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It is considered the synthesis of robust suboptimal feedback control based on minimum-
time multi-revolution transfer between non-coplanar elliptical and circular orbits in the inverse 
square gravity field. The problem is solved using asymptotic nature and symmetries of optimal 
control on the unperturbed trajectory. It is shown stability of the feedback control with respect to 
perturbations and deviation of initial conditions. Derived suboptimal feedback control can be 
used for providing of spacecraft autonomy and for mission design purpose. 
 
INTRODUCTION 

There are considered a minimum-time multi-orbit low thrust trajectories. It is used 
approach based on usage of equinoctial orbital elements, maximum principle, and numerical 
averaging of equations of optimal motion [1]. In contrast to [1], it is used continuation method 
[2, 3] to solve boundary value problem of maximum principle. The continuation method allows 
to widen region on convergence substantially and to compute optimal solutions for different 
boundary conditions and spacecraft parameters by stable way. 

General case of optimal multi-orbit low thrust transfer between non-coplanar elliptical 
orbits was considered in [3]. This paper, using numerical methods from [2, 3], presents particular 
but practically important problem of spacecraft insertion into a circular orbit from an initial 
elliptical orbit. More precisely, it is considered minimum-time multi-orbit low thrust transfer 
between non-coplanar elliptical and circular orbits in the inverse square gravity field. It is 
considered constant ejection velocity problem, i.e. thrust and specific impulse assume to be fixed 
during thrusting. Thrust direction is unconstrained and it is chosen from optimality conditions. It 
is supposed that initial line of apsides belongs to plane of final orbit. Such kind of boundary 
conditions is typical for spacecraft insertion into high circular orbits, in particularity into 
geostationary orbit (GEO). Of course, considered problem is invertible, so obtained results are 
applicable for transfer from an initial circular orbit into a final elliptical orbit. 

Considered problems are characterized by long transfer duration, high sensitivity with 
respect to errors in the initial conditions determination, to errors in the thrust steering, and to 
perturbations due to external forces. So, it is required periodical correction of thrust steering 
program to compensate trajectory drift due to various perturbations. Of course, such kind of 
correction may be realized by periodical repeated calculation of optimal trajectory using current 
estimation of spacecraft phase vector as initial conditions and current estimation of thrust and 
specific impulse values. But this approach requires a large computational capability; therefore it 
is hard problem for onboard realization. These computations can be carried at a ground facility 
and then transmitted to the spacecraft as renewed control program but this leads to decreasing of 
spacecraft autonomy and to additional work load of mission control center. Therefore, it is actual 
the development of onboard feedback control algorithm providing close to optimal trajectory and 
stability with respect to errors in orbit determination, thrust vector deviations, and orbit 
perturbations. 

Main purpose of the study is synthesis of feedback control providing closeness to 
minimum-time trajectory for insertion into the final circular orbit not only in case of inverse 
square gravity field, but in case of perturbed motion too. 
 
1. MATHEMATICAL STATEMENT OF OPTIMAL CONTROL PROBLEM 
 

Let write equations of spacecraft controlled motion in the inverse square gravity field 
using equinoctial elements in the following form [1, 3]: 
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where δ - thrusting function (δ=1 during thrusting and δ=0 during coasting), P – thrust, m – 
spacecraft mass, ϑ - pitch (angle between projection of thrust vector onto current orbital plane 
and circumferential direction), ψ - yaw (angle between thrust vector and current orbital plane), 

μ
ph = , ( )ω+Ω= coseex , ( )ω+Ω= sineey , Ω= cos

2
tan iix , Ω= sin

2
tan iiy , and 

Ω++= ωνF  - equinoctial elements, p – focal parameter, e – eccentricity, ω - argument of 
pericenter, i – inclination, Ω - right ascension of ascending node (RAAN), ν - true anomaly, 

FeFe yx sincos1 ++=ξ , FiFi yx cossin −=η , 221~
yx ii ++=ϕ , w – exhaust velocity, μ - 

gravity parameter of primary. Values of thrust P and exhaust velocity w are fixed in the 
considered problem. 

It is required to transfer spacecraft having initial mass m0 from initial orbit 
h=h0, ex=ex0, ey=ey0, ix=ix0, iy=iy0     (2) 

into final orbit 
h=hk, ex= ey= 0, ix= iy= 0      (3) 

for minimal time T, i.e. it is considered minimization of performance index 

min
0

→= ∫
T

dtJ .       (4) 

Nullification of final inclination in (3) is achieved by rotation of reference frame base plane to 
provide its aligning with plane of final orbit. 

Let write Hamiltonian of optimal control problem in following form [3]: 
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2
1 , and ph, pex, pey, pix, piy, pF  are 

co-state variables. 
Optimal control δ(t), ϑ(t), ψ(t) is determined from the Hamiltionian (5) maximization: 
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δ≡1.       (8) 
Identity (8) means the optimal trajectory does not include coast arcs, therefore spacecraft mass 
can be considered as following function of time: 

( ) twPmm ⋅−= 0 .      (9) 
Substituting of optimal control (6-8) into (5) leads to the following expression for optimal 

Hamiltonian: 

( ) FFnr HkPAp
h

AAAh
m
PH ++−=++++−= 11 3

2
2/1222 ξ

ξ τ ,  (10) 

where 
ξ
h

m
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= , ( ) 2/1222

nr AAAA ++= τ , FF p
h

H 3
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 Equations of optimal motion becomes following: 
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where  ( ) ( )TT ,,,,,,,,, iyixeyexhyxyx pppppiieeh == px . 
As it is considered transfer between orbits, the final value of true longitude F is not fixed, 

so pF(T)=0. Optimal Hamiltonian does not depend on F after averaging, 

therefore 0=
∂
∂

−=
F
H

dt
dpF . Therefore, 0≡Fp  on an optimal solution. Taking into account future 

averaging, optimal Hamiltonian (12) becomes following: 
kPAH +−= 1 ,      (12) 

and equations of motion (13) can be rewritten in the form: 
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 Equations (13) are numerically averaged during their integration using following 
averaging scheme: 
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where y=(xT, pT)T, fe(y,F,t) – right hands of differential equations (13), [ ]32211 heen yx −−=
μ

 - 

mean motion, 23 ξhdFdt = . 



Final values of state vector x, co-state vector p, and residual vector f at T are computed as 
a result of integration of (13) using averaging (14). Residual vector has following form: 
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Equation (15) should be solved with respect to vector of two-point boundary value 
problem parameters z : 
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 Such a way, the optimal control problem is reduced to the boundary value problem (13-
16), which is solved using continuation method (see detailed description of the continuation 
method in [2-4]). 
 
2. FEATURES OF MINIMUM-TIME TRANSFERS BETWEEN NON-COPLANAR 
ELLIPTICAL AND CIRCULAR ORBITS WHEN INITIAL POSITION OF LINE OF 
APSIDES IS FREE 
 

In case if initial position of line of apsides is free, this line should be aligned with line of 
crossing of initial and final orbits plane as it is resulted from transversality conditions [3]. 

Let use non-dimensional variables choosing radius of final orbit rk as a length unit and 
inverse mean motion (rk

3/μ)1/2 as a time unit. As it follows from problem statement there are only 
three essential parameters of initial orbit fully determining boundary value problem of maximum 
principle correct to rotation of reference frame. There are non-dimensional perigee radius rp, 
non-dimensional apogee radius ra, and inclination i of initial orbit. Indeed, so as line of apsides 
coincides with line of crossing initial and final orbits plane, it is always can be defined the 
reference frame providing nullification of initial RAAN and argument of perigee: it is necessary 
to align X axis to the initial perigee direction when Y axis should belong to the final orbit plane. 

Due to problem symmetry optimal control is defined by three essential parameters too. 
There are initial co-states ph, pex, pix. Initial co-states pey and piy equal to 0. Under this conditions 
optimal control is symmetrical with respect of line of apsides. 

Application of averaging leads to asymptotic nature of the optimal solution. It means the 
averaged optimal solution is applicable for any thrust, specific impulse, and spacecraft mass 
while it keeps an assumption of smallness of relative orbital parameters change during one orbit. 
In this case while “slow” orbital parameters are close, there are close dependency of thrust 
steering angles versus true anomaly for trajectories with different thrust acceleration and specific 
inpulse. 

Finally, the optimal solution is scalable on distance from primary and gravity parameters. 
Indeed, let consider transfer in the inverse square gravity field having gravity parameter μ from 
the elliptical orbit having pericenter radius rp0, apocenter radius ra0, and inclination i0 to the final 
circular orbit having radius rk and inclination ik. Let non-dimensional initial co-states ph0*, pex0*, 
pix0* and non-dimensional transfer duration T* are solution of the considered optimal control 
problem. Obtained solution can be scaled to transfer in the inverse square gravity field having 
another gravity parameter μ1 from the elliptical orbit having pericenter radius rp01, apocenter 
radius ra01, and inclination i01 to the final circular orbit having radius rk1 and inclination ik1 if 
rp01 = rp0rk1/rk, ra01 = ra0rk1/rk, ik1 = i01 + (ik - i0). In this case transfer duration becomes equal to 
T1 = (rk1

3/μ1)1/2T*. 



 
3. OPTIMAL TRAJECTORIES COMPUTATION ON THE GRID OF INITIAL PERIGEE 
RADIUS, APOGEE RADIUS, AND INCLINATION 
 

It was carried out numerical analysis of minimum-time multi-orbit transfer between non-
coplanar elliptical orbit and GEO in the wide range of initial orbit parameters having purpose to 
use these results for development an engineering technique for easy low-thrust mission design 
and for feedback control synthesis. It was considered three-dimensional grid of initial perigee 
radius, apogee radius, and inclination. Minimal value of perigee and apogee radii on the grid is 

r0=6571 km, j-th node of grid has value ⎥
⎦

⎤
⎢
⎣

⎡
+=

0
0 ln

20
lnexp

r
rjrr GEO

j , where j is varying from 0 to 

39, and rGEO=42164 km. So, it is determined 40×40 grid having maximal perigee and apogee 
radii ~246539.565 km. It was considered range of initial inclinations from 0 to 90 deqrees with 
step 5 degrees. Total number of nodes on the grid is 40×40×19. Taking into account constraints 
rp≤ra, there are 40×(40+1)×19/2=15580 different initial orbits defined on the considered grid. 

It was solved optimal control problem for each initial orbit from the grid. As a result? 
There were computed and stored values of required characteristic velocity, minimal and maximal 
geocentric distances during the transfer, and initial values of co-states. Required characteristic 
velocity was used for fast estimation of spacecraft final mass [4, 5] and initial co-states were 
used for synthesis of suboptimal feedback control. 
 
4. SYNTHESIS OF SUBOPTIMAL FEEDBACK CONTROL 
 

Defined on three-dimensional grid of initial orbit parameters values of initial co-states ph, 
pex, pix can be used in the linear interpolation procedure to estimate the initial values of co-states 
for any given initial elliptical orbit having line of apsides aligned along line of crossing initial 
and final orbit planes. These initial co-states ph, pex, pix, supplemented by null values of other co-
states, can be used for integration of unaveraged equation of motion. Numerical simulation 
shows a good results when this approach is used for unperturbed trajectory in the inverse square 
gravity field. In this case osculating elements of unaveraged trajectory perform short-period 
oscillations around averaged solution. 

Situation becomes more complex if there are taken into account perturbations including 
accelerations, errors in the initial conditions, and errors in the thrust vector implementation. In 
this case errors are increasing with time, leading to inadmissible final residuals. For example, let 
consider low-thrust transfer from initial elliptical orbit having perigee altitude 500 km, apogee 
altitude 30000 km, and inclination 62.8° to GEO (altitudes are referenced to the mean earth 
radius 6371 km). Initial spacecraft mass is 1000 kg, thrust – 0.2 N, specific impulse – 1500 s. 
Fig. 1 shows time history of semi-major axis, apogee and perigee radii for following cases: (1) 
averaged trajectory (dashed line); (2) unperturbed unaveraged trajectory (solid thin line); 
(3) unaveraged trajectory taking into account perturbations from geopotential up to 10th degree 
and 10th order and lunisolar perturbations (blue line); (4) unaveraged trajectory having 
perturbations from (3) and coasting arcs during eclipses (red line). One can see, considered 
perturbations leads to deviation in the final perigee and apogee radii up to 4-5 thousands km. 
Final deviation in inclination reaches to 13-14°. 

Next approach of using pre-computed initial co-states is calculating of current co-states 
values for current values of inclination, apogee and perigee radii by linear interpolation over the 
grid. Again, there are assigned zero values to pF, pey, piy. Calculated values of co-states are 
substituting to equations (6), (7) for thrust steering angles computation. Such kind of approach 
provides stability in semi-major axis, eccentricity, and inclination, but it remains unstable with 
respect to perturbation of argument of perigee and RAAN. As a result, there are accumulated 



errors in all orbital elements due to rotation of line of apsides and line of nodes though total error 
become less than in previous case. 

It was used following transformation of current co-states to provide stability of control 
with respect to perturbations in all orbital elements: 
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where ph, pex, pix again are calculated using linear interpolation over the three-dimensional grid at 
current values of rp, ra, and i. Control (17) does not depend on time explicitly, explicitly depends 
on all 6 orbital elements and it has form of feedback control. It is easy to show the yaw has local 
minimum or maximum in the orbital nodes and pitch has value 0 or 180 degrees in apsides due 
to usage of transformed value (17) of current co-state vector in the equations (6), (7). As a result, 
even if lines of apsides and nodes are diverged under perturbations, control (17) provides 
trajectory convergence to the final orbit. In case of absence perturbations in the argument of 
perigee and RAAN control (17) is coincided with optimal control (up to errors due to averaging 
and interpolation), otherwise it is differed from optimal control, less for weak perturbations and 
more for strong ones. Let name control (17) as a suboptimal feedback control. 

Figure 2 shows time history of semi-major axis, perigee and apogee radii in the 
considered above problem of transfer to GEO for final time range in case of unperturbed 
averaged trajectory and two trajectories using the suboptimal feedback control (17). In one case 
there are taken into account perturbations due to geopotential (up to 10th degree and 10th order), 
lunar and solar gravity and in another case these coasting during eclipses supplements the same 
perturbations. 

Figure 2 demonstrates the solution convergence to the final orbit and closeness of 
trajectory using feedback control to optimal trajectory. 

Control (17) was found stable with respect to large deviations of initial conditions too. 
Figure 3 shows time history of perigee and apogee radii and semi-major axis in case of transfer 
from high-elliptical orbit of “Molniya”-type to GEO. It was considered initial orbit having 
perigee altitude 1000 km, apogee altitude 40000 km, inclination 63.4 degrees, and argument of 
perigee 250 degrees. Optimal trajectory is denoted by blue line, and trajectory using suboptimal 
feedback control is denoted by white line. Despite non-zero value of initial argument of perigee, 
feedback control provides convergence to the final orbit due to transformation (17) if line of 
apsides has large deviation from line of nodes. 

Suboptimal feedback control (17) was successfully used for computation of 3-
dimensional transfers between circular earth and lunar orbits within frame of restricted problem 
of four bodies Sun-Earth-Moon-spacecraft taking into account earth oblateness. To carry out 
these computations, trajectory was divided on two parts: transfer from a earth orbit to the lunar 
libration point L1 and transfer from the L1 to a lunar orbit. It is easy to show L1 osculating orbit 
is elliptical both in geocentric and selenocentric reference frames. This fact allows to apply 
considered here technique if geocentric part of trajectory is integrated using inverse direction of 
time and thrust vector having opposite direction with respect to optimal one (6), (7). 

Figure 4 presents an example of suboptimal trajectory from the circular earth orbit having 
radius 42164 km and inclination 51.6 degrees to the polar circular lunar orbit having altitude 100 
km. Spacecraft mass at L1 is 100 tons, thrust equals to 10 N, and specific impulse equals to 6000 
s. 
 
 



 
Fugure 1 – Dependency of semi-major axis, perigee and apogee radii versus time. (1) Dashed 

line – averaged optimal trajectory in inverse square gravity field; (2) black solid line – 
integration of unaveraged equation of optimality motion using initial co-states from averaged 
problem; inverse square gravity field; (3) blue line – the same as (2), but taking into account 
geopotential 10×10 and lunisolar perturbations; (4) red line – the same as (3), but taking into 

account coasting during eclipses. 
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Figure 2 – Perturbations impact on trajectory using suboptimal feedback control 

 

 
Figure 3 – Transfer from “Molniya”-type orbit to GEO 
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Figure 4 – Projection of trajectory between earth and lunar obits onto equatorial plane 

 
6. CONCLUSION 
 

It is derived robust suboptimal feedback control (17) for low-thrust transfer between non-
coplanar elliptical and circular orbits. This control can be used for providing of spacecraft 
autonomy or for mission design purpose. On-board application of this control leads to necessity 
to have on-board estimation of current phase vector which should be periodically refined using 
either spacecraft autonomous navigations or ground stations. On-board realization of considered 
control algorithm is simple enough. It does not require large consumptions of processor time and 
computer memory. Proposed algorithm is robust in wide range of spacecraft orbital parameters 
with respect to typical orbit perturbations. High stability of considered control with respect to 
perturbing accelerations allows it using for high-perturbed trajectory design, for example to 
design of low-thrust transfer between earth and lunar orbits. 
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