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Abstract

Over the past 15 years, considerable progress has been made in building adaptive control systems to help pilots fly
damaged aircraft. However, nowadays, in an unexpected event not covered by a procedure, the crew still has to deal
with the situation on their own. Indeed they must review the situation on board, then determine the best site for an
emergency landing, and finally plan the path to this landing site. In general, the decision depends on many factors,
including the actual control envelope of the aircraft, distance to the site, weather, and energy management en route,
the approach path’s characteristics, the runway or landing site, and emergency facilities at the site. All of these make
the crew’s workload heavy. So having aid to a decision support module, such as an emergency landing planner, seems
to be a must-have.
We, therefore, want to achieve a planner capable of computing a trajectory leading from a known point A to a given
point B while avoiding obstacles, a trajectory that would be flyable for a pilot, even without a supporting guidance aid
system. So the main characteristics are the fact that the trajectory: is (a) safe, (b) flyable, and (c) following the resources
of the aircraft. For this purpose, we combined three algorithms, providing each one of these features: a path-planner,
a path smoothing system, and a continuous trajectory system.

I. INTRODUCTION

A. State of the art

Among the circumstances that can overload the crew’s work, emergencies are the ones that interest us in this article. In

response to an emergency during flight, the pilot’s first objective is stabilizing and regaining control of the aircraft. Then

their focus is diverted to finding the shortest and safest way to land the aircraft, with the assistance of the remaining flight

direction system, flight manuals, and air traffic controllers. The decision is difficult because depending on many factors such

as the new maneuvering envelope, the rate of available fuel, the distance to available landing fields, terrain avoidance, and

minimizing risk to people and property on the ground, among other factors.

Several projects and working groups have often addressed this issue. Different angles of approach have been studied.

A recent approach to deal with the case of emergency landings for damaged aircraft can be found in ([1]) but only in

considering an obstacle avoidance problem. On a different model, a UAV, it is also an avoidance problem that is dealt with,

mainly the management of the landing access during emergency landing ([2]). Another part of the problem is brought in

([3]), where we tackle the generation of a smooth trajectory in order to overcome our problems of guidance aid system

failures; in fact, the calculation of a smooth trajectory facilitates gross flight (without assistance) whether for a crew or UAVs.

One lesson from all of his work is that the problem itself is far too complex to tackle all at once, especially in our case,

where we try to challenge the computational time. Indeed, either we are talking about avoidance problems as in ([3]), solving

problems related to the search for a landing site ([4]), or even trajectory smoothing problems as we can find solutions in

([5]). Also, we notice that, in a general way, the literature presents us with only a partial solution to the problem and not

a complete resolution. One of the reasons that can be used as a justification is certification; indeed, by adding the need to

have embedded algorithms, we restrain the number of usable systems and, therefore, our way of solving these problems.

Thus, by repealing this certification limit, we are aiming for a more comprehensive treatment of the problem. Our ambition

is to focus on our resolution system.

B. Our goal

Our goal begins with the problem delimitation; in a desire to simplify our study, we will not focus on the landing site research

part. Indeed our problem is limited to calculating one or more trajectories between a starting point and a well-defined arrival

point. Using tools from avoidance problems, path smoothing tools, and optimal control theory, we cross these domains to

allocate performance to solve the objective on several fronts.

The mathematical formulation of the safety trajectories is related to the avoidance analysis of dynamical systems. This

analysis aims to partition the problem into three categories: first, the avoidance problem in a 3D environment. Second, the
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study of smoothing tools for paths to have flyable paths without sudden variations of the input parameters, and finally, a

study of the situation and the dynamic context in which the vehicle registers. This study makes it possible to satisfy all the

criteria that we seek to attribute to our framework, namely:

1) Compute one or more paths in a 3D cluttered environment

2) Compute one or more smooth paths in a 3D cluttered environment

3) Compute one or more continuous and dynamic trajectories in a 3D cluttered environment..

This paper is organized as follows; first we present our theoretical approach, then our numerical experiments.

II. THEORETICAL APPROACH

A. Problem Statement

As we said previously, the problem of emergency trajectories is too dense in its formulation to be treated in its entirety. So,

we choose to break down the problem to better manage all aspects. To do this decomposition, we based ourselves on the

characteristics that we want our trajectories to have:

1) First, we want to compute a path connecting two points in a known 3D environment. This problem is classic casework

widely studied in avoidance problem studies.

2) Then in the case of a problem with the trajectory tracking tools, it is the pilot’s responsibility to ensure the continuation

of the flight. Thus, it is necessary to produce a trajectory as smooth as possible by avoiding sudden changes in speed

or angles. This issue is related to a smoothing path problem.

3) Finally, context forces us to consider a dynamic model. Indeed, taking into account the aircraft’s dynamics, the state of

the flight controls, and the prediction of the movement of obstacles are essential. This study of dynamic models makes

it possible, plus it calculates trajectories in opposition to paths that are a succession of waypoints. So the treatment

of this last problem will allow us to pass from paths to trajectories

Fig. 1: Our problem division

B. The avoidance problem : How to navigate safely ?

Motion determination for an automated robot has been widely discussed over the past fifty years. Two main categories of

approaches were usually distinguished: deliberative and reactive (cf Fig.2).

• The principle of deliberative approaches is to determine a complete movement of the robot between an initial position

and a final position from a model of the environment in which the system evolves as ultimately as possible.

• Reactive approaches, on the other hand, only calculate the movement to be applied to the next step from sensor data

retrieved by the robotic system at each instant. A representation of the environment is thus constructed as the movement

progresses: navigation is, therefore, possible in an uncertain environment as well as in a dynamic environment.
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Fig. 2: Classification of path planning algorithms

Because of the importance of having a complete path, deliberative approaches seem best suited to our problem. Thus we

have benchmarked some deliberative algorithms to find the one that would best respond to the problem.

The Rapidly exploring Random Trees (RRT) initially presented by Lavalle represents one of the most famous motion planning

approaches today. Like randomly sampling the configuration space, RRT starts at the starting location and randomly grows

a tree to span the space. The main objective is to favor the extension of the tree to areas that have not yet been filled. The

planner pushes the search tree from previously constructed vertices.
In fact, the principle is as follows: from an initial configuration qinit, the environment of the robot is explored by arbitrarily

choosing a new unobstructed configuration qrand. The second step is to determine the qnear node closest to qrand in the

existing tree. The next idea would be to try to extend the tree from qnear in the direction of qrand by a length ε. Finally if

this extension succeeds, the newly created configuration qnew will be added in the tree. This process will be repeated until

the initial qgoalvconfiguration is reached. This principle is illustrated in the following figure.

Fig. 3: RRT process

The RRT exploration method consists of a free space spanning tree construction phase and a query phase. The performance of

this method comes from the fact that it does not require a pre-calculation phase. An exciting property of this approach is that

tree growth is strongly biased towards unexplored areas of configuration space, so rapid exploration occurs. This construction

allows, in particular, the processing of large dimensions; thus, the search remains fast in large spaces of immense dimensions.

They are also well suited to capture dynamic or non-holonomic constraints and therefore compensate wonderfully for PRM

methods that have difficulties in this aspect. Although, at first sight, this planner does not take into account the issue of path

cost, there are many versions of the RRT that can do the trick.

We have chosen to focus on RRT (Rapidly Exploring Random Tree) mainly because of its superiority in computing time

when it has come to work in high dimensions. Once the free-obstacle path is calculated, we realize that it can present

particular angles which are not flyable; thus, a path-smoothing algorithm is needed.

C. The smoothing problem: How can the trajectory be flyable in any case?
In order to prevent any tracking loss issues, we need to be able to provide a smooth path. Also, the need to process the

path calculated by our path-planning algorithm comes from this.
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Planning paths for a non-holonomic mobile robot is a concern of many works. The first consist of generating paths made

up of straight-line segments tangentially connecting arcs of circles of maximum curvature. These paths are the shortest in

configurations where the robot only moves forward (Dubins demonstrated this in 1957). However, several studies on the

control of mobile robots have highlighted the importance of continuity of curvature to obtain paths whose tracking is precise.

However, the paths already mentioned do not verify this property. Therefore, solutions have been proposed by introducing

interpolation and approximation techniques to geometrically model paths for mobile robots. Among these primitives, we

studied cubic splines, the first methods to be developed. Then Bezier curves were introduced, adopting a different and more

flexible design. The evolution continued with B-Splines, the generalization of Bezier’s curves, and Non-Uniform Rational

Base-Splines (NURBS) in the 1980s. This latter has proved to have significant assets, so we focus on this method.

A NURBS curve of degree p is defined by :

C(u) =

∑n
i=0 Ni,p(u)wiPi∑n
i=0 Ni,p(u)wi

a ≤ u ≤ b (1)

Where the {Pi} are the control points (forming a control polygon) and the {wi} are their associated weights. The {Ni,p(u)}
are the B-splinar basis functions of degree p defined on the nodal vector U .. The nodal vector is a sequence of parameter

values that determine where and how the control points will affect the shape of the curve. It divides the parameter space into

intervals, and each time the parameter enters a new nodal interval, a new control point becomes active while an older one

becomes inactive. This, therefore, guarantees the local influence of the control points. This vector is denied by an increasing

sequence of nodes (ui ≤ ui+1) between 0 and 1. These consecutive nodes can have identical values; this is defined by the

multiplicity of a node, which makes it possible to accentuate the influence of a point on the curve.

Thus, to ensure the interpolation of the two ends of the control polygon, it is necessary to fix the multiplicity of the first

and the last node of U to the value p+ 1 (Fig. 4). Note also that the degree p , the number of control points n+ 1 and the

number of nodes m+ 1 of the nodal vector are related by: m = n+ p+ 1.

Fig. 4: NURBS curves with the same control polygon and different nodal vectors [5].

As for the weight parameter, each wi determines the influence of the point Pi on the curve. Increasing the weight associated

with a point pulls the curve towards that point, whereas when the weight is decreased, the curve moves away from the point

(Figure 5).

If wi = 1 for any point, we find ourselves in the case of B-splines. Otherwise, for values different from 1, greater or lesser

importance is attributed to the corresponding control point :

• wi ≤ 1: gives a curve less close to Pi
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• wi ≥ 1: gives a curve closer to Pi.

• wi = 0: the point Pi no longer has any influence.

• wi → ∞: the curve passes through Pi.

NURBS are B-splines with weighted control points, allowing the curve to be snapped to one or more points as desired.

They maintain the degree of independence and the property of local modification that characterize B-splines. Incorporating

control point weights improves flexibility and allows NURBS to synthesize different curve shapes, changing control points,

nodes and weights.

Fig. 5: NURBS curve with variation of the weight of P2.

NURBS has proved to be the most advantageous due to its attractive properties such as local control and high rate of

flexibility. This rate is explained by the possibility of acting on the curve to have the desired shape by modifying either

the nodal vector, the positions of the control points, or the weights associated with these points. This allows for smooth

and ergonomic curves without forgetting the criterion of the simplicity of construction and implementation and the low

complexity of the algorithms used.

D. The continuous problem: How to plan the trajectory?

Now that the paths have been smoothed out, we are using these waypoints as a landmark to calculate continuous paths

avoiding obstacles.

This paper uses the Point Mass Model for general flight vehicle dynamics. Consider an inertial frame attached to the Earth.

The state of the system is defined by :

• (x, y, z) ∈ R
3 is the position of a vehicule in the inertial reference frame.

• V ∈ [Vmin, Vmax] is the True Air Speed

• ψ ∈ [−π, π] is the heading angle

• γ ∈ [−π, π] is the flight pass angle

Fig. 6: Different angles of our air vehicles
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The calculation of continuous trajectory is based on a modeling of the equations of motion, which are defined by the

following system as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = V sinψ cos γ
ẏ = V cosψ cos γ
ż = V sin γ

ψ̇ = u1

γ̇ = u2 ,

(2)

where V (t) = ‖v(t)‖, v(t) = (ẋ, ẏ, ż) ∈ R
3 is the velocity at the time t, ψ is the heading angle and γ the flight-path angle.

Here the control u = (u1, u2) is submitted to the constraint

‖u1‖ ≤ umax , ‖u2‖ ≤ umax, (3)

where the typical value of the maximal control umax is arond 1.

Based on this system of equations, we seek to calculate a trajectory that would minimize a specific criterion while respecting

the present constraints. The resolution of this type of problem calls upon principles of the theory of optimal control, which

we are going to state the theorem pillar:

Definition 2.1: In optimal control, we distinguish two vector variables: a control variable u, to indicate the decisions made,

and a variable x, to indicate the state of the system over time. The standard control model (Pc) for a control system is

composed of two essential elements: the dynamic controlled system (to which constraints are often added) and the functional

(defining the optimization criterion):

(Pc) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
u,x

J (u(t), x(t)), functional corresponding to a minimizing cost.

under the constraints

ẋ = f(u(t), x(t), t), controlled dynamic system: equations of state

x(t0) = x(t0), x(tf ) ∈ Cf , initial and final conditions, on the states

g(u(t), x(t), t) ≤ 0, any conditions on the control and/or the states

(4)

Theorem 2.1: If the trajectory x(·), associated to the optimal control u on [t0, tf ], is optimal, then it is the projection of

an extremal (x(·), p(·), p0, u(·)) (called extremal lift), where p0 �= 0 and p(·) : [t0, tf ] → R
n is an absolutely continuous

mapping called adjoint vector, with (p(·), p0) �= (0, 0), such that

⎧⎪⎨
⎪⎩
ẋ(t) =

∂H

∂p
(x(t), p(t), p0, u(t), t)

ṗ(t) = −∂H

∂x
(x(t), p(t), p0, u(t), t)

(5)

almost everywhere on [t0, tf ], where H(x, p, p0, u, t) = 〈p, f(x, u, t)〉+ p0f0(x, u, t) is the Hamiltonian, and there holds

H(x(t), p(t), p0, u(t), t) = max
v∈U

H(x(t), p(t), p0, v(t), t) (6)

almost everywhere on [t0, tf ]. If moreover the final time tf to reach the target M1 is not fixed, the one has the condition

at the final time tf

max
v∈U

H(x(t), p(t), p0, v(t), t) = −p0
∂g

∂t
(x(tf ), tf ). (7)

Additionally, if M0 and M1 (or just one of them) are submanifolds of Rn locally around x(t0) ∈ M0 and x(tf ) ∈ M1, then

the adjoint vector can be built in order to satisfy the transversality conditions at both extremities (or just one of them)

p(t0)⊥Tx(t0)M0 , p(tf )− p0
∂g

∂t
(x(tf ), tf )⊥Tx(tf )M1, (8)

where TxMi denotes the tangent space to Mi at the point xi.

Many numerical methods for optimal control have been developed in recent decades. Without making an exhaustive list of

all the methods, we will focus on the local deterministic methods, which are distinguished into two subsets:
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• Indirect methods: These indirect methods use the conditions of the PMP to determine the controls u as a function of the

states xand of the conjoint states p, and reduce to the resolution of an algebra-differential system. This last system will

be transformed into a nonlinear problem of finite dimension, in which it is necessary to determine the initial assistant

states p(t0) making it possible to obtain the final states x(tf ).
• Direct methods: By appealing to a total or partial ”discretization” of the optimal control problem (in the sense that

discretization makes it possible to transform the continuous problem into a discrete problem with a finite number of

variables), they refer partly to the original problem into a (significant) nonlinear programming problem.

However, the literature has allowed us to identify the advantages and disadvantages of these methods, which we have

summarized in the table below and which we can find in ([6]).

Direct Methods Indirect Methods

Simple implementation, without prior knowledge A priori knowledge of the structure of the optimal trajectory

Insensitive to choice of inital condition Very sensitive ti the choice of the initial condition

Ease of taking state constraints into account Theoretical difficulty of taking state constraints into account

Globally optimal closed-loop controls Locally optimal open-loop controls

Low and medium numerical precision Very high numerical precision

Effective in low dimension Effective in any dimension

Problem of local minima Small domain of convergence

Heavy in memory Parallelizable calculations

When we step back from our problem, we have instead leaned towards direct methods. Among the direct method, collocation

is the most efficient in our case ([7]). Already used to compute satellite trajectories, the collocation method is now accurate

and robust.

The general principle is the following. We assume a specific representation of the state, ”polynomial,” in particular; then, one

forces the satisfaction of the dynamic equations (in the sense that the controlled dynamic system is verified) in a finite number

of instants under the collocation conditions. These intermediate instants in [tl, tl+1[, called quadrature instants, subdivide

[tl, tl+1[ into k−1 periods, and are used by the digital dynamics integration scheme. Piecewise polynomial state trajectories

are obtained, which converge towards the dynamics of the controlled system, at the collocation points. The discretization of

the problem in optimal control is then carried out and also generates an NLP problem.

A disadvantage of direct fire methods is the dependence on the initial point. Indeed, it is common for the digital integration

process to be subject to numerical instabilities. For example, small variations on the initial conditions x0 can lead, in certain

cases, to a strong variation on the terminal conditions. Thus the collocation method seems to be the one that would be the

most suitable for our problem; but again we will judge this empirically.

III. NUMERICAL EXPERIMENTS

We have tested our initial prototype planner in a standalone way on two different scenarios generated using accurate terrain

data. In both scenarios, we are working with solid constraints, namely :

• the obstacles database is reduced to terrain data. So we only work on static obstacles and will neglect the effects of

the wind;

• whether working on UAVs or aircraft, the speeds of the carriers are constant;

• in both cases, we work in a 3D environment;

• our trajectories must minimize the time criterion

A. UAVs case

The considered configuration is reported in Fig.7 .
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Fig. 7: UAVs environment : The starting positions are marked with a red point, and the destination positions are black

shapes. The blue columns represent the no-fly zones, obstacles that must be avoided.

First, three paths are calculated in the previously defined environment ( see Fig.8). Starting from the same starting point,

they connect different landing sites chosen randomly by the algorithm.

Fig. 8: Computation of the flight plans: For visibility, the waypoints are linked together; in reality, they are not.

Then, we smooth them out using the previously calculated path, Fig.9.

Fig. 9: Computation of the smooth flight plans.

Finally, now that the flight plans are well established, we use them as a reference to calculate the continuous trajectories.

Considering the UAV’s dynamics, previously defined in (2), we can calculate three 5D trajectories avoiding obstacles, Fig.

10.
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Fig. 10: Computation of the dynamic trajectories.

B. Aircraft case

Unlike the previous scenario, this environment has only one landing site. Then, the algorithm will calculate trajectories to

the same destination. In our application, the obstacles database is only composed of the terrain relief (Fig.11). The input of

considerable size strongly affects the calculation times, which are three times higher than those of the previous scenario.

Fig. 11: Environment: the terrain is represented in blue, the red dot symbolizes the landing site position the green dot

identifies the starting position.

Traditionally, we know that an airplane follows a particular flight pattern; however, in our case, we are working in an

emergency. Thus we considered for the moment that we could abrogate flight phase constraints. Compared to the first

scenario, the size of the terrain database is too essential to generate a large number of trajectories, so we will try to calculate

only two trajectories.
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Fig. 12: This part is only dedicated to obstacle avoidance: we work on the paths traveling in the obstacles.

The two paths still present too many non-flyable angles, and the smoothing part of the framework is activated.

Fig. 13: The undesirable angles have been erased by the smoothing, and only the consideration of the dynamics of the

aircraft is missing.
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Fig. 14: Finally, the emergency trajectories are calculated after passing through the continuous trajectory calculation module.

Regarding the time, we are of the order of 10 s when we dwell on the computation of three trajectories in the case of a

UAV; in this context, this calculation time is considered reasonable. On the other hand, for the avionics case, the calculation

of only two trajectories results in 4 to 5 minutes. This was foreseeable given the size of the obstacle database (3907 Ko for

the avionics one against 4 Ko for the UAVs one). However, this time remains unacceptable given the emergency in which

we are involved.

IV. CONCLUSION

This thesis contributes to the architecture of a complete system, including both path planning and trajectories planning

algorithms in case of emergency, see figure below. It is mandatory for the planner to quickly compute several trajectories

towards different known sites, taking the environment and the UAV’s motion into account. The computation combines a

RRT and then smoothens the computed solutions with NURBS methods to obtain a set of smooth paths in a 3D cluttered

environment. This path planning part produces many reference paths that are supplied to the second part of our planner.

Based on a collocation method, this part is dedicated to the trajectories planning. The approach uses a motion equation

system based on 6D Dubin’s dynamics of the vehicle in order to output the expected trajectories.

Fig. 15: Our architecture

Future work includes the implementation of MultiTrajectories in a 3D dynamic environment, using wind data and no constant

speed in the dynamics. Also, the approach could be extended to large-scale multi-path systems by appropriately parallelizing

the computation to reduce computation time. This requires further investigations. Finally, and above all, the question of

real-time computation is a significant problem to address and which it would be interesting to look into.
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