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Abstract
This work presents a methodology to find manufacturing tolerances for surfaces designed for natural lam-
inar flow to reduce friction drag. The methodology informs the tolerances based on the largest allowable
waviness profile with minimum L2-norm of surface deformations that might cause early transition due to
the existence of waviness on the surface. The growth of convectively unstable disturbances is computed
by solving Euler, compressible boundary layer (BLE), and parabolized stability equations (PSE). The gra-
dient of perturbation energy is found by solving the adjoint of governing equations, and manufacturing
tolerances are found using gradient ascent and SLSQP optimization techniques.

1. Introduction

In the 21st century, it is crucial to decrease the specific fuel consumption (SFC) of aircrafts for economic, operational,
and ecological reasons. The Advisory Council for Aviation Research and Innovation in Europe (ACARE)1 has estab-
lished a number of key goals, one of which is to cut CO2 emissions per passenger kilometer by 75% by 2050 compared
to the levels in 2000. This target has prompted companies to compete in developing new technologies to achieve this
reduction.

Some strategies for reducing the SFC are already in place, like the increased propulsion efficiency of engines,2

the use of carbon fiber-reinforced materials and composites,3 and the extensive application of multidisciplinary opti-
mizations (MDO)4 . However, to meet the updated environmental requirements, new strategies for improving aircraft
efficiency are demanded. Part of these strategies relies on the design of new vehicle concepts for entry in the next
decades,5 the implementation of hybrid and electric propulsion systems, and the use of natural laminar flow (NLF)
designs. The latter one has the advantage of allowing its application to the current aircraft concepts and significant po-
tential for reducing the SFC. According to Schrauf,6 the achievement of laminar flow over 40% of the wings, horizontal
and vertical stabilizers, and nacelles surfaces can reduce the total drag by 16%.

Despite advancements in technology enabling manufacturers to create complex surfaces like wings, certain ir-
regularities inevitably arise during the manufacturing and assembly of such structures, and the difficulties regarding the
implementation of NLF technology rely on the manufacturing of a sufficiently clean surface, given the discrepancies
caused by the significant number of holes, rivets, and fasteners that are usually applied to it. Therefore, analyzing the
effect of irregularities, including surface waviness on aerodynamic surfaces, on the boundary layer stability character-
istics are important due to their impact on the growth of Tollmien-Schilichting (TS) waves,7 that if grow large enough,
might cause a sudden transition to turbulence and increase the friction drag and fuel consumption of aircraft. With the
concerns mentioned above, the focus of this work is on presenting a practical methodology regarding the information
of manufacturing tolerances to guarantee the required surface quality, specifically surface waviness requirement, for
designing NLF surfaces.

In the literature, there are different criteria proposed by different researchers for the allowable size of surface
irregularities which does not affect the transition, but each has some important limitations. For example, Fage,8 using
wind tunnel experiments, provided an empirical formula to find allowable sizes of bulges, hollows, and ridges on a flat
plate (with a small pressure gradient), and on an airfoil (when the surface irregularity is located in nearly zero pressure
gradient region). Fage’s experiments were done for a limited range of Reynolds numbers, and also, to use his criterion,
the knowledge of transition location in the presence of surface irregularity is necessary which makes the method less
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practical. Carmichael9 performed experiments on a two-dimensional wing of an F-94 airplane where full chord laminar
flow was maintained by applying suction in the adverse pressure gradient region of the airfoil. Using experimental data,
for a waviness located in the favorable pressure gradient region on the airfoil, he proposed an empirical formula that
gives the minimum height of waviness (for a specific Reynolds number, wavelength of surface waviness, and chord
length) to prevent full-chord NLF in the presence of suction. We also mention the works of Crouch10 which proposed
two correlations concerning the TS type of instabilities for forward and backward facing steps capable of informing
the resulted ∆N in the envelope curve, and Perraud11 proposing criteria concerning cross-flow instabilities. Wie and
Malik12 introduced an empirical equation, derived from their numerical calculations, to estimate the change in the N-
factor caused by various geometric parameters of waviness, including the number of waves, height, wavelength, as well
as the Reynolds number. For more comprehensive information, readers are encouraged to refer to the cited articles.

This study introduces a physics-based numerical framework aimed at determining manufacturing tolerances for
smooth waviness on Natural Laminar Flow (NLF) surfaces. The key objective is to identify the critical waviness
profile that impacts the transition process. Achieving this involves solving an optimization problem using gradient-
based methods. In this work, we adopt the approach proposed by Amoignon et al.13 to calculate the gradients of kinetic
energy of perturbations in the boundary layer with respect to surface deformation, utilizing an adjoint-based method. By
solving an unconstrained optimization problem using the gradient ascent method and a constrained problem using the
sequential least squares programming (SLSQP) algorithm, we determine the largest permissible surface deformation
with the minimum L2-norm that induces a specific amplification of disturbances (∆N), and tolerances are found based
on that.

The paper is organized as follows. In the section 2, the procedure to find the sensitivity of objective function for
adjoint calculations, together with the governing equations of the problem are explained, and the validation for adjoint
implementation is presented in section 3. Section 4 is dedicated to algorithms to find the manufacturing tolreances, and
results are presented in section 5. Finally, the main results are concluded in section 6.

2. Methodology and Governing Equations

2.1 Sensitivity Calculation

In this section, an overview of the steps required to calculate the sensitivity of kinetic energy of perturbations inside
the boundary layer with respect to surface deformations is given, and in the next section, the governing equations
required for each step are explained. To reduce the computational cost, following the method proposed by Amoignon
et al.,13 the viscous boundary layer and the inviscid outer flow are treated separately. However, as will be explained in
the following, the boundary layer calculation is dependent on the inviscid region. First, the pressure distribution, Cp,
on the airfoil is found by solving Euler equations using ADflow open-source code14 . Approximate Newton-Krylov
solver15 is used to increase the robustness of the solver. After calculating the pressure distribution on the airfoil surface,
using an in-house compressible boundary layer code, the meanflow quantities inside the viscous boundary layer are
calculated. Finally, for stability analysis, using NOLOT code16 , compressible parabolized stability equations are
solved. It should be noted that effects of curvature on stability analysis are taken into account in the PSE calculations.
After solving all governing equations, to calculate the desired sensitivities, the adjoint of governing equations, in the
reverse order, are solved, i.e. first adjoint of PSE, then adjoint of boundary layer equations, and finally adjoint of Euler
equations. To solve the adjoint of boundary layer and PSE, in-house codes17 , and to solve adjoint of Euler equation,
ADflow code is used.

2.2 Governing Equations

2.2.1 Inviscid Region: Euler Equations

To solve the inviscid flow around the airfoil, Euler equations are used which in the compact form can be written as

∇ · (ρU) = 0, (1)

∇ · (ρUUT ) + ∇p = 0, (2)

and

∇ · [U(E + p)] = 0. (3)
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In these equations, ρ is density, U = [U,V,W] is the velocity vector in the inviscid region with U,V and W being its
Cartesian components, p is the pressure and E the total energy per unit volume, which is the sum of internal and kinetic
energies of the flow. Under the assumption of an ideal and perfect gas, we can write E = p

γ−1 +
1
2ρU

2 where γ is the
specific heat ratio of the gas.

2.2.2 Viscous Region

The total flow inside the BL is decomposed into the mean and disturbance flow quantities as

qtotal(x1, x2, x3, t) = q̄(x1, x3) + q̃(x1, x2, x3, t). (4)

q̄ and q̃ are mean flow and disturbance quantities, and x1, x2, and x3 are streamwise, spanwise, and wall-normal
directions in an orthogonal curvilinear coordinate system, respectively. In such coordinate system, under an infinite
swept wing, a length element (ds) is defined by ds2 = (dx1)2 + (dx2)2 + (dx3)2.

2.2.3 Boundary Layer Equations

The quasi-3D non-dimensional compressible BL equations on a swept wing with an infinite span ( ∂
∂x2 = 0), in an

orthogonal curvilinear coordinate system, are given by equations (5)-(8). All the flow and material quantities (except
the pressure,) are made non-dimensional based on chord length, c, and free-stream quantities. Pressure is made non-
dimensional with twice the dynamic pressure of the free-stream.

∂(ρ̄ū)
∂x1 +

∂(ρ̄w̄)
∂x3 = 0 (5)

ρ̄ū
∂ū
∂x1 + ρ̄w̄

∂ū
∂x3 = −

dp̄e

dx1 +
1

Re
∂

∂x3 (µ̄
∂ū
∂x3 ) (6)

ρ̄ū
∂ū
∂x1 + ρ̄w̄

∂v̄
∂x3 =

1
Re
∂

∂x3 (µ̄
∂v̄
∂x3 ) (7)

c̄pρ̄T̄
∂ū
∂x1 + c̄pρ̄w̄

∂T̄
∂x3 =

1
RePr

∂

∂x3 (κ̄
∂T̄
∂x3 )+

(γ − 1){ūM2 dp̄e

dx1 +
µ̄M2

Re
[(
∂ū
∂x3 )2 + (

∂v̄
∂x3 )2]}

(8)

In these equations, [u, v,w] are streamwise, spanwise, and wall-normal velocities, respectively, T is temperature, and ρ
is density. Reynolds number, Mach number, and Prandtl number are defined as Re = cu∞

ν∞
, M = u∞√

RγT∞
, and Pr = c̄pµ̄

κ̄
,

respectively, where c is chord length, u∞, ν∞, and T∞ are free-stream velocity, kinematic viscosity, and temperature,
respectively. R is specific gas constant, c̄p specific heat at constant pressure, γ specific heat ratio, µ̄ dynamic viscosity,
and κ̄ is heat conductivity. Also, pe is the pressure at BL edge, which under the BL assumptions (p = pe(x1)), is related
to ρ and T through the equation of state as γM2 p̄e = ρ̄T̄ .

2.2.4 Disturbance Equations

The disturbances are decomposed into time- and spanwise periodic waves as

q̃(x1, x2, x3, t) = q̂(x1, x3)Θ(x1, x2, t), (9)

where the wave function, Θ, is defined as

Θ(x1, x2, t) = exp

i

∫ x1

xs

α(x′)dx′ + βx2 − ωt


. (10)

In equation (10), α is the complex-valued streamwise wavenumber, and β andω are the real-valued spanwise wavenum-
ber and angular frequency, respectively. Disturbances start to grow from the streamwise location xs. Assuming BL
approximations, there is a scale separation between the weak variation in x1 and strong variation in x3 directions, as
well as between wall-normal and streamwise mean velocity components. By applying these assumptions and introduc-
ing the ansatz (9) into the governing equations, a set of nearly parabolic equations, called Parablized Stability Equations
(PSE)18 , will be obtained, which can be written, in symbolic notation, as

Aq̂ + B
∂q̂
∂x3 + C

∂2q̂
(∂x3)2 +D

1
h1

∂q̂
∂x1 = 0, (11)
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where q̂ ∈ [ρ̂, û, v̂, ŵ, T̂ ]T , (h1)2 = ( ∂X
∂x1 )2 + ( ∂Y

∂x1 )2 + ( ∂Z
∂x1 )2, and X,Y, and Z are the Cartesian coordinates. The matrices

A,B,C andD are large 5× 5 matrices which can be found in the work of Pralits et al.17 . In PSE formulation, both the
amplitude q̂ and wave functions depend on x1. To remove this ambiguity, and also, to guarantee that variations of q̂ in
x1-direction remain small allowing to neglect the higher-order streamwise derivatives, a so-called auxiliary condition
is used as ∫ +∞

0
q̂H ∂q̂
∂x1 dx3 = 0. (12)

Here, superscript H denotes complex conjugate transpose. Equation (11) is integrated downstream with an initial
condition at x1 = xs given by local stability theory, and at each streamwise location x1, the value of α is iterated until
the auxiliary condition is satisfied. After finding all the disturbance quantities q̂ and streamwise wavenumber α at all
x1 stations, the perturbation kinetic energy Ê and spatial growth rate σ can be found as

Ê =
∫ +∞

0
ρ̄(|û|2 + |v̂|2 + |ŵ|2)dx3, (13)

and

σ = −αi +
∂

∂x1 (ln(
√

Ê), (14)

where αi is the imaginary part of α. Finally, with the growth rate, the N-factor, which is a measure of integrated growth
of perturbations, can be calculated as

N =
∫ x

xn1

σdx1, (15)

where xn1 is the lower branch of the neutral curve, where disturbance amplification starts (σ = 0). The N-factor (or
growth rate) can then be used in the eN method19 to predict the transition location. The combination of Euler, boundary
layer, and PSE codes allows a stability analysis of the boundary layers over a given wing section. In what follows we
present the procedure to obtain the sensitivity of disturbance energy with respect to surface waviness.

2.3 Flow Case

As mentioned in the introduction, surface waviness might increase the growth of TS waves in the boundary layer and
adversely affect the performance of natural laminar flow designs. In this regard, the NLF(2)-0415 natural laminar
airfoil20 designed for commuter aircraft applications was chosen for the analysis in this work (figure 1) to investigate
how surface waviness may degrade the boundary-layer stability characteristics. Here, the flight conditions are: M∞ =
0.5, Re = 6 × 106, and AoA = 1.25◦. Also, thermodynamic properties of the air were calculated for an altitude of
9600m.

Figure 1: NLF(2)-0415 airfoil.

To solve Euler equations, a C-type structured grid with 1198 grid points (598 volume cells) on the airfoil surface
and 69201 total volume cells has been generated using the Construct2D mesh generator code21 . The computational
domain is shown in figure 2a. A farfield boundary condition is set around the domain and a no-penetration boundary
condition is used on the airfoil. Since ADflow is a 3D CFD solver, the domain in the spanwise direction has been
extruded with 1 volume cell, and at the two sides of the domain, a symmetry boundary condition is used. In figure 2b
the generated mesh around the loading edge of the airfoil is shown. It should be noted that, for the purpose of validation
of adjoint implementation (as will be discussed in section 3) and to reduce the computational cost of validation process,
a mesh with 792 grid points (395 volume cells) on the airfoil has been used ; however, the finer grid (with 1198 grid
points on the surface) has been used for all other simulations carried out in this work.
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Figure 2: Computational domain (a), generated mesh (b).

2.4 Objective function for sensitivity calculation

To find the surface waviness profile with minimum L2−norm of surface deviations that causes a specific increase in the
amplification of perturbations using a gradient-based optimization, the objective function J (to be used in sensitivity
calculation) should be a measure of the growth of perturbations in the domain. Here, the kinetic energy of a specific
disturbance E1, integrated over a selected region, has been chosen for this measure as the objective function. This can
be formulated as

J(q̃,X) = E1(q̃,X) =
1
2

∫ X f

Xs

∫ z1

z0

∫ +∞

0
(|ũ|2 + |ṽ|2 + |w̃|2)dx3dx2dx1. (16)

Here, X is the vector of nodal coordinates, and [Xs, X f ] is the region where the perturbation exists. The amplitudes
of disturbances, which are used to calculate the objective function, are the solutions of the PSE (equation (11)) for a
specific perturbation mode, which is determined by α(xs), β, and ω. Here, by computing the envelopes of N-factor
curves, we have found the most amplified mode among a wide range of modes with different ω and β, and we have
used the disturbance amplitudes of that mode to compute the objective function.

By formulating the objective function J, the sensitivity of the objective function with respect to design variables,
which here are taken as all surface grid points and are denoted by z, can be calculated efficiently using adjoint method.
For adjoints of BLE and PSE, we have used a continuous approach. The adjoint equations and their derivations can be
found at references such as the works of Pralits et al.17 and Amoignon et al.13 . For adjoint of Euler equations, we
have used the discrete adjoint implementation in ADflow code22 .

3. Sensitivity Validation

For the purpose of validation, the flight conditions are: M∞ = 0.5, Re = 6×106, and AoA = 1.25◦. Also, thermodynamic
properties of the air were calculated for an altitude of 9600m. Also for stability calculations, we have chosen an unstable
mode with β = 0, αxs = 600 [m−1], and frequency ( f ) equal to 5850Hz. To validate the implementation of the adjoint
method, we have compared gradients obtained from the adjoint method with gradients calculated using a central finite
difference scheme as given by

∂J
∂gk
≈

J(q(z + ∆z), z + ∆z) − J(q(z − ∆z), z − ∆z)
2∆gk

. (17)

In equation (17), J is the objective function, q is the state vector (velocity components, pressure, and energy), z is
the surface nodal coordinate vector of the clean airfoil, gk is the kth design variable, and ∆z is the vector of surface
deformation (as a result of ∆gk). In equation (17), gk and the corresponding ∆z should be specified. Here, to perturb
the geometry, we have parameterized the surface using the so-called Hicks-Henne Bump Functions (HHBFs) and the
gradients with respect to a specific control parameter are found. HHBFs are smooth bump functions introduced by
Hicks and Henne23 and are used in aerodynamic shape optimization applications to smoothly modify the shape of the
airfoils. They have the analytical definition given by
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fi(x, a, h, t) = ai

[
sin

(
πx

log(0.5)
log(hi )

)]ti
= ai f0,i(x, h, t), (18)

where, x is the vector of x-coordinates of grid points on the airfoil, and for the ith bump, ai is the maximum height
of the bump, hi is the x location (based on the chord) where the height of the bump is maximum, and ti controls the
width of the bump. For each set of parameters a, h, and t, the value of HHBF is calculated for all points in x. The
parameterized geometry using HHBFs can be written as

z = z0 +

N∑
i=1

ai f0,i(x, h, t), (19)

where z is the parameterized and z0 the baseline airfoil geometry, and N the number of HHBFs used to modify the
geometry. In equation (17), we have chosen the maximum height of the bump, a, as the design variable, and we deform
the airfoil with HHBF, i.e., gk = ak and ∆z = ∆ak f0,k(x, h, t)êz. It should be mentioned that we need to change the
position of the bump (using the parameter h), along the surface, and for each position of the bump, the geometry and
grid should be updated. To accomplish this, we utilized the IDWarp package24 , which uses an inverse distance method
to modify the location of mesh volume nodes based on perturbations of the surface nodes. Here, we have calculated the
gradients using FD for x/c going from 0.15 to 0.60, which consists of 77 grid points. Also, FD simulations are repeated
for 4 different step sizes (∆a) in the range of 10−7 to 10−4, and the FD convergence was achieved for ∆a = 10−5. Thus,
in total for the central FD method, 77 × 2 × 4 = 616 simulations were performed.

Next, we calculate the sensitivity of the objective function (obtained from adjoint method) with respect to the
same design variable as we used in FD, i.e, HHBF height (a). This can be done by putting HHBF centered at all surface
grid points and then applying equation (20).

(
∂J
∂ai

)Ad joint =

∫
∇zJ f0,i(x, h, t)dx. (20)

In this equation, f0,i(x, h, t) is HHBF with maximum value located at ith grid in x. The comparison of ∇aE = ∂J
∂a

obtained from the adjoint method and central finite difference is shown in figure 3. The figure clearly demonstrates
the good agreement of the sensitivity obtained using the two methods, confirming the successful implementation of the
adjoint method.

0.2 0.3 0.4 0.5

-10

-5

0

5
10

7

Figure 3: Comparison of gradient obtained using the adjoint method and finite difference (∆a = 10−5) for upper surface
of NLF(2)-0415 airfoil along the chord. M∞ = 0.5, Re = 6× 106, and AoA = 1.25◦ with f = 5850Hz, β = 0, αxs = 600
[m−1].

4. Algorithms for Finding the Manufacturing Tolerances

In order to determine the manufacturing tolerances, it is necessary to identify the maximum allowable waviness profile
on airfoil with minimum L2-norm of surface deformations that could potentially lead to transition to turbulence due to
amplification of TS waves. Minimum L2-norm property of this specific waviness profile implies that no other surface

6

DOI: 10.13009/EUCASS2023-816



TOLERANCES FOR NATURAL LAMINAR FLOW DESIGN

deformation with the same L2-norm will induce transition at a particular position along the chord. Once this waviness
profile is obtained, the manufacturing tolerances can be calculated. The process of finding this profile involves solving
an optimization problem, either unconstrained or constrained, using gradient-based methods, where the adjoint method,
which was previously explained, is employed to compute the gradients necessary for this optimization process.

Two optimization problems are solved to determine the desired wavy profiles to find the manufacturing toler-
ances: an unconstrained optimization problem employing the gradient ascent (GA) method, and a constrained opti-
mization problem utilizing the sequential least squares programming (SLSQP) approach. These choices are motivated
by specific factors. The SLSQP approach is capable of identifying the optimal solution, which corresponds to the
largest allowable deformation profiles with minimum L2−norm of surface deformations. On the other hand, the GA
approach offers the advantage of significant saving of computational time at the cost of not finding the optimal so-
lution, but a solution that closely approximates it. The time-saving advantage of GA is because of the fact that GA
only requires one computational fluid dynamics (CFD) simulation between each new gradient computation, whereas
the SLSQP approach necessitates multiple function evaluations, i.e., CFD simulations, during the search for a new
direction which is time-consuming. The subsequent explanations will delve into these two optimization problems and
the algorithms employed to solve them.

4.1 Gradient Ascent

The algorithm to find the maximum allowable waviness profile using GA algorithm is explained in the following.
Initially, using the stability tools, i.e., the NOLOT code, the growth history of the most unstable mode along the airfoil
is obtained. This growth history is represented by the N-factor curve, which serves as a monitoring parameter in our
algorithm. Subsequently, we select an allowable increase, denoted as ∆N, in the maximum value of the N-factor. The
choice of ∆N is based on the critical value of N utilized in the design of the NLF airfoil. Once ∆N is determined, by
taking small steps in the direction of the gradient of E, we will find the waviness profile that increases the maximum
value of N-factor by ∆N units, using gradient ascent algorithm which can be written as

zn+1 = zn + γ
∇zE(zn)

max|∇zE(zn)|
, (21)

where zn is the vector of airfoil’s surface nodal vertical coordinates at iteration n, and γ is a sufficiently small step size.
It should be noted that at each iteration, the step that we take in the direction of the gradient is γ

max|∇zE(zn)| .
This results in an optimal deformation in a local sense, as the gradient shows the direction of maximal increase

of E for each iteration; however, as will be shown later, such local optima do not lead to an optimal deformation in
a global sense after several iterations. Also care should be taken to choose the value of step size in gradient ascent
algorithm. If γ is too small, the convergence will be slow; on the other hand, if it is too large, it is possible that
algorithm does not follow the steepest ascent direction. Note that there is no objective function to be minimized in
this case as we are solving an unconstrained optimization problem using GA algorithm. At each iteration, as will be
explained in the next section, we project the gradient onto a specified waviness profile and take a sufficiently small
step in the gradient direction and find the new waviness profile. Then, the algorithm updates the geometry and the grid
using the IDWarp package to solve all the direct and adjoint equations for the newly updated airfoil and finds the new
gradient. Subsequent iterations are performed until the convergence criteria ∆N is achieved.

4.1.1 Gradient Projection

The wavelengths of potential waviness on airfoils are commonly influenced by factors such as the manufacturing
process and their internal structure, particularly for composite panels. Additionally, induced deformations caused by
the installation of numerous rivets on the surface panels can also play a role. Consequently, it is more pragmatic
to restrict the range of possible wavelengths for the waviness on the airfoil. This can be achieved by projecting the
gradient onto a specific basis, thereby narrowing down the feasible options. Considering that, at each iteration, we have
projected the gradient onto a basis of k sine Fourier modes as

(∇zE)pr =

k∑
n=1

[
bnsin

(
nπ(x − xs)

x f − xs

)]
, (22)

where the coefficient of each Fourier mode, bn, is calculated as

bn =
2

x f − xs

∫ x f

xs

∇zE(x)sin
(

nπ(x − xs)
x f − xs

)
dx. (23)
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Here, x is the vector of surface nodal coordinates along the chord, and xs and x f are the beginning and end of the region
that we are modifying the airfoil. We have chosen the Fourier sine basis instead of the complete Fourier series because
it enforces that the displacements at the extremes of the function are always zero, i.e., there will be no forward- or
backward-facing steps on the airfoil. For the NLF(2)-0415 used in this work, xs = 8% and x f = 70% of the chord.
After projecting the gradient, we use (∇zE)pr in the algorithm.

4.2 SLSQP

As previously mentioned, when employing the gradient ascent method, there is no guarantee that the obtained profile
by marching in the gradient direction is the one with the minimum L2-norm that results in the desired ∆N. To address
this concern, a constrained optimization problem can be solved. By solving this problem, we can ensure that the profile
with the minimum L2-norm, which will increase the maximum value of the N-factor by ∆N units, is attained.

For this, we parameterize the surface using k sine Fourier bases, which also determines the minimum wavelength
of waviness on the surface as

z = z0 +

k∑
n=1

[
bnsin

(
nπ(x − xs)

x f − xs

)]
. (24)

Then, the Fourier coefficients, bn, are considered as design variables and they are found as the solution to the following
optimization problem:

min
∆z∈R

J = ∆z1
2 + ∆z2

2 + · · · + ∆znp
2

w.r.t. b1, b2, · · · , bk

s.t. E = Etarget = ERE0.

(25)

Here, J is the objective function that represents the L2−norm of the deformations, ∆zi = zi − z0,i is the vertical surface
deviation of the ith node on the surface, np is the number of surface grid nodes to be modified, E is the kinetic energy
of disturbances in the boundary layer, Etarget is the target kinetic energy of disturbance in the boundary layer which
corresponds to a specific ∆N, E0 is the kinetic energy of disturbances in the BL for the clean baseline airfoil, and
ER =

Etarget

E0
.

The sequential least squares programming (SLSQP) algorithm from the SciPy25 library is used to solve this
constrained optimization problem. To solve equation (25) using SLSQP, the gradients of the objective function and
constraint with respect to design variables, i.e., dJ

dbk
and dE

dbk
, are needed. dJ

dbk
can be found analytically, using the

chain rule, from the definition of the objective function in equation (25) and parameterization of the surface (24) as
dJ
dbk
= dJ

dz
dz

dbk
. Also, dE

dbk
can be calculated, using the chain rule, from gradients of the kinetic energy of perturbation

with respect to surface deformation dE
dz , which is obtained from the adjoint method, and dz

dbk
as dE

dbk
= dE

dz
dz

dbk
. Once dJ

dbk

and dE
dbk

are calculated, they are passed to the optimizer and the optimal values for design variables, bk, are found and
then the waviness profile is reconstructed using equation (24). It is important to highlight a key difference between this
approach and gradient ascent. In the gradient ascent method, the algorithm’s input and stopping criteria rely on the
target ∆N. While the algorithm marches in the direction of the gradient of kinetic energy of perturbations, the value
of ∆N is continuously monitored at each iteration until the desired value is reached. On the other hand, in the SLSQP
approach, we cannot directly utilize the target ∆N as a constraint. This is because we calculate the gradient of kinetic
energy, not the N-factor with respect to surface deformation. Additionally, we need to provide the optimizer with the
gradient of the constraint with respect to the design variables. Therefore, we must establish a correlation between the
target ∆N and its corresponding kinetic energy of the domain (Etarget). This correlation can be determined through trial
and error by selecting a specific Etarget and examining the resulting ∆N, or it can be approximated using the results of
the gradient ascent method.

4.3 Finding Manufacturing Tolerances

The waviness profiles that are found with gradient ascent and SLSQP algorithms are the largest allowable profiles
(and with minimum L2−norm of surface deviations when SLSQP is used) that will increase the maximum growth
of convective instabilities by a specific predefined amount, which is defined by ∆N as previously explained. Largest
allowable profile with minimum L2−norm of surface deviations implies that any other waviness profile with the same
L2−norm is not as worse as that case in terms of amplifying the instabilities inside the boundary layer. Thus, we can
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define the tolerance htol as the L2−norm of surface deviations of the largest allowable deformation profile (for a specific
flight condition and k) with respect to the clean airfoil. This can be written as

htol =

√
1

(x f − xs)

∫ xs

x f

(∆zi)2dx, (26)

where ∆zi is surface nodal vertical deformation, calculated using SLSQP or GA approaches, for x ∈ [xs, x f ].

5. Results

In this part, after introducing the simulation parameters, the effects of Reynolds number, minimum wavelength of
waviness, angle of attack (AoA), and selection of the unstable mode on manufacturing tolerances will be investigated.
Also, the results obtained with two optimization methods, i.e., gradient ascent (GA) and SLSQP, will be compared.

5.1 Flow Cases and Stability Analysis Parameters

The results were obtained for a Mach number equal to 0.5 for different Reynolds numbers and angles of attack, with
thermodynamic properties based on a flight altitude of 9600 meters. For stability analysis of each case, we found the
most unstable mode (for baseline airfoil) among a wide range of different feasible modes. Reynolds number (Re), angle
of attack (AoA) and the corresponding lift coefficient (Cl) and parameters for stability analysis, including the frequency
( f ), spanwise wavenumber (β) and the initial value for the complex-valued streamwise wavenumber (α = αr + iαi) of
the most amplified disturbance mode are summarized in table 1.

Table 1: Parameters used for analysis of different cases.

AoA(◦) -0.8240 -0.1340 0.2096 0.550 0.8997 1.25 1.25 1.25

Re(×106) 15 15 15 15 15 15 9 12

Cl 0.50 0.60 0.65 0.70 0.75 0.80 0.80 0.80

f [Hz] 9941.81 9822.53 9816.62 9797.17 8382.31 8341.67 7519.06 8172.98

β[m−1] 247.42 303.53 235.28 230.68 445.99 288.19 223.34 257.40

αr[m−1] 1140.28 1098.20 1083.43 1059.21 894.41 888.20 760.90 847.78

αi[m−1] 2.11 5.44 13.46 7.40 4.97 11.11 -3.75 -6.42

5.2 Effect of Reynolds Number and Wavelength of Waviness

Figure 4 shows the tolerances calculated for ∆N ∈ [0.3, 2] with GA and SLSQP approaches. The cases were simulated
for Re ∈ [9; 12; 15] × 106, Cl = 0.8, and k ∈ [10; 16]. From the two figures, it is clear that increasing the Reynolds
number or considering waviness profiles with smaller wavelengths (larger values of k), will decrease the tolerances.
The reason behind this is the fact that as Reynolds number increases for the same chord length, the boundary layer
gets thinner. As a result, the variations in pressure distribution (Cp) on the airfoil surface due to waviness have a more
pronounced effect on the BL characteristics, and instabilities grow faster. In other words, the effect of adverse pressure
gradient due to surface waviness which destabilizes the instability waves is more pronounced when the Reynolds
number increases. Also, as we decrease the wavelength of waviness on the airfoil, higher levels of adverse-favorable
pressure gradient will appear on the surface which decreases the tolerances. The figures also show that, in general,
the tolerances which are found using SLSQP are lower than the ones obtained using GA, which is consistent with the
properties of the two methods as discussed earlier. The difference between the results obtained with the two methods
in most cases is less than 10% and it decreases as we increase the Reynolds number, especially for large wavelengths
(lower k).

It should also be mentioned that a convergence study for γ (see equation (21)) was performed to find the ac-
ceptable value to be used in GA algorithm. The value of γ = 4 × 10−6(m) turned out to be a good value to guarantee
convergence with respect to the step size γ and a reasonable number of iterations. Thus, this value of γ is used for all
GA calculations.
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Figure 4: Tolerances computed with GA and SLSQP for Re ∈ [9; 12; 15] × 106, and for k = 10 (left panel) and k = 16
(right panel) for Cl = 0.8 using the corrensponding modes in table 1.

5.3 Effect of Angle of Attack

Figure 5 shows the tolerances computed with two methods for Cl ∈ [0.5; 0.8] at Re = 15 × 106 for k = 10. From figure
5 it is clear that for the lowest angle of attack, (AoA = −0.8240◦,Cl = 0.5) the results obtained with two methods
are almost identical, mainly due to the absence of adverse pressure gradient until x/c ≈ 0.70 for the upper side of the
airfoil, which does not happen for higher lift coefficients. Therefore, for small AoA, i.e., Cl ≤ 0.5, it is expected to have
larger manufacturing tolerances, since the strongly favorable pressure gradient has a stabilizing effect in the boundary
layer, requiring larger waviness amplitudes to cause the same variation in the N−factor envelope. The reader should be
reminded that the tolerances informed in figure 5 simply imply a maximum ∆N = 2, and do not represent the tolerance
for which we have transition associated with the maximum N-factor value. For example, the condition for Cl = 0.5
had a maximum N-factor of 4.0 for the clean airfoil, which means the maximum value of htol in figure 5 corresponds
to a N-factor equal to 6.0. In the absence of the experimental or expected NT associated with the transition, if one
chooses the typical value of NT = 9,26 the tolerances would be larger, i.e. ∆N = 5. The condition for Cl = 0.8, on the
other hand, for the clean airfoil had a maximum N-factor of 14.82, so the maximum tolerance that is informed in figure
5 is associated with N = 16.82. Knowing the exact value for NT is hard, usually requiring wind tunnel experiments
or flight tests, once the value of NT = 9 is not universal, depending on the turbulence intensity, and many flight tests
have tracked the transition onset for NT = 13.5,27 NT = 17.2,28 and NT ≈ 20,29 when the envelope approach is used.
Therefore, the present methodology allows the determination of manufacturing tolerances based on acceptable ∆N
values to be decided by the aerodynamicist, that will know in advance the maximum expected ∆N that the geometry
can produce.

0.5 1 1.5 2

0

2

4

6

8
10

-5

0 0.2 0.4 0.6 0.8 1

-1.5

-1
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Figure 5: Effect of lift coefficient in the computed tolerances for Re = 15 × 106 and k = 10.

On what concerns the computational time of both approaches, using the gradient ascent (GA) method, a full
curve, like in figure 5, can be generated in less than 5 hours using only four cores, taking 50 to 60 iterations with
γ = 4 × 10−6[m] to reach ∆N = 2. Each point of the same curve, i.e., htol corresponding to each ∆N for a specific
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Re and k, using SLSQP can take up to 12 hours (depending on the values of ER) using the same number of cores.
Considering the small difference between the results obtained with the two methods (especially for higher Reynolds
number cases), in the next section only the results obtained using the GA algorithm are reported for Re = 15 × 106.

5.4 Effect of Mode Selection

As explained in section 2.4, to do the stability analysis we have found the most unstable modes among a wide range
of different feasible modes to be used as initial condition in PSE calculations. However, this is not true to claim that
the mode which is found is the most amplified mode among all possible modes since we are not able to find an infinity
number of instability modes. As was explained in section 2.2.4, in PSE approach, the streamwise wavenumber (unlike
in local linear stability analysis) is not constant, and the initial mode serves as the initial condition required to solve
PSE with marching algorithm. Moreover, it has been shown that optimizing the measure of kinetic energy based on a
single mode, will affect the growth of large number of disturbances30 . So if we find the sensitivities based on the most
amplified mode that we found, we expect that no other mode will become the most amplified mode during the process.
This has been checked during the process and keeping the mode constant turned out to be a good option. However, it
might be possible to have several modes with almost the same maximum N − f actor but with different frequencies. In
that case, a specific mode with slightly lower maximum N − f actor might result in lower tolerances due to resulting
pressure gradient in the final airfoil shape. Figure 6 shows the maximum N − f actor (for clean baseline airfoil) for
Re = 15 × 106, and for different frequencies in the range of 4000-14000 Hz. For each lift coefficient, the frequency for
which the N − f actor is maximum is selected as the most amplified mode. From the figure it is clear that for all lift
coefficients considered here, there is a highly amplified mode with frequency in range 9699-9822 Hz. However, as the
lift coefficient increases (by increasing angle of attack), for Cl ∈ [0.75; 0.8], another mode which is the mode that has
been used in the results showed earlier in this work and are summarized in table 1, with lower frequency in the range
of 8241-8447 Hz becomes more unstable than the previous one. In this case, i.e., when a second mode becomes more
unstable, it is important to calculate the tolerances not only based on the most amplified mode, but also with the other
less amplified modes that have almost the same maximum N − f actor compared to the most amplified one.

4000 6000 8000 10000 12000 14000

0

5

10

15

Figure 6: Maximum N − f actor (for clean baseline airfoil) for Re = 15× 106, and for different frequencies in the range
of 4000-14000 Hz

Figure 7 shows the tolerances (obtained only with gradient ascent as explained in section 5.3), for ∆N = 2,
k = 10, Re = 15 × 106, and Cl = [0.50; 0.60; 0.65; 0.70; 0.75; 0.80]. Here, we present two curves for tolerances, one
obtained with the most amplified mode found for each case (as reported in table 1), which is shown by the black line
in the left panel of the figure, and the other time (shown by dashed red line in the figure), for Cl = [0.75; 0.80], we
have found the tolerance based on the second most unstable mode, which has a frequency close to the frequency of
most amplified modes for lower lift coefficients as shown in figure 6. The results are shown in the left panel of figure
7. It is clear that if we calculate the tolerances for all lift coefficients based on an initial mode which has a frequency
in the range of 8241-8447 Hz, the tolerances decreases by increasing the lift coefficient as expected. However, if for
Cl = [0.75; 0.80] we find the tolerances based on the most amplified mode for those cases, the tolerances will be larger
than the tolerances for lower lift coefficients. The envelop of N − f actor for Cl = 0.75, shown in the right panel of
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figure 7, sheds light on the reason behind this. From the envelopes, it is clear that although the maximum N − f actor
is the same when either of the first or second most amplified mode (which are given in table 2) is used, the variation
of N − f actor along the chord, which is a direct indication of pressure distribution on the airfoil surface, is different.
When the second mode is used, the final optimized shape has a large bump (which means a large adverse pressure
gradient) in the upstream position of the chord, where the boundary layer is thinner, and this will result in a lower
tolerance compared to the tolerance obtained when the first mode is used.

0.5 0.6 0.7 0.8
4.5

5

5.5

6

6.5

7
10

-5

1st most amplified mode

2nd most amplified mode

0 0.2 0.4 0.6 0.8
0

5

10

15

Figure 7: Tolerances using first and second most amplified modes for k=10 and corresponding envelopes.

Table 2: First and second most amplified modes for Re = 15 × 106.

First most amplified mode

Cl f [s1] β αi αr Nmax

0.75 8382.31 445.99 894.42 4.97 12.298

0.80 8341.67 288.19 888.20 11.11 14.827

Second most amplified mode

0.75 9746.99 289.79 1028.09 14.66 12.283

0.80 9699.23 288.19 1001.68 1.60 14.666

6. Conclusions

In this work, a methodology to find manufacturing tolerances based on the largest allowable smooth waviness profile on
aerodynamic surfaces, which amplifies the convective instabilities in the boundary layer with a prescribed value ∆N, is
presented. In order to find the desired waviness profile, two optimization algorithms, i.e., gradient ascent and SLSQP,
are used to solve an unconstrained and constrained optimization problem. The method is used to find the manufacturing
tolerances for NLF(2)-0415 natural laminar airfoil at Mach number equal to 0.5, and for different Reynolds numbers
and wavelengths of waviness on airfoil, and at different angles of attack. The results indicate that increasing the
Reynolds number and using waviness profiles with smaller wavelengths lead to a decrease in the tolerances needed
to maintain laminar flow. However, as the angle of attack decreases, the tolerance increases due to a larger extent
of favorable pressure gradient region on the airfoil. It also has been shown that the SLSQP is the method capable
of finding the largest allowable deformation profile with a minimum L2−norm of surface deformation, at the cost of
additional computational time compared to the GA approach, which informs tolerances within an error of less than
15% but in a shorter time frame. It should be noted that the tolerances are dependent on the perturbation mode which
is used for the stability calculations. Although using the most amplified mode for the baseline airfoil in the whole
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optimization process is a good choice, it is recommended to find the tolerances based on other perturbation modes as
well.

The methodology proposed here expresses the efforts made to obtain manufacturing tolerances for NLF surfaces
for aerodynamic applications, where the advantage of the proposed methodology is the extra information that is given
at the beginning of the process, i.e., the final ∆N that the manufactured geometry will result. This helps engineers
dictate manufacturing tolerances with more confidence about their effects.
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