
orbital pursuit-evasion game, leveraging a high-fidelity nonlinear relative dynamics model that captures complex
orbital effects beyond traditional linearized approaches.

• Single-Network Adaptive Dynamic Programming (ADP): A single-network ADP algorithm is developed for real-
time, near-optimal control under nonlinear dynamics and input constraints, enabling efficient online learning and
policy adaptation without requiring explicit system linearization.

• Rigorous Stability and Practical Validation: Theoretical analysis establishes the uniform ultimate boundedness
(UUB) of the closed-loop system and neural network weights, while comprehensive numerical simulations
demonstrate the algorithm’s effectiveness, robustness, and scalability for practical space debris removal mis-
sions.

The remainder of the paper is organized as follows. Section 2 presents the problem formulation, including the
nonlinear relative dynamics model, the orbital gaming framework, and the objective function design. Section 3 details
the development of the optimal control strategy using single-network ADP and the value function approximation with
online learning, along with stability analysis. Section 4 reports the results of numerical simulations and discusses the
performance of the proposed method. Finally, Section 5 concludes the paper and outlines directions for future research.
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2. Problem Formulation and Preliminaries

2.1 Nonlinear Relative Dynamics Model

This study adopts a nonlinear model of spacecraft relative motion to accurately capture the dynamics between a deputy
satellite and a chief satellite. In this context, the chief satellite represents the space debris to be removed, while the
deputy satellite is the active pursuer tasked with intercepting and cleaning up the debris. Unlike the TH and CW
equations, which are based on linearized assumptions, the nonlinear model incorporates higher-order terms, thereby
reducing modeling errors and providing a more precise representation of the orbital environment.15 The nonlinear
relative dynamics are described as follows:

ẍ = 2 ḟ ẏ + f̈ y + ḟ 2x −
µ(r + x)

[(r + x)2 + y2 + z2]
3
2

+
µ

r2

ÿ = −2 ḟ ẋ − f̈ x + ḟ 2y −
µy

[(r + x)2 + y2 + z2]
3
2

z̈ = −
µz

[(r + x)2 + y2 + z2]
3
2

(1)

where [x, y, z]⊤ denotes the relative position vector of the chaser (deputy satellite) with respect to the target (chief
satellite, i.e., space debris) in the local-vertical-local-horizontal (LVLH) frame; µ is the Earth’s gravitational parameter;
r is the reference orbital radius; f is the true anomaly, which can be computed via Newton’s iterative method by solving
Kepler’s equation as detailed in Algorithm 1; ḟ and f̈ are its first and second derivatives, respectively.

Algorithm 1 Calculation of True Anomaly from Orbital Elements

Require: Time since periapsis t, gravitational parameter µ, semi-major axis a, eccentricity e (0 ≤ e < 1), mean
anomaly at epoch M0 (default 0), tolerance tol (default 10−10)

1: Compute mean motion: n←
√
µ/a3

2: Compute mean anomaly: M ← M0 + n · t
3: Initialize eccentric anomaly: E ← M
4: repeat
5: ∆← E − e · sin(E) − M
6: E ← E − ∆/(1 − e · cos(E))
7: until |∆| < tol
8: Compute true anomaly: f ← 2 · atan2

(√
1 + e · sin(E/2),

√
1 − e · cos(E/2)

)
9: Return f

For comparison, the linearized CW equations, which are valid for near-circular orbits and small relative distances,
are given by:

ẍ = 2nẏ + 3n2x

ÿ = −2nẋ

z̈ = −n2z

(2)

where n =
√
µ/r3 is the mean motion of the reference orbit.

Compared to the linearized CW equations, the nonlinear model offers several advantages for space debris removal
missions:

• Higher Accuracy: The nonlinear model captures higher-order effects and remains valid across a broader range
of orbital regimes, including high-eccentricity orbits and large relative distances, where linear models become
inaccurate.

• Reduced Modeling Error: By incorporating nonlinear gravitational and kinematic terms, the model reduces
approximation errors, resulting in more precise trajectory predictions and control.

• Broader Applicability: The nonlinear formulation accommodates aggressive maneuvers and complex mission
scenarios that cannot be addressed by linear models, thus enhancing the robustness and reliability of debris
removal strategies.
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Figure 1: Comparison of trajectories using the CW equations. The initial orbital and state parameters for the chief
(space debris) and deputy (chaser) satellites used in the simulations are as follows: the chief satellite is placed in
an elliptical orbit with a semi-major axis of a = 42,166.3 km, eccentricity e = 0.1, and inclination i = 45◦. The
deputy satellite is initialized with a relative position of [x, y, z] = [1000, 5000, 6000] m and a relative velocity of
[ẋ, ẏ, ż] = [0, 0, 0] m/s in the LVLH frame. (a) Three-dimensional trajectory of the deputy satellite, (b) Relative
position in the LVLH frame, and (c) Velocity components in the LVLH frame. Constants: µ = 3.986004418×1014 m3/s2

(Earth’s gravitational constant).
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Figure 2: Comparison of trajectories using the nonlinear model under the same initial conditions as Figure 1. (a) Three-
dimensional trajectory of the deputy satellite, (b) Relative position in the LVLH frame, and (c) Velocity components
in the LVLH frame. The nonlinear model provides improved fidelity in capturing the true dynamics, particularly for
larger separations and over extended time horizons.

The aforementioned advantages render the nonlinear model particularly well-suited for the development and
optimization of advanced guidance and control algorithms in realistic space environments. Figures 1 and 2 provide
a comparative illustration of the trajectories, relative positions, and velocities derived from the CW equations and the
nonlinear model. As evidenced by these simulation results, while the CW equations initially exhibit trends similar to
those of the nonlinear model, discrepancies accumulate over time due to linearization errors. For spacecraft operations,
even minor deviations can result in substantially increased fuel consumption, given that fuel constitutes one of the most
critical and limited resources in space missions. Consequently, the nonlinear model demonstrates superior fidelity in
capturing the true dynamics of satellite motion, particularly in scenarios characterized by larger separations or complex
maneuvers over extended durations.15 In light of these considerations, this study focuses on the nonlinear relative
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dynamics model, while ensuring that computational efficiency is maintained within practical limits.

2.2 Orbital Gaming Framework for Debris Removal

Consider a satellite with continuous thrust orbiting the Earth.12 Satellite P acts as the pursuer (deputy satellite), aiming
to intercept the target satellite E (chief satellite, i.e., space debris), which may represent either space debris or a non-
cooperative satellite. The satellites must account for both the interception objective and the minimization of energy
consumption.

For analytical tractability and to facilitate the subsequent game-theoretic formulation, the nonlinear relative
dynamics can be expressed in a compact state-space form:

Ẋ = F(X) + g · u (3)

where X = [x, y, z, ẋ, ẏ, ż]⊤ denotes the state vector of the deputy satellite in the LVLH frame, and u = [ux, uy, uz]⊤

represents the control input (thrust vector) of the deputy satellite. The function F(X) encapsulates the nonlinear orbital
dynamics as defined in (1):

F(X) =



ẋ
ẏ
ż

2 ḟ ẏ + f̈ y + ḟ 2x − µ(r+x)
[(r+x)2+y2+z2]3/2 +

µ
r2

−2 ḟ ẋ − f̈ x + ḟ 2y − µy
[(r+x)2+y2+z2]3/2

−
µz

[(r+x)2+y2+z2]3/2


(4)

and the input matrix g is given by

g =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


. (5)

This formulation facilitates the explicit integration of the pursuer’s control actions into the system dynamics, thereby
establishing a unified framework for subsequent optimal control design and game-theoretic analysis.

2.3 Objective Function Design

To address the dual objectives of fuel efficiency and target proximity, the following objective function is formulated:

J(X(t), u) ≜
∫ ∞

0
r(X(τ), u(τ))dτ (6)

where τ is the time integration variable. To account for input constraints, we impose uk ≤ usat for k = x, y, z, where usat

denotes the respective saturation limits. The performance function r(X(t), u(t)) is defined as

r(X(t), u) ≜ Q(X(t)) − 2
∫ u

0
usatRu tanh−1(ū)dū (7)

where Ru ∈ R
3×3 is a positive definite matrix and ū is the integration variable. The function Q(X(t)) : R6 → R is a

positive function that satisfies the following assumption:

Assumption 1. (16) There exist constants q, q ∈ R>0 such that q∥X(t)∥2 ≤ Q(X(t)) ≤ q∥X(t)∥2 for all X(t), t ≥ 0.

This objective function explicitly incorporates fuel consumption constraints by penalizing excessive control us-
age, thereby ensuring that the resulting trajectory balances mission success with the resource limitations inherent in
space operations.

5
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3. Optimal Control Strategy using Single-Network Adaptive Dynamic Programming

In this section, optimal control strategies for both the pursuer satellite and the evader are established. The single-
network adaptive dynamic programming (ADP) approach enables the derivation of near-optimal controllers under
nonlinear orbital dynamics and input constraints. By leveraging value function approximation and online learning,
the proposed method provides a computationally efficient solution for real-time trajectory optimization. The stability
and convergence properties of the algorithm are rigorously analyzed, ensuring reliable performance in practical space
debris removal scenarios.

3.1 Optimal Control Development

The value of the game stems from the mini-max problem. For simplicity of expression, t will be omitted below.

V(X) ≜ max
u(·)

min
v(·)

J (X, u) . (8)

Define the Hamiltonian function as

H (X, u,V(X)) ≜ ∇⊤V(X) (F(X) + u) + r(X, u). (9)

The optimal control function for the given problem can be obtained by stationary condition ∇uH(X, u,V(X)) = 0,
which leads to the following optimal control for the pursuer:

u∗(X) ≜ arg max H(X, u,V(X))

= −usat tanh
(

1
2usat R−1

u g⊤∇V(X)
)
.

(10)

The optimal controllers derived in (10) necessitate explicit knowledge of the value function V(X) and its gradient,
which are typically intractable to obtain in closed form for nonlinear systems. Therefore, this work reformulates the
problem as follows: Given the system dynamics in (3), the objective is to design approximately optimal controllers
for both the pursuer and the evader by leveraging the objective function in (6) and employing advanced function
approximation techniques.

3.2 Value Function Approximation via Single-Network ADP

According to the Weierstrass Approximation Theorem,17 there exists a complete set of independent basis functions that
enables the uniform approximation of the value function and its gradient as follows:

V(X) =
∞∑
j=1

w jφ j(X) =
N∑

j=1

w jφ j(X) +
∞∑

j=N+1

w jφ j(X), (11)

which can be equivalently expressed as
V(X) = W⊤ϕ(X) + ε(X), (12)

where W ∈ RN is the ideal weight vector, ϕ(X) = [φ1(X), φ2(X), . . . , φN(X)]⊤ is the vector of basis functions, and ε(X)
denotes the residual approximation error, which uniformly converges to zero as N → ∞. The gradient of the value
function is thus given by

∇V(X) = ∇⊤ϕ(X)W + ∇⊤ε(X). (13)

Let σ = ∇ϕ[F(X) + g · u]. The residual error in the Hamiltonian function due to the approximation error ε is
defined as

εH = W⊤σ + r. (14)

Let Ŵ denote the estimated weights of the neural network (NN), and define the estimation error as W̃ = W − Ŵ.
The approximate optimal control strategy is then given by

û(X) = usat tanh
(

1
2usat R−1

u g⊤∇⊤ϕ(X)Ŵ
)
. (15)

The residual error in the Hamiltonian function, arising from both the NN estimation error and the approximation
error, is expressed as

ε̄H = Ŵ⊤σ + r. (16)

6
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The objective of the NN parameter update is to determine Ŵ that minimizes the squared residual error:

E =
1
2
ε̄⊤H ε̄H . (17)

The following normalized gradient descent algorithm is adopted as the tuning law:

˙̂W = −α
∂E
∂Ŵ
= −α

σ

(1 + σ⊤σ)2 (σ⊤Ŵ + r), (18)

where α > 0 is a positive learning rate.

Assumption 2. (18) The signal σ̄ = σ/(σ⊤σ + 1) is persistently exciting over the interval [t, t + T ]; that is, there exist
constants β1 > 0, β2 > 0, and T > 0 such that, for all t,

β1I ≤ M0 ≡

∫ t+T

t
σ̄(τ)σ̄⊤(τ)dτ ≤ β2I. (19)

Assumption 3. (16, 18, 19) The function F(X) is bounded as ∥F(X)∥ < bF∥X∥. Furthermore, the NN approximation error
and its gradient, as well as the NN activation functions and their gradients, are bounded: ∥ε∥ < bε, ∥∇ε∥ < b∇ε,
∥ϕ(X)∥ < bϕ, and ∥∇ϕ(X)∥ < b∇ϕ.

It is noted that εH is bounded by bεH if Assumption 3 holds.

3.3 Stability Analysis

This subsection establishes the stability properties of the proposed single-network ADP-based control scheme for the
nonlinear orbital dynamics system. We begin by introducing the concept of uniform ultimate boundedness (UUB),
followed by a key lemma and a main theorem that collectively guarantee the boundedness of both the system state and
the neural network (NN) weight estimation errors under the proposed adaptive law.

Definition 1 (Uniform Ultimate Boundedness). The system ẋ = f (x) is said to be uniformly ultimately bounded (UUB)
if there exists a compact set S ⊂ Rn such that for any initial condition x(0) ∈ S , there exist constants B > 0 and
T = T (B, x(0)) > 0 satisfying ∥x(t) − xe∥ ≤ B for all t ≥ T, where xe denotes the equilibrium point.

Lemma 1. (20–22) Consider the nonlinear system in (3). Suppose there exists a continuously differentiable, radially
unbounded Lyapunov candidate function V(X) such that

V̇ = ∇⊤V(X) (F(X) + g · u − g · v) < 0. (20)

Then, there exists a positive definite matrix Π ∈ Rn×n such that

∇J∗Π∇V = Q(X) − 2
∫ u

0
usatRu tanh−1(ū)dū + 2

∫ v

0
vsatRv tanh−1(v̄)dv̄, (21)

and
∇⊤V(X) (F(X) + g · u − g · v) = −∇V⊤Π∇V, (22)

where Πmin ≤ ∥Π∥ ≤ Πmax for bounded X.

Theorem 1. Consider the nonlinear system described by (1). Under Assumptions 1–3, if the control input û(X) in (15)
is updated according to the NN tuning law in (18), then both the system state X and the NN weight estimation error W̃
are uniformly ultimately bounded (UUB).

Proof. Define the composite Lyapunov candidate function:

L = V(X) +
1
2

W̃⊤α−1W̃, (23)

where V(X) is the value function and W̃ = W − Ŵ is the NN weight estimation error. The time derivative of L is

L̇ = V̇(X) + W̃⊤α−1 ˙̃W. (24)

7
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Using the NN update law and the relationship ε̄H = εH − W̃⊤σ, we have

˙̃W = α
σ

(1 + σ⊤σ)2 (εH − W̃⊤σ) = αΞεH − αΞΞ
⊤W̃, (25)

where Ξ = σ
1+σ⊤σ . Applying Young’s inequality yields

W̃⊤ΞεH

1 + σ⊤σ
≤

1
2

W̃⊤ΞΞ⊤W̃ +
1
2
∥bεH ∥2. (26)

Substituting into the derivative of L and using Lemma 1, we obtain

L̇ ≤ −Πmin∥∇V∥2 −
1
2
λmin(ΞΞ⊤)∥W̃∥2 +

1
2
∥bεH ∥2. (27)

Therefore, L̇ ≤ 0 whenever either

∥∇V∥ ≥
1

√
2Πmin

∥bεH ∥ (28)

or

∥W̃∥ ≥
1

√
λmin(ΞΞ⊤)

∥bεH ∥. (29)

This implies that both ∇V and W̃ are UUB. Since V(X) is continuously differentiable and radially unbounded, the
boundedness of ∇V ensures the boundedness of X, completing the proof. □

4. Numerical Simulations and Validation

This section presents comprehensive numerical simulations to validate the effectiveness and robustness of the proposed
single-network ADP approach for optimal control in space debris removal missions. The simulations are designed to
demonstrate the algorithm’s capability to handle nonlinear orbital dynamics, adapt to varying mission scenarios, and
achieve efficient debris interception while minimizing control effort.

Table 1: Simulation Parameters and Settings

Parameter Value
Chief satellite semi-major axis a 42,166.3 km
Chief satellite eccentricity e 0.1
Chief satellite inclination i 45◦

Initial deputy position [x0, y0, z0]⊤ [100,000, 450,000, 0]⊤ m
Initial deputy velocity [ẋ0, ẏ0, ż0]⊤ [0, 0, 0]⊤ m/s
Control input bound usat 0.1 m/s2

State weighting Q diag(1, 1, 1, 1, 1, 1)
Control weighting R diag(1, 1, 1)
Simulation duration tend 36,000 s
Termination distance 10,000 m
NN dimension 20
NN learning rate (gain) 1
Initial NN weights W0 0.001 × 120

The nonlinear relative dynamics model described in (3) is employed, with simulation parameters and neural
network (NN) configurations summarized in Table 1. All simulations are conducted in a Python 3.9 environment,
utilizing the single-network ADP algorithm detailed in Section 3. The neural network basis functions are constructed
using the state variables x1 = x, x2 = y, x3 = ẋ, and x4 = ẏ. The z-direction is omitted from the network since it is
relatively independent and its initial value is set to zero in the simulations. The basis functions employed in the neural
network include quadratic, cross, and quartic terms of the state variables, specifically:

ϕ(X) =
[

x2
1, x2

2, x2
3, x2

4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4,

x4
1, x4

2, x4
3, x4

4, x2
1x2

2, x2
1x2

3, x2
1x2

4, x2
2x2

3, x2
2x2

4, x2
3x2

4
]⊤
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where X = [x1, x2, x3, x4]⊤. This selection of basis functions enables the neural network to approximate the value
function and its gradient with sufficient flexibility for the nonlinear orbital dynamics considered in this study.

Figures 3 and 4 illustrate the efficacy of the proposed ADP-based control law. Figure 3 depicts the trajectories of
both the deputy satellite and the target debris in the Geocentric Celestial Reference System (GCRS), demonstrating that
the deputy successfully intercepts the target along a dynamically feasible path in the inertial frame. Figure 4 further
presents the three-dimensional trajectory and its projection onto the x-y plane in the LVLH frame, highlighting the
smooth and efficient interception maneuver achieved by balancing fuel efficiency and interception accuracy.

Figure 3: Trajectories of both the deputy satellite and the target debris in the Geocentric Celestial Reference System
(GCRS).

Figure 5 provides the time histories of the relative position and velocity components in the LVLH frame. The
position components exhibit monotonic convergence toward the target, confirming the effectiveness of the control
strategy. It is noted that the velocity components do not fully converge within the simulation horizon, primarily due to
the lower weighting assigned to velocity in the objective function relative to position. The selection of these weights
can be tailored to specific mission requirements: increasing the velocity weighting enhances economic efficiency by
minimizing fuel consumption, while prioritizing position weighting enables rapid interception. This flexibility allows
the control strategy to be adapted for diverse operational objectives.

The evolution of the neural network weights is depicted in Figure 6. The weights converge rapidly and remain
stable throughout the simulation, indicating that the learning process is both efficient and robust. This stability is crucial
for ensuring consistent control performance during extended mission durations.

Figure 7 presents the control input profiles generated by the ADP controller. The control inputs remain within
the prescribed bounds, and their smooth variation reflects the controller’s ability to generate feasible and efficient thrust
commands without inducing chattering or excessive actuation.

Collectively, the simulation results validate the capability of the proposed single-network ADP algorithm to
achieve real-time, near-optimal control for nonlinear orbital pursuit-evasion scenarios. The algorithm demonstrates
strong adaptability, rapid convergence, and robustness to nonlinearities, making it a promising approach for practical
space debris removal missions. The ability to learn and update control policies online is particularly advantageous
in dynamic and uncertain space environments, where mission parameters and environmental conditions may change
unpredictably.

5. Conclusion and Future Work

This paper has presented a single-network adaptive dynamic programming (ADP) approach for optimal control in
nonlinear orbital gaming scenarios, with a particular focus on space debris removal missions. The proposed method
leverages a nonlinear relative dynamics model and advanced function approximation techniques to derive near-optimal
control strategies for both pursuer and evader satellites. The stability and convergence properties of the algorithm are
rigorously established, ensuring reliable performance in practical applications.

Numerical simulations demonstrate the effectiveness of the proposed ADP algorithm in achieving efficient inter-
ception of space debris while minimizing fuel consumption. The results highlight the algorithm’s capability to handle
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Figure 4: (a) Three-dimensional trajectory of the deputy satellite using ADP; (b) Relative position in the LVLH frame.
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Figure 5: (a) Relative position in the LVLH frame; (b) Velocity components in the LVLH frame using ADP.
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Figure 7: Control input profile using ADP.

nonlinear dynamics, thereby confirming its suitability for real-time applications in space operations. The use of a sin-
gle neural network for value function approximation simplifies implementation and enhances computational efficiency,
making the approach feasible for onboard deployment in space missions.

Future research will focus on extending the proposed framework to multi-satellite scenarios, where multiple

10

DOI: 10.13009/EUCASS2025-709



SHORT PAPER TITLE

pursuers and evaders interact within complex orbital environments. Additionally, the integration of advanced machine
learning techniques for adaptive learning and real-time decision-making will be explored to further enhance the ro-
bustness and scalability of the algorithm in dynamic space missions. The incorporation of uncertainty modeling and
robust control strategies will also be investigated to improve the performance of the single-network ADP method in
real-world applications.
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