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Abstract 
This paper presents a mid-course trajectory optimization method for variable-flow ducted rocket (VFDR) 
missiles. The minimum-final time problem is defined by reflecting the dynamics and flight constraints. 
We represent the air mass flow rate as an analytic function of the state variables and construct an artificial 
neural network (ANN) for the thrust. The system equation is established by selecting the angle-of-attack 
and air-to-fuel ratio as control variables. Then, pseudospectral sequential convex programming (PSCP) 
is utilized to solve the problem. Numerical optimization results are provided to demonstrate the 
performance of the proposed method and examine the optimal trajectory pattern of the VFDR missiles. 

1. Introduction

Compared to traditional air-to-air missiles (AAMs) equipped with a solid rocket engine, modern long-range AAMs 
adopt an air-breathing rocket engine with higher energy efficiency. It significantly increases the maximum effective 
range and interception capability of AMMs. Especially the variable-flow ducted rocket (VFDR) engine is known to be 
adequate for long-range AAMs as being utilized for the “Meteor” missiles, one of the most high-performance AAMs. 
In addition to the high energy efficiency, the VFDR engine can adjust the fuel mass flow rate by controlling the 
throttling valve. It provides the VFDR missiles an additional degree of freedom to steer them compared to solid rocket 
missiles that only can control the load factor. It allows the VFDR missiles to conduct more efficient energy 
management resulting in superior performance than the traditional ones. 

The entire flight of medium or long-range missiles can be classified into three phases: the initial phase, mid-
course phase, and terminal homing phase. The mid-course phase represents the flight interval from when the missile’s  
attitude is stabilized after the launch to the seeker’s lock-on moment. Since the mid-course phase occupies most of the 
flight time until reaching the target and determines the missile’s flight condition at the beginning of the homing phase, 
it greatly affects the interception performance of AAMs. Accordingly, mid-course guidance flight is typically 
conducted to maintain good conditions to intercept the target in the terminal phase. Hence, many studies have addressed 
the mid-course guidance problems as an optimal control problem, with the performance index of maximum-termina l 
velocity or minimum-final time [1]. Many studies were performed to solve the mid-course guidance problem for AAMs, 
especially for solid rocket missiles. In [2-6], the singular perturbation technique was utilized to obtain an approximate 
real-time solution by reducing the order of the problems. In [7-9], the neighboring optimal control theory was utilized  
to calculate the real-time correction for some pre-calculated nominal solutions. In [9], an analytic optimal mid-course 
guidance law was derived in terms of flight conditions, terminal constraints, and thrust effects. On the other hand, only 
a few studies exist to address the mid-course guidance for VFDR missiles. The singular perturbation technique was 
utilized for VFDR missiles in [10] to compute the lift and thrust commands for each flight phase, composed of ascent, 
cruise, and descent trajectories. In other works [11-12], the optimal mid-course guidance problems were converted into 
a parameter optimization problem and solved by applying a nonlinear programming (NLP) algorithm. 

As seen above, many studies for solid rocket missiles applied optimal control theory to derive the approximate 
optimal guidance solution. However, for VFDR missiles, it is not easy to find that kind of work, and the existing one 
was limited to a particular flight situation. It comes from the fact that there exist an additional control variable and 
several flight constraints for VFDR missiles, which makes the problem more complicated. In addition, some 
inconsistent approximations made in the solution procedure may lead to losing the reliability and optimality of the 
solution for this constrained flight case. In such a case, the direct method, which discretizes the optimal control problem 
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and applies an appropriate solution algorithm, can be utilized to solve the problem [13], as done in the previous works 
[11-12]. It first discretizes the optimal control problem defined in the continuous-time domain to a parameter 
optimization problem and applies an adequate solution algorithm to solve the resulting optimization problem. The 
convergence properties of the solution then depend on certain factors, such as how the problem is formulated and 
which discretization method and solution algorithm are used. 

Meanwhile, as it is known that the reusable launch vehicle “Falcon 9” utilized convex optimization for re-
landing, many researchers have paid attention to using convex optimization for various aerospace engineering 
problems. However, many aerospace engineering problems accompany nonlinear dynamics with aerodynamic force 
and thrust, so it is quite restrictive to directly apply convex optimization to general aerospace engineering problems. 
As an alternative, sequential convex programming (SCP), an iterative convex optimization approach, has been studied 
to solve such non-convex problems in the convex optimization framework. SCP refers to the method that solves a non-
convex optimization problem by solving a sequence of approximated convex optimization problems. Even though SCP 
generally does not ensure the deterministic convergence property and global optimality as for convex optimization, it 
has been successfully applied for various aerospace engineering problems such as landing guidance [14], missile 
guidance [15], and entry guidance [16] problems. These studies showed that SCP could provide a feasible solution 
within a reasonable computation time for a well-posed problem. At the same time, there have been some studies to 
improve the accuracy of SCP by combining it with a pseudospectral method called pseudospectral sequential convex 
programming (PSCP). The difference between the conventional SCP and PSCP is in the discretization manner. 
Conventional SCP utilizes uniform nodes and the trapezoidal rule for transcription. In contrast, PSCP employs 
pseudospectral methods that use a particular set of nonuniformly distributed nodes and global interpolation schemes 
with quadrature rules. This feature makes PSCP provide an accurate solution with a small number of nodes for a 
sufficiently smooth problem. PSCP has also been successfully applied for various aerospace engineering problems, as 
in [17-19]. 

Motivated by the above observations, this study establishes a mid-course trajectory optimization algorithm for 
VFDR missiles using PSCP. We first define a minimum-final time problem for the mid-course flight of VFDR missiles. 
Based on the air mass flow rate and thrust data, we represent the air mass flow rate as an analytic function of flight 
conditions and train an artificial neural network (ANN) for the thrust. This study proposes to choose the air-to-fuel 
ratio as a control variable instead of the fuel mass flow rate, which is the common choice for the VFDR missiles. This 
choice can reduce the number of nonlinear constraints in applying SCP and make the initialization process, providing 
the initial reference solution to start SCP, more straightforward owing to the regular solution pattern for the air-to-fuel 
ratio. Successive linearization is employed with a variable trust-region structure to compose an approximate convex 
optimization problem. In addition, an improved trust-region algorithm in [20] is applied to stabilize and accelerate the 
convergence of the solution.  

The remainder of this paper is outlined as follows. In Section 2, the minimum-final time problem is formulated  
by introducing the dynamics and flight constraints for VFDR missiles and modeling the air mass flow rate and thrust 
using the pre-obtained data set. Section 3 elaborates on the PSCP algorithm to solve the defined minimum-final time 
problem. The system equation is first defined and discretized by applying the pseudospectral method. Then, SCP is 
utilized to solve the discretized problem. Section 4 provides numerical optimization results to demonstrate the proposed 
method's performance and investigate the optimal flight pattern of VFDR missiles. Finally, the conclusion of this study 
is given in Section 5. 

2. Problem Formulation 

2.1 Dynamics and flight constraints 

This study considers the planar engagement in the vertical plane. In this circumstance, dynamics for VFDR missiles 
can be represented as: 
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where x , h , V , γ , m  denote the downrange, altitude, velocity, flight path angle, and mass, respectively. g  denotes 
the constant gravity acceleration. L  and D  represent the aerodynamic lift and drag, which can be calculated by 
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where refS  means the reference area, and ρ denotes the air density. This study utilizes the exponential air density 
model and drag-polar for the aerodynamic coefficients as follows.  
 

 

/
0

,
2

,0

sh h

L L

D D L

e
C C
C C KC

α

ρ ρ
α

−=
=
= +

  (3) 

 
where 0ρ , sh , ,LC α , ,0DC , K  are constant parameters to be determined according to the operating altitude range and 
missile configuration.  

In Eq. (1), fm  means the fuel mass flow rate, and T  represents the thrust generated by the VFDR engine. 
The thrust is determined by the mach number, altitude, angle-of-attack, and air-to-fuel ratio. The air-to-fuel ratio is 
defined by the ratio of fuel mass flow rate and air mass flow rate, which is again given as a function of the velocity, 
altitude, and angle-of-attack.  
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In this tsudy, the thrust and air mss flow rate data is contructed by following the literature [21-22]. For the steady 
operation of the VFDR engine, some flight constraints need to be satisfied. The available angle-of-attack range is 
limited for air-breathing, and the fuel mass flow rate is restricted to satisfy the pressure limit in the gas generator. In 
addition, the air-to-fuel ratio is constrained for stable combustion. 
 

 min maxα α α≤ ≤   (6) 

 min maxAF AF AF≤ ≤   (7) 

 ,min ,maxf f fm m m≤ ≤     (8) 
 

2.2 Ducted rocket thrust modeling 

This subsection constructs an analytic expression for the air mass flow rate and ANN for the thrust based on the pre-
obtained data set to facilitate the trajectory optimization. The air mass flow rate is directly proportional to the velocity 
and air density, as it is well-known. Note that the dependency on the angle-of-attack differs according to the air intake 
design. This study models the angle-of-attack influence function by applying the polynomial curve-fitting on the data 
set. The curve-fitting result is depicted in Fig. 1. Denoting the polynomial influence function as ( )p α , the air mass 
flow rate can be represented as follows. 
 

 ( ) ( ) ( ), ,am V h h V pα ρ α= ⋅ ⋅   (9) 
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Figure 1: Angle-of-attack influence function for air mass flow rate 

 
In contrast to the air mass flow rate, it is intractable to construct an analytical expression for the thrust due to its 
complicated nature, resulting from supersonic compression and combustion. Hence, this study utilizes an ANN, which 
can be regarded as a universal approximation function [23], to establish a smooth relation between the thrust and input 
variables. The depth of the hidden layer is set to 3, and each layer contains 15 nodes. The ANN is trained using 262,232 
data sets consisting of flight conditions as the input layer and thrust as the output layer. The trained ANN for the thrust 
is denoted as follows. 
 

 ( ), , ,NNT T M h AFα=   (10) 
 
The training results for the thrust are given in Fig. 2. The trained ANN generally approximates the thrust data well, 
and the maximum error appears to be around 6%.  
 

 
Figure 2: ANN training results for the thrust data sets 
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2.3 Minimum-final time problem 

To define a trajectory optimization problem, proper boundary conditions should be set according to the purpose of the 
mission. The mid-course flight phase aims to reach the predicted intercept point (PIP) against the target. Initial 
boundary conditions are determined by the state of the missile at the beginning time 0( )t t= of the mid-course phase.  
 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0, , , ,x t x h t h V t V t m t mγ γ= = = = =   (11) 
 
Denoting the location for PIP to ( , )f fx h  and the dry mass for the missiles to bm , terminal boundary conditions are 
written as follows. 
 

 ( ) ( ) ( ), ,f f f f f bx t x h t h m t m= = ≥   (12) 
 
where ft  represents the final time, which is also an optimization variable to be minimized in this study. The minimum-
final time problem for the VFDR missile can be written as follows. 
 

 
minimize
subject to Eqs. (1) (12)
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  (13) 

 

3. Pseudospectral Sequential Convex Programming 

3.1 System equation 

This subsection defines the system equation for trajectory optimization. Based on Eq. (1), state and control variables 
are defined as follows. 
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Even though the angle-of-attack and fuel mass flow rate is utilized for controlling VFDR missiles, we select the air-
to-fuel ratio instead of the fuel mass flow rate due to the previously mentioned advantages. The fuel mass flow rate 
can be inversely calculated from the optimization results using Eq. (5) and Eq. (9). Based on the defined state and 
control variables, the system equation can be written as follows. 
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In Eq. (15), this study utilizes Eq. (5) and Eq. (10) to calculate the fuel mass flow rate and thrust for trajectory 
optimization.  
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3.1 Pseudospectral discretization 

In this subsection, the optimization problem in Eq. (13), defined in the continuous-time domain, is converted into the 
parameter optimization problem using the Legendre-Gauss-Radau (LGR) pseudospectral method [24]. The first step 
is to normalize the time domain from 0[ , ]ft t t∈  to [ ]1,1τ ∈ − . Then, the system equation in Eq. (15) is altered as 
follows. 
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where 0ft tη = −  corresponds to the time normalization factor. We define the discretized state and control variables in 
the normalized time domain based on Eq. (14).  
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where N  represents the number of the collocation points, and ( )i⋅ means ( )( )iτ⋅ . Here, iτ  denotes the location of the 
discretized node, which is determined by the LGR pseudospectral method. Then, the system equation described in the 
continuous-time domain in Eq. (16) can be replaced by the following parametric equations.  
 

 ( ) ( ) ( ) ( )1 1, where , , , , ,
2

T
N NZ U Z Uη

= =   DZ F Z U F Z U f f
  (18) 

 
where D  denotes the Radau differentiation matrix, in which each component is constant. The flight constraints in Eqs. 
(6)-(8) can be parametrized by the discretized state and control variables as follows. 
 

 min maxiα α α≤ ≤   (19) 

 min maxiAF AF AF≤ ≤   (20) 

 ( ),min ,max, , ,f f i i i i fm m V h AF mα≤ ≤     (21) 
 
for 1, ,i N=  . In Eq. (21), ( , , , )f i i i im V h AFα  can be calculated by using Eq. (5) and Eq. (9). The boundary conditions 
in Eqs. (11)-(12) can be represented as follows.  
 

 [ ]0 0 0 0 0 0, , , , TZ x h V mγ=   (22) 

 1 1 1, ,N f N f N bx x h h m m+ + += = ≥   (23) 
 
The performance index can also be replaced by using the time normalization factor (η ). Then, the discretized 
minimum-final time problem can be written as follows. 
 

 
minimize
subject to Eqs. (18) (23)

J η=
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  (24) 
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3.3 Sequential convex programming 

The discretized minimum-final time problem in Eq. (24) contains non-convex constraints in Eq. (18) and Eq. (21). 
This study applies the successive linearization method to solve the problem in the convex optimization framework.  To 
this end, let us denote the previous k -th iterative solution for state and control variables to ( )k

iZ  and ( )k
iU . Then, the 

linearized system equation for the ( 1)k + -th iteration can be represented as follows. 
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for 1, ,i N=  . Here, ,r iD  and rZ  result from rearranging the Radau differentiation matrix D  and discretized state 
variables Z . The left side of Eq. (25) approximates the differentiation of the state variable in the normalized time 
domain, /d dτz  in Eq. (16), by a linear combination of the discretized state variables. The right side of Eq. (25) 
corresponds to the linearized equations for the right side of Eq. (16).   
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Next, we need to consider the restriction for the fuel mass flow rate in Eq. (21). Instead of applying successive 
linearization, this study replaces it with an equivalent linear constraint based on the basic concept of the pseudospectral 
method, which approximates the derivative of the state variables at each node as a linear combination of the discretized 
state variables, as in the left side of Eq. (25). Noting fm m= −   and Eq. (16), the nonlinear constraint in Eq. (21) can 
be converted into the following equation. 
 

 
( ),max , ,min5,12 2f r i r fm mη η

 − ≤ ≤ − D Z    (27) 

 
where ( ), 5,1[ ]r i rD Z  denotes the fifth row element of ,r i rD Z . Note that Eq. (27) is an affine constraint with respect to 
the normalization factor and discretized state variables. By replacing the constraints in Eq. (18) and Eq. (21) with Eqs. 
(25)-(27), the discretized problem is modified to a convex optimization problem.  
 In applying SCP with successive linearization, trust-region constraints are considered to make the iterative 
solution not far away from the previous solution to validate the linear approximation. This study employes the 
following quadratic variable trust-region constraints [25].  
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  (28) 

 
for 1, ,i N=  . Here, is  represents the variation of the state and control variable at each node, which also belongs to 
an optimization variable. Defining [ ]1, , Ns s=s 

, the total amount of variation is augmented to the performance 
index as a penalty term with a weighting value. 
 

 ( ) ( )1 1
2

ˆ k kJ η ω+ += + s   (29) 
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where ( )1kω +  corresponds to the weighting value for the ( )1k + -th convex iteration. In this study, the weighting value 
is updated with the solution at each iteration according to the appropriateness of the solution process following the 
improved trust-region algorithm developed in [20]. Including the trust-region constraints and replacing the 
performance index, the convex sub-problem can be comprised as follows.  
 

 
( ) ( )1 1

2
ˆminimize

subject to Eqs. (19) (20), (22) (23), (25) (28)

k kJ η ω+ += +
− − −

s   (30) 

 
The solution for the original non-convex problem in Eq. (24) can be obtained by iteratively solving the convex sub-
problem defined in Eq. (30) until the iterative solution converges within the prespecified tolerance. 
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where ( )⋅̂  represents the solution after being updated by the improved trust-region algorithm.  
 Noting that SCP utilizes the previous iterative solution to compose the convex sub-problem, as revealed in 
Eq. (25), the initialization process is required for the first iteration. This study conducts a simple initialization process 
for state and control variables as follows. 
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where upV  is a design parameter to be selected as the expected final velocity. We select Mach number 4 at sea level 
for upV . A linear interpolation is performed for the variables constrained on both sides ( , ,x h m ). The variables 
constrained on one side and unpredictable ( ,γ α ) are just set to their initial values. The variables that have increasing 
patterns ( ,V AF ) during the flight are set to be linearly increased. The time normalization factor η  is initialized as a 
division of the straight distance to the PIP by the expected average velocity.  

4. Numerical Optimization Results 

This section provides the trajectory optimization results for a VFDR missile obtained using the proposed algorithm. 
The first subsection shows the convergence pattern of the proposed algorithm, and the second subsection analyses the 
optimal trajectory pattern for the VFDR missile. MATLAB with MOSEK [26] was utilized for the implementation. 
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4.1 Convergence pattern 

For a representative medium-range interception scenario, the convergence patterns for the proposed algorithm are 
depicted in Fig. 3. The proposed algorithm takes 21 iterations to converge the solution, and each iteration takes around 
0.06 ~ 0.08 sec. Figure 3(a) shows that the engagement trajectory converges as the iteration progresses. Figure 3(b) 
represents both the original performance index in Eq. (13) and the augmented performance index in Eq. (30). They 
differ at early iterations but converge as the amount of the state and control variation decreases along the iterations, as 
depicted in Fig. 3(c). Figure 3(d) shows the weighting value for the penalty term at each iteration, which is 
automatically scheduled according to the validity of the solution process based on the improved trust-region algorithm. 
 

 
(a) engagement trajectory 

 
(b) objective values 

 
(c) penalty term 

 
(d) weighting value 

Figure 3: Convergence pattern analysis for the proposed algorithm: (a) engagement trajectory, (b) objective values, 
(c) penalty term, and (d) weighting value 

 

4.2 Optimal trajectory patterns 

This subsection compares the optimization results for two different engagement scenarios: the medium-range 
engagement, presented in the previous section, and the long-range engagement. The comparison results are depicted 
in Fig. 4. One notable observation is that the missiles commonly descend at the initial time, as shown in Fig. 4(a) and 
Fig. 4(b), in contrast to the solid rocket missiles ascending to reduce the drag by reaching the low-air density area. It 
comes from the fact that the specific impulse of the VFDR engine depends on the flight conditions, such as Mach 
number, altitude, angle-of-attack, and air-to-fuel ratio. One feature of the VFDR engine is that the specific impulse 
increases as the air-to-fuel ratio increases [21]. Hence, it can be interpreted as the missiles initially descend to absorb 
more air mass flow rate by increasing the velocity and reaching high-air density area. It results in increasing the air-to-
fuel ratio as depicted in Fig. 4(d) for both engagement scenarios. However, in contrast to the medium-range scenario, 
it can be seen that the missile in the long-range scenario climbs up after the first descending. This pattern seems to 
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reduce the drag, as for solid rocket missiles, after ensuring sufficient air mass flow rate by accelerating the missile 
enough. 
 

 
(a) engagement trajectory 

 
(b) flight path angle and angle-of-attack 

 
(c) velocity 

 
(d) air-to-fuel ratio 

Figure 4: Optimal trajectory pattern analysis for the proposed algorithm: (a) engagement trajectory, (b) flight path 
angle and angle-of-attack, (c) velocity, and (d) air-to-fuel ratio 

 

5. Conclusions 

This paper developed a mid-course trajectory optimization algorithm for VFDR missiles based on convex optimization . 
The angle-of-attack influence function was obtained for the air mass flow rate, and the ANN was constructed by 
training the thrust data. The air-to-fuel ratio was selected as a control variable to establish the system equation. The 
LGR pseudopsectral method was applied to discretize the problem. The fuel mass flow rate limit, which corresponds 
to a nonlinear constraint, was altered to an equivalent affine constraint. Then, a convex sub-problem was composed by 
incorporating variable trust-region constraints and solved using a commercial solver with an improved trust-region 
algorithm. The proposed algorithm took around 1.5 ~ 2.0 sec to solve the problems, and the convergence patterns were 
presented. The optimization results revealed that the VFDR missiles have a distinct trajectory pattern from traditional 
solid rocket missiles according to the feature of the VFDR engine, whose specific impulse depends on the flight 
conditions. 
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