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Abstract
Plume-Surface Interactions are complex phenomena present in extra-terrestrial landings which can dam-
age spacecraft equipment. This work develops an edge detection algorithm to characterise the region of
influence of a dust cloud formed upon plume impingement. High-speed imaging is used to test different
image segmentation approaches and the results show that global thresholding provides a simple and ef-
ficient boundary detection method for regions of high particle concentration, while Gabor filtering in the
frequency domain is an overall better yet more complex edge-detection approach. Lastly, a 3-D recon-
struction is carried out by combining the detected edges from three perspectives.

1. Introduction

As spacecraft approach the surface of extra-terrestrial bodies, a full-deceleration before touch-down is required to en-
sure safe soft landings. This is extremely challenging in low density atmospheres - or the complete lack thereof - as
the effectiveness of parachutes is very limited due to insufficient drag being achieved. Instead, retro-propulsive rockets
are fired, decelerating the lander by providing thrust in the opposite direction of travel. However, this method comes at
a cost: as the plumes from the exhaust nozzle impinge on the surface, the upper layers of regolith are eroded, causing
particles and debris to be ejected at high speeds. Sandblasting can damage hardware,1 flow redirection can induce
de-stabilising loads on the lander2 and lifted particles can reduce the visibility of pilots and the sensitivity of sensors.
During the Apollo and Viking eras, soil erosion experiments were carried out in the 1960s-1980s, applied to Lunar3, 4

and Martian5, 6 landing conditions. Studies were resumed in the 2000s for the Mars Exploration Rovers and Mars
Science Laboratory Missions,7, 8 in which erosion mechanisms and rates were identified from visual data and CFD
simulations. In recent years, Plume-Surface Interactions studies have been mainly computational, either assuming
free-molecular flow via Direct Simulation Monte Carlo methods9 or by using hybrid continuum-rarefied solvers10 to
predict particle ejecta. Confirming the validity of these results, however, has been difficult due to the lack of experi-
mental data in relevant environments or at relevant physical scales.11

A novel approach in Plume-Surface Interactions study is presented here, in which the focus is shifted from erosion
characterisation - and subsequent ejected particle predictions - to dust cloud characterisation. With the aim of estab-
lishing scalable relationships between nozzle exit flow conditions and the resulting cloud, three main variables of the
cloud are aimed to be identified: its region of influence, particle concentration and particle speeds. The diagnostic
techniques that will be explored include edge detection, light scattering models and Particle Image Velocimetry.
In this paper, the first step in cloud characterisation is presented, which consists on detecting the boundary of the
cloud. A high pressure air nozzle is fired into a bed of Martian regolith simulant (crushed walnut shells12) and the edge
detection capability of different image segmentation approaches is investigated. Having matured this technology and
having explored methods of characterising the other two variables (particle concentration and speeds), future tests will
be carried out in the vacuum chamber at the University of Glasgow, in which Lunar and Martian environments will be
simulated.
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DUST CLOUD CHARACTERISATION

2. Experimental Setup

Due to the slow turnaround of experiments carried out in the vacuum chamber (∼ 4 hrs) and its high energy consump-
tion, it was considered most appropriate to design a simplified, atmospheric, high-pressure air experiment to test the
different edge detection approaches. The experimental setup consists of a jet simulator and a camera system.

2.1 Jet simulator

The components of the jet simulator are shown in Figure 1a, consisting of a SMC Pneumatic Solenoid valve (VDW
series, G1/8 connection) that is actuated by a relay connected to a switch. The valve is used to provide a pulse of
compressed air and the actuation time is measured by an oscilloscope (PicoScope 2405A).

2.2 Camera system

To observe the dust cloud formation from different angles, up to 3 cameras are used:

• A Photron FASTCAM Mini AX, with an image resolution of 1024x1024 pixels at a frequency of 2500 fps.

• Two GoPros, a Hero 4 and Hero 9, with a resolution of 1080x1920 pixels at 60 fps.

2.3 Experimental procedure

The first round of firings involved testing four different pressures (2 to 5 bar absolute pressure) and capturing the
resulting cloud by a single camera (the FASTCAM Mini). The visual data recorded was used to develop and test the
edge detection algorithms discussed in Section 3. After processing the data, a second round of experiments was carried
out introducing two additional cameras (GoPros) and a light source. Calibration images were taken prior to firing to
allow distortion correction, such that information from each perspective could be combined into a 3-D reconstruction,
discussed in Section 4.

(a) Jet simulator components (b) Test rig and camera setup

Figure 1: Experimental setup

3. Image Segmentation Approaches

Image segmentation aims at dividing visual data into regions (or objects) of particular interest, such that these can be
analysed in detail. In this research, the boundary of the dust cloud formed upon plume impingement is the segment of
interest, as this corresponds to its region of influence. Three image segmentation approaches are presented in order of
increased complexity: global thresholding, entropy segmentation, and Gabor filtering.
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3.1 Global thresholding segmentation

Image thresholding consists of converting a colour or grayscale image into a binary image, identifying objects based
on colour or brightness and separating them from the background. If it is assumed that one unique class of objects
exists (which is the case for this application, in which the dust cloud is the only object to be characterised), global
thresholding can be carried out. This relies on the fact that an image has a bimodal histogram with two clusters of
dominant pixel values and that a unique threshold value can be found to separate the two modes.13

Figure 2 shows the steps implemented to carry out global thresholding. Considering an initial frame prior to the firing
of the nozzle Fb as the background (Figure 2a), each subsequent frame in a recording Fi (Figure 2b) can be binarized
by first subtracting the background Ii = |Fi − Fb| and then applying a global thresholding segmentation. Following
Otsu’s method,14 MATLAB’s built-in function graythresh calculates the global thresholding value that can be used
in conjunction with the function imbinarize to process the frames such that the main object (the dust cloud) is
highlighted (Figure 2c). To trace the edge of the cloud, a minimum pixel size is established via bwareopen and the
boundary is traced via bwboundaries (Figure 2d). It should be noted that background subtraction is an essential part
of the algorithm, as it allows the development of the cloud to be captured in isolation from other elements in frame,
such as the surface which has a higher illumination than the black background and would instead be identified as an
object.

Nozzle

Regolith tray

(a) Background frame Fb (b) Investigated frame Fi

(c) Binarized frame (d) Edge detected

Figure 2: Global thresholding algorithm

Threshold variation
Automatic global thresholding

50% reduction

Figure 3: Comparison of thresholding values

It was observed that by using the global thresholding
value automatically calculated, the boundary found re-
sulted in an under-contoured cloud. By manually de-
creasing the threshold value, the contour detected in-
creased significantly, as shown by the 50% threshold re-
duction plotted in blue in Figure 3. The choice for thresh-
olding could be adjusted depending on the particle con-
centration to be captured, as lower concentration areas
require a lower threshold to be included in the boundary.
Methodologies to achieve this are discussed in Section 5.
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3.2 Texture segmentation

In the context of 2-D images, texture can be understood as the variation in spatial frequency across neighbouring
pixels. Defining spatial frequency as the distribution of light or gray values in an image,15 one can think of texture
as a combination of irradiance patterns.16 Along sharp edges and fine details, these regions will present high spatial
frequencies while smoother regions will consist of lower frequencies.17 In this section, this concept of texture is applied
to carry out edge detection, through entropy analyses and Gabor filtering.

Entropy

Entropy analysis is a statistical texture segmentation approach that measures the variability in an image.18 This means
that areas in which neighbouring pixels have a high variation in pixel intensity value will have high entropy, while
areas of constant texture will have an entropy value of 0. Entropy is calculated using histogram data for an image,
where h(rk) contains the histogram counts, i.e. the number of pixels present in an image for each intensity value rk. In
a grayscale image, r ranges from 0 (black) to 255 (white). Dividing h(rk) by the total number of pixels in an image Nt,
the probability of occurrence of a particular intensity value is obtained:19 p(rk) = h(rk)/Nt. Lastly, using the probability
values, entropy is defined as:

E = −
255∑
k=0

p(rk) log2(p(rk)) ∀ p(rk) , 0 (1)

Local entropy is calculated using subsets (or neighbourhoods) of an image and reflects the texture in small regions.
This concept is applied to dust cloud identification, as the regions with scattered lifted particles will have high values
of local entropy, mathematically captured by the fact that a wider range of intensity values with lower probability will
result in a higher value of entropy. Hence, areas of constant intensity such as the background are expected to have
entropy values close to 0 while areas of fast changing pixel values like the cloud will be highlighted. This is carried out
via MATLAB’s entropyfilt, which calculates local entropy considering 9 by 9 pixel neighbourhoods. The output
(shown in Figure 4a) is then re-scaled to be in the range [0,1] as shown in Figure 4b. Then, global thresholding and
edge detection are carried out, displayed in Figure 4c. This method overestimated the boundary of the cloud and it was
observed that varying the threshold did not have a significant effect. Moreover, decreasing the neighbourhood size to
the minimum of 3 by 3 did not improve the region detected either. Hence this segmentation approach is considered
inappropriate for this application and further work is required to determine the cause of this behaviour.

(a) Local entropy (b) Local entropy re-scaled (c) Edge detected

Figure 4: Entropy algorithm

Gabor filters

Gabor filtering is an image segmentation technique that aims to mimic how the human visual system recognises tex-
tures through spatial and orientational sensitivities.20 It is thought that mammals process visual information by dividing
retinal images into “channels”, which are filtered images that contain information within a range of spatial frequencies
and orientations.15 In other words, the retina applies band-pass filters, which are used to process the different compo-
nents in an image. In a similar manner, Gabor banks are a collection of filters (or kernels) that act as the "channels",
identifying specific textures in localised image regions, allowing features to be extracted.

A Gabor filter h in the 2-D spatial domain (x, y) is a wavelet-like transform in which the multipliers within the kernel
hi are defined as:

hi(x, y, f , θ) = exp
−1

2

 x′2

σ2
x
+

y′2

σ2
y

Υ(x, y, f , θ) (2)

Where fi is the desired spatial frequency to be filtered for, inversely proportional to the wavelength (λi ∝ 1/ fi) and θ
is the desired orientation, clock-wise and normal to the x−axis. The positions within the kernel x′, y′ are defined as
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x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ.21 The standard deviations of the Gaussian envelope σx and σy are
calculated as:

σx =
λ

π

√
log2

2
(2BW + 1)
(2BW − 1)

and σy =
σx

γ
(3)

Where BW is the bandwidth (set to an octave, following the idea that simple cells in the visual cortex have a bandwidth
of an octave22) and γ is the aspect ratio, which defines the ellipticity of the Gabor function.21 The sinusoidal carrier
Υ present in Equation 2 can be defined as a complex exponential20 or a cosine function, if even-symmetric Gabor
filters are to be used.15 The choice of kernel size, wavelengths and orientations will have a great effect on the texture
identification capabilities of the Gabor filters. An initial set of parameters are tested, following the guidelines by Jain
and Pektov.15, 23 First, minimum and maximum wavelengths are defined as λmin =

√
2 and λmax = (N2

c + N2
h )1/2 for an

image Nc pixels wide by Nh pixels high. To ensure that frequencies (and therefore wavelengths) are one octave apart,
a variable n is defined as n = log2(λmin/λmax) and used to calculate the radial wavelengths λi = 2i × λmin where i runs
from 0 to (n − 2). This is equivalent to defining λi = 1

√
2, 2
√

2, 4
√

2, ..., (Nc/4)
√

2. These wavelengths are tested in
combination with four orientations: 0 deg, 45 deg, 90deg and 135 deg. For an image with a resolution of 1024x1024
pixels (as provided by the high-speed Photron camera), the Gabor kernels are obtained following Equation 2 and shown
in Figure 5.

 = 2,  = 0°  = 2 2,  = 0°  = 4 2,  = 0°  = 8 2,  = 0°  = 16 2,  = 0°  = 32 2,  = 0°  = 64 2,  = 0°  = 128 2,  = 0°  = 256 2,  = 0°

 = 2,  = 45°  = 2 2,  = 45°  = 4 2,  = 45°  = 8 2,  = 45°  = 16 2,  = 45°  = 32 2,  = 45°  = 64 2,  = 45°  = 128 2,  = 45°  = 256 2,  = 45°

 = 2,  = 90°  = 2 2,  = 90°  = 4 2,  = 90°  = 8 2,  = 90°  = 16 2,  = 90°  = 32 2,  = 90°  = 64 2,  = 90°  = 128 2,  = 90°  = 256 2,  = 90°

 = 2,  = 135°  = 2 2,  = 135°  = 4 2,  = 135°  = 8 2,  = 135°  = 16 2,  = 135°  = 32 2,  = 135°  = 64 2,  = 135°  = 128 2,  = 135°  = 256 2,  = 135°

(a) Real part

 = 2,  = 0°  = 2 2,  = 0°  = 4 2,  = 0°  = 8 2,  = 0°  = 16 2,  = 0°  = 32 2,  = 0°  = 64 2,  = 0°  = 128 2,  = 0°  = 256 2,  = 0°

 = 2,  = 45°  = 2 2,  = 45°  = 4 2,  = 45°  = 8 2,  = 45°  = 16 2,  = 45°  = 32 2,  = 45°  = 64 2,  = 45°  = 128 2,  = 45°  = 256 2,  = 45°

 = 2,  = 90°  = 2 2,  = 90°  = 4 2,  = 90°  = 8 2,  = 90°  = 16 2,  = 90°  = 32 2,  = 90°  = 64 2,  = 90°  = 128 2,  = 90°  = 256 2,  = 90°

 = 2,  = 135°  = 2 2,  = 135°  = 4 2,  = 135°  = 8 2,  = 135°  = 16 2,  = 135°  = 32 2,  = 135°  = 64 2,  = 135°  = 128 2,  = 135°  = 256 2,  = 135°

(b) Imaginary part

Figure 5: Gabor bank illustrating the different kernels used

Having calculated the Gabor bank, spatial filtering can be performed by correlating each kernel h with an image I
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through MATLAB’s imfilter to obtain the filtered image19 A = h⋆ I. After a binarization using global thresholding,
the images in Figure 6 were obtained and used to discard the smallest and largest wavelengths tested. On one hand, it
was observed that the smallest wavelength tested had an insignificant filtering effect, as the kernels contained a central
multiplier of 1, while others had multipliers with values close to 0. On the other hand, increasing wavelength values
over 32

√
2 had no effect on the filtered image obtained, as the detailed variations in pixel values were not accurately

captured. Hence these larger wavelength filtered images have been omitted from Figure 6. Lastly, it was noted that the
filtered images between wavelengths of 4

√
2 and 8

√
2 varied significantly and hence a middle value was tested. Figure

7 shows the next step in the algorithm, in which edge detection was performed. A Gabor kernel size of 3× 3 was used,
as larger sizes worsened the edge detection capability while increasing the computational time required. A wavelength
of 6
√

2 and orientation of 45 deg were selected as they provided the most accurate boundary tracing, not just for the
frame investigated, but for the overall recording of cloud development, as shown in Figure 9.

 = 2,  = 0°  = 2 2,  = 0°  = 4 2,  = 0°  = 8 2,  = 0°  = 16 2,  = 0°  = 32 2,  = 0°

 = 2,  = 45°  = 2 2,  = 45°  = 4 2,  = 45°  = 8 2,  = 45°  = 16 2,  = 45°  = 32 2,  = 45°

 = 2,  = 90°  = 2 2,  = 90°  = 4 2,  = 90°  = 8 2,  = 90°  = 16 2,  = 90°  = 32 2,  = 90°

 = 2,  = 135°  = 2 2,  = 135°  = 4 2,  = 135°  = 8 2,  = 135°  = 16 2,  = 135°  = 32 2,  = 135°

Figure 6: A filtered image using the Gabor bank

 = 2,  = 0°  = 2 2,  = 0°  = 4 2,  = 0°  = 6 2,  = 0°  = 8 2,  = 0°

 = 2,  = 45°  = 2 2,  = 45°  = 4 2,  = 45°  = 6 2,  = 45°  = 8 2,  = 45°

 = 2,  = 90°  = 2 2,  = 90°  = 4 2,  = 90°  = 6 2,  = 90°  = 8 2,  = 90°

 = 2,  = 135°  = 2 2,  = 135°  = 4 2,  = 135°  = 6 2,  = 135°  = 8 2,  = 135°

Figure 7: Edge detection using Gabor filters
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Gabor filtering can also be carried out in the frequency domain, by using the Fourier domain representation of Equation
2:

H̄(u, v, f , θ) = 2πσxσy

(
exp

{
−1

2

[
(u′ − f )2

σ2
u
+

v′2

σ2
v

]})
(4)

Where:

σu =
1

2πσx
and σv =

1
2πσy

(5)

In a similar manner to the spatial domain, u′ = u cos θ + v sin θ and v′ = −u sin θ + v cos θ, however in this case,
u, v span the frequency domain, representing the Discrete Fourier Transform samples, where u = 0, 1, ...Nh − 1 and
v = 0, 1, ...,Nc − 1.
Exploiting the Fast Fourier Transform of the input image I → Ī, the filtered image Ā in the frequency domain is found
through:

Ā = H̄Ī (6)

By carrying out filtering in the frequency domain for the same set of parameters tested in Figure 6, the following images
are obtained (after an Inverse Fast Fourier Transform has been performed):

 = 2,  = 0°  = 2 2,  = 0°  = 4 2,  = 0°  = 8 2,  = 0°  = 16 2,  = 0°  = 32 2,  = 0°

 = 2,  = 45°  = 2 2,  = 45°  = 4 2,  = 45°  = 8 2,  = 45°  = 16 2,  = 45°  = 32 2,  = 45°

 = 2,  = 90°  = 2 2,  = 90°  = 4 2,  = 90°  = 8 2,  = 90°  = 16 2,  = 90°  = 32 2,  = 90°

 = 2,  = 135°  = 2 2,  = 135°  = 4 2,  = 135°  = 8 2,  = 135°  = 16 2,  = 135°  = 32 2,  = 135°

Figure 8: A filtered image using the Gabor bank in the frequency domain

It can be observed that increasing wavelength results in blurred filtered images and hence wavelengths smaller than
√

2
were investigated. Results did not improve beyond λ <

√
2/5 and hence this was chosen to carry out edge detection.

The obtained boundary is presented in Figure 9 for a range of frames.

3.3 Comparison between approaches and discussion of accuracy

In order to establish which approach provides the most accurate edge detection, the dust cloud was identified by
each method at different stages in its development, and the boundaries plotted for comparison. As expected, entropy
segmentation was the most inaccurate method, resulting in a highly over-contoured boundary. The other three methods
detected the edges with comparable accuracy, as presented in Figure 9. It should be noted that accuracy is measured
by visual inspection, as a hard boundary of the dust cloud does not exist. In order to establish a more quantifiable
measure of accuracy, particle concentration calculations must be introduced. It can be observed from Figure 9 that
global thresholding and Gabor frequency filtering trace the edge in a region with higher particle concentration than
that of Gabor spatial filtering. This leads to the question of which of the three methods is most appropiate for this
application. In terms of complexity, Gabor filtering uses a range of parameters whose choice can have significant
impact on the boundary traced. On the other hand, global thresholding is a simple approach that provides accurate
results, however it may require the thresholding value to be adjusted if lower particle concentration areas of the dust
cloud are to be included in the traced boundary.
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Frame 100 Frame 150 Frame 200

Frame 250 Frame 300 Frame 350

Frame 400 Frame 450 Frame 500

Global thresholding

Gabor spatial

Gabor frequency

Gabor

spatial

Gabor frequency

Global

thresholding

Figure 9: Edge detection comparison between approaches

4. Three-Dimensional Reconstruction

Having developed and tested algorithms to carry out boundary detection from one perspective, additional cameras were
introduced for the second round of experiments to better observe cloud growth.

4.1 Checkerboard calibration and distortion correction

All camera lenses introduce distortion in the images they capture, which can be more or less noticeable to the human
eye depending on the field of view of the camera. Although the distortion caused by the fish eye effect of the GoPros
is most significant, distortion of the 28 mm lenses of the FASTCAM camera must also be corrected, in order for the
boundary of the dust cloud to be accurately determined from the different captured images and combined into a unique
reconstruction. Distortion correction can be achieved through checkerboard calibration, in which a pattern of known
dimensions is used to find the intrinsic parameters of a camera. Checkerboard calibration images covering the field of
view are taken (as seen in Figure 10) and input to MATLAB’s detectCheckerboardPoints and cameraIntrinsics
functions, which estimate the radial and tangential distortion parameters, allowing the images to be corrected via
undistortImage.

Figure 10: Checkerboard calibration images with detected corners (plotted in red)

4.2 Mapping to a global coordinate system

In order to combine the information obtained by the different cameras, the procedure presented in Figure 11 is followed.
First, the distortion in the videos at each perspective is corrected and an image segmentation algorithm is used to
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find the cloud edge in intrinsic coordinates (i.e. pixel indices c, r). Then, a mapping between the intrinsic spatial
coordinate system (in pixels) and a local world coordinate system u, v (in milimeters) is found using imref2d and
intrinsicToWorld functions. These require a relationship between pixel size and distance to be specified, which is
obtained through an image of a calibration plate of known dimensions and position in the physical space. Lastly, the
edges are translated into a global coordinate system x, y, z according to the camera’s position β, in which x = u cos β,
y = u sin β and z = v. This requires that for each camera, the calibration plate is aligned with the global origin (under
the valve nozzle and at the surface of the regolith tray).

Video recorded
by camera at β Undistortion

Image segmen-
tation algorithm

Edge detected
in intrinsic

coordinate system

Translate
into local

coordinates u, v

Translate into
global coor-
dinates x, y, z

Convert pixel
to distance

Calibration
image at β

Figure 11: Mapping to global coordinate system flow chart

Figure 12 shows the edges detected for each distortion corrected view from the cameras. It can be observed that the
GoPros capture a brighter cloud as opposed to the FASTCAM, which is due to their lower frame rate. The high-
speed camera is able to capture instantaneous lifted particle positions, while the GoPro’s longer exposure results in a
blurred and brighter cloud. Each boundary is mapped into the global coordinate system, allowing the three-dimensional
reconstruction to be carried out, shown in Figure 13b.

FASTCAM at 0 deg

GoPro at 45 deg GoPro at 90 deg

Figure 12: Camera perspectives

4.3 Sources of error

By carrying out the 3-D reconstruction with the methodology discussed, errors are incurred from different sources.
Firstly, the distortion correction of the cameras is carried out by obtaining intrinsic parameters via checkerboard cali-
bration. Although measures were taken to minimise the error, such as taking images covering the whole field of view,
conditions such as small variations in lighting can decrease the accuracy of the correction. Secondly, by converting
pixel to world distances, it is assumed that the camera and calibration plate are aligned perfectly perpendicular. Al-
though they were positioned using a laser level, it is likely that a small deviation is present, resulting in a skewed
view of the plate that will induce an error in the pixel-distance averaged across the plate. Moreover, the center of
the calibration plate is also assumed to be aligned with the valve nozzle, as the origin in the three-dimensional global
coordinate system was taken to be this point during local to global coordinate mapping. Thirdly, with regards to the
edges detected, it should be noted that these correspond to the projected boundaries of the cloud from each view, as
opposed to planar views of the cloud’s cross-section as assumed in the 3-D reconstruction. This can lead to an inac-
curate estimation of the region of influence, if either features of a plane are obstructed by the developing cloud ahead
of the plane investigated or the region of the cloud behind the plane is captured by the camera and projected onto the
detected edge. The former is present in the reconstruction displayed in Figure 13b: the 90 deg plane appears to have
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(a) Intrinsic, local and global coordi-
nate systems (b) 3-D reconstruction from the individual planar views

Figure 13: Mapping and reconstruction of the dust cloud

a central growth when in reality, this corresponds to the elevated sides observed by the FASTCAM at 0 deg. Lastly,
when combining the information from the three cameras, the difference in frame rates between the FASTCAM (2500
fps) and the GoPros (60 fps) meant that the exact frame could not be matched, resulting in the reconstruction to be
composed of perspectives at slightly different instances. It was also observed during the post-processing of videos that
the nozzle had a slight deviation in its vertical positioning, causing the cloud to develop un-evenly in the y, z plane, as
it can be observed by the 0 deg camera perspective in Figure 12.

5. Conclusions and Future Work

This paper presents the first stage in the development of a dust cloud detection algorithm in the context of Plume-
Surface Interactions during extra-terrestrial landings. In order to characterise the region of influence of the growing
cloud, the edge detection capability of different image segmentation approaches was evaluated on footage from an
atmospheric conditions experiment, in which high-pressure air impinges on a bed of Martian regolith simulant. Three
cameras were used to capture the development of the cloud from different perspectives, allowing a three-dimensional
reconstruction to be carried out. Having successfully developed a methodology for region of influence characterisation,
future work will aim at characterising the other two main variables of a dust cloud: particle concentration and velocities.
Signal scattering models, such as light and radar dissipation across dust clouds will be explored to evaluate particle
concentration, while techniques such as Particle Image Velocimetry (PIV) will be used for velocity estimations. In
addition, scalable parameters including nozzle exit properties (pressure and diameter) and impingement height will
be introduced, and relationships between dust cloud growth in atmospheric and extra-terrestrial conditions will be
explored. This will require a re-design of the jet simulator, such that the nozzle geometry can be defined and used
in the scaling of parameters, as well as ensuring a vertical alignment of the jet. Lastly, measures to reduce the errors
discussed in Section 4.3 will be explored, such as introducing laser sheets to highlight planes for accurate planar edge
detection, as well as extending the experiments to pulsed-jet impingement with synchronised high-speed cameras.
Moreover, a new approach of global mapping will be explored using the cameras’ extrinsic parameters, estimating
their angle and rotation with respect to the origin and converting intrinsic coordinates to global coordinates without the
use of the dotted calibration plate.
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