
A SOFTWARE ARCHITECTURE OF DISTRIBUTED VIRTUAL REALITY SYSTEM
FOR FORMATION FLIGHT VISUALIZATION

Vasily Y. Kharitonov

Department of Computers, Systems and Networks
Moscow power engineering institute (technical university), Russian Federation

E-mail: KharitonovVY@gmail.com

Abstract
Among problems facing today’s computer science one of the most challenging is designing of a

distributed virtual reality system (DVR system) which are used in many applications of human activity
including the aerospace industry. Such systems should ensure consistent interaction of many
geographically separated users in a shared virtual environment. This requires complex approach involving
creation of dedicated software architecture. In paper we examine basic DVR system design principles and
propose such an architecture. Application of proposed architecture for formation flight visualization is
discussed.

1. INTRODUCTION
At present, with the growth of computational power of modern computer systems the aerospace

industry has witnessed a great increase in the number of various training simulators. These simulators
allow to solve a wide variety of challenges facing today’s astronautics and aviation, both civilian and military
purposes, while providing significantly lower material costs and safety requirements. One of the foundations
of modern training simulators is the technology of virtual reality (VR) that enables user to “immerse” in a
highly-realistic artificial world or environment, providing interaction of user and virtual environment.

Meanwhile, the group trainings of many crews are becoming more popular, that is of great
importance in solving a series of practical tasks, such as formation flight, refueling in the air etc. Solving of
such tasks requires the creation of a qualitatively different system, namely a distributed virtual reality
system (DVR system), allowing to reproduce temporal-spatial interaction of many objects managed by
remote users. In such a system users should experience a sense of presence in the shared indivisible
virtual environment (VE) despite how far they are distanced on a computer network scale.

The realism of virtual world, experienced in DVR systems, depends not only on the quality of
graphics, but also on the underlying distributed middleware and its networking mechanisms. This
middleware must provide consistent representation and visualization of the virtual environment for all users
(pilots) allowing to observe as mush identical VE states as possible (though, possibly, from different view
points), regardless hardware limitations imposed by the communication lines and nodes hardware.
Maintaining of consistent VE representation is particularly significant in the problem of formation flight
simulation, where it is very important to ensure the accurate and consistent spatial positioning of aircrafts
relative to each other for all pilots.

The essence of this work is to develop software architecture of DVR system providing a consistent
VE representation for many users. To do this we should answer to several questions. First, what
architectural principles should be built into DVR system to ensure a consistent interaction of large numbers
of users? Secondly, what limitations affect the consistent displaying of virtual reality moving objects and
how they can be overcome? And third, since from the program point of view DVR system consists of
multiple interacting processes, how to effectively organize data exchange to provide users with experience
of being in a shared virtual world.

In paper we first look at main DVR system features comparing DVR systems with classical
distributed systems. Then we examine basic DVR system architectural principles considering them at three
abstraction layers and formulate main requirements determining the qualitative nature of users interaction.

Finally, we propose a software architecture of DVR system and discuss its application to formation flight
visualization.

2. DVR SYSTEM ARCHITECTURAL PRINCIPLES
First, let’s consider main virtual reality terminology. The term Virtual Reality is used to describe a

computer-generated, highly-realistic artificial world or environment (called a Virtual Environment), allowing
the user to interact with it in real-time by interfacing some of his actions in the real world back into the
virtual environment and providing visual, acoustical and, sometimes, haptic feedback. The soft hardware
allowing geographically remote users to interact in the shared virtual environment is referred to as the
Distributed Virtual Reality system:

Figure 1. Generalized representation of DVR system
Virtual environment is a collection of virtual objects with certain sets of attributes. Attributes determine

the properties and behavior of each object, and together form an object state. The VE state is a tuple of all
states of its objects. The view is a rendered image of VE observed from the given position in the virtual
space.
2.1 DVR systems features

DVR systems are a subclass of distributed systems and, therefore, inherit all of their properties [1]:
•No global physical clock. All system processes interact asynchronously (but the system can still

maintain some clock synchronization model).
•No shared memory. All communications are carried out only through the message exchange

between processes (though there may be a shared memory abstraction).
•Geographical separation. Processing nodes of DVR system can be located within the local area

network (LAN), as well as on a wide-area network (WAN).
•Autonomy and heterogeneity. Processing nodes are loosely coupled in the sense that they may

have different performance and running various operating systems. They are usually not part of
a dedicated system, but interact with each other to solve common problems.

However, DVR systems have their own features:
•All computations are performed in real time. This imposes special requirements on computational

nodes which should be able to handle large amounts of information in short time, as well as on
communication channels which should ensure instant access to the most actual VE state;

•Specific nature of distributed computations in DVR systems. Most of the computations in DVR
systems are concentrated on the VE global state calculation which is constantly changing, not
only in response to users’ actions, but also with the progress of time.

•Requirement of clock synchronization. Although there is no common system clock, each process
has its own local clock and in DVR system it is very important that these local clocks are well
synchronized with each other.

2.2. Representation of DVR systems at different abstraction layers
We consider the design of DVR system at three abstraction layers: user, software and hardware.

This allows a particular developer to divide system-building process into separate stages.
At the highest, user layer of abstraction DVR system should be indivisible and transparent for the

user, hiding all of its distributed nature and implementation details (see fig. 2). Each user (pilot) should be
given a view to the virtual environment and a logical interface to interact with it.

Figure 2. DVR system for user
Examining architectural principles, we primarily keep in mind the software architecture since the

software layer is fundamental in DVR system design. At the software layer, DVR system is a collection of
asynchronous processes, interacting with each other based on a certain type of communication
architecture using some kind of a high-level protocol (see fig. 3). The main types of communication
architecture are client/server and peer-to-peer. There are also combined architectures, such as multi-server
architecture. Depending on the chosen architecture, client, server and peer processes can be
distinguished. In client/server architecture client processes are focused on the individual user’s view
visualization and state control of his object, while server process provides interaction of multiple users. In
peer-to-peer architecture peer processes include both functions. The high-level protocol is based on
general network protocols, such as TCP/IP protocols, and makes it possible to transmit data between
processes taking into account specific communication architecture.

Figure 3. DVR system representation at the software layer

When considering hardware layer, DVR system consists of computing nodes (in the simplest case,
PCs), connected via data network. At this layer a particular type of network is chosen, on which basis the
system is to be built, and hardware requirements for the nodes are specified. Also input and display devices
for user-to-system interface are determined (man-machine interface).
2.3. The main requirements to DVR system — consistency and responsiveness

The main requirements for DVR systems that determine the qualitative nature of users interaction are
consistency and responsiveness [2]. Generally, consistency requirement means that all users of DVR
system should have identical data on the VE state at every moment. At the same time information on state
changes (update messages) should be distributed between users in the minimally possible time. When
named conditions are satisfied, it is said about consistent interaction (in terms of transferring data between
nodes). One of the main objectives achieved through consistent interaction is to provide a consistent
displaying of VE objects, allowing all users to observe as mush identical VE states as possible, though,
possibly, from different view points. It is impossible to achieve absolute consistency since in a real system
local VE state copies necessarily are to differ, for example, because of data transmission delay (latency).
To ensure high consistency, each user, having performed any action, should wait before undertaking next
action until data safely reach other users. Also, at the software layer processes should be tightly coupled
that requires high bandwidth and low latency, as well as imposes restrictions on the number of users.

The responsiveness of the system is the time required for the user action to make the result in the
virtual world and become noticeable for the user. To ensure high responsiveness each user’s process
should not wait for other remote users to be notified about user’s actions. Instead, it should change the
local VE state copy so that the user immediately would become aware of his actions result. Therefore,
processes should be loosely coupled, making a large amount of local calculations. The decision on how
action will affect the virtual environment should make a user’s process itself.

However, the user may not always determine the result of his actions alone. For instance, to perform
collision detection of multiple users’ objects in a right way (for example, missile and air target), it is
necessary to take a collective decision, which is contrary to the requirement of high responsiveness,
because such a decision requires some time on the data exchange between users. If each user attempts to
detect collision independently of the others, all users can come to different results, and the consistency of
the system may be disrupted. Thus, the requirement of responsiveness can be in opposition to the
requirement of consistency. In most cases it is impossible to achieve both these requirements at the same
time and trade-off have to be found.

3. PROPOSED DVR SYSTEM SOFTWARE ARCHITECTURE
3.1. Overview

The proposed architecture is presented in fig. 4 that depicts the main, in our view, components which
real DVR system should consist of, as well as the relationships between them.

According to the picture, DVR system is considered as many separate processes (shown as large
bars) interacting with each other on the basis of a certain type of communication architecture (in this paper
we are limited to client/server architecture, but multi-server architecture also possible). All processes
consist of a collection of computing units and a data storage. Each client process is focused on the
individual user’s view visualization and state control of his aircraft (which can be an airplane, a helicopter
etc.), while server process provides interaction of multiple users. Now consider main DVR system
components.

User input handling unit reads data from the user input devices and converts them to control actions
that are transmitted to Local VE state simulation unit. Client process keeps (in Local VE state storage) and
simulates (in Local VE state simulation unit) only part of VE state needed to visualize VE within user’s
visibility scope. VE state simulation involves modeling of VE objects states in accordance with their physical
models. Global VE state simulation unit tracks changes in the Global VE state storage and ensures
collective objects interaction.

When needed, the data not presented in local storage are loaded from the Global VE state storage,
located on the server. This need can be related either with swap of new VE parts, or with state change of
remote users’ objects. In turn, modification of any VE object state performed by current user must also be
reflected in the global storage.

Thus, the Global VE state storage accumulates all the changes in the VE and contains complete
information about VE state at any instant of time. There is a bidirectional data exchange between global
storage on the server and local storages on the clients all the time. Together server and client storages
form distributed data storage.

Figure 4. Proposed software architecture of Distributed Virtual Reality System
Data from the local storage on the client process is input to the Visualization unit which renders user

view. The Preparation data for visualization unit optimizes data from the local storage for rendering and
transforms them into the appropriate format. Then optimized data come to Visualization unit which can be
either an individual computer or a complex rendering system.

The most important unit of the DVR system is a Consistency maintenance unit. It is a part of each
process and resolves the following issues:

•communication of current process with other processes (a high-level protocol);
•applying methods for hardware limitations compensation;
•data replication management;
•clock synchronization;
•object ownership management (defining ways to access and modify VE state).

Below we look at some of them.
3.2. Overcoming hardware limitations

One of the major obstacles taking place when organizing a consistent interaction are hardware
limitations imposed by the communication lines and nodes hardware. The main limitations are network
bandwidth, latency and node processing power. As it is not possible to overcome these limitations
completely [2–4], it is reasonable to use dedicated software-based approaches that enable more efficient
use of computing and network resources. Among them are the following:

1.protocol optimization — assumes minimizing the number of messages transmitted over the
network, using data compression, as well as grouping several messages in one

2.relevance filtering (interest management) — allows to adjust the flow of data between users in
accordance with certain criteria. For example, it is often used visibility-based filtering in which
data are transferred between users only if they are in visibility of each other.

3.dead reckoning algorithms [2,4,5] are applied for predicting objects states at any given moment of
time that makes it possible to transfer data less frequently as well as reduces reliability
requirements to data channels and network protocols;

4.dynamic VE state distribution among several servers.
All of these approaches minimize network traffic transmitted between nodes. Moreover, the approach

3 reduces the impact of latency, and the approach 4 allows to decrease the amount of calculations
performed by individual nodes.
3.3. Data replication strategies and distributed scene graph

There are three main data replication strategies: centralized, replicated and distributed (see fig. 5).
When using a centralized architecture, all VE state data are stored on a dedicated process. In a replicated
architecture each process keeps a copy of the entire VE state. In a distributed architecture VE state is
distributed among several processes.

In our software architecture none of these strategies is used in its original form. Instead, we use
hybrid strategy. On the one hand, there is a centralized data storage, located on a dedicated server or
group of servers, where the most relevant VE state is stored. On the other hand, data from the central
storage are replicated on the client processes to reduce the number of requests to a central storage and to
increase data access speed (or, in other words, to increase responsiveness of DVR system). In addition, in
case of large and extensive virtual world it makes sense to replicate on the clients not a complete VE state,
but its separate parts. The other parts of virtual world can be swapped when necessary, with the movement
of a particular user in the VE. This approach allows to significantly improve the scalability of DVR system.
However, for its effective implementation a special form of VE state representation is required. For our
purposes it is convenient to organize information in data storage in a hierarchical structure which is shared
between users, called distributed scene graph (DSG) [6].

Figure 5. Main data replication strategies
DSG establishes logical and spatial relationships between VE objects. It is headed by a top-level root

node which encompasses the whole virtual world. The world is then broken down into a hierarchy of nodes
representing either spatial groups of objects, settings of the position of objects, animations of objects, or
definitions of logical relationships between objects. The leaves of the graph represent the VE objects

themselves, their renderable geometry and material properties. Formally speaking, a scene graph can be
defined as a directed acyclic graph with a random number of children. Main benefits of DSG include:

•fits well with the object structure of the VE and is a natural representation of the virtual world for the
human perception;

•provides means for effective 3d-rendering of VE state by implementing various graphics
acceleration algorithms (such as culling and level-of-detail techniques), and collision detection
algorithms;

•increases the scalability of DVR systems by distributing the computational load on VE state
processing between the processes;

•increases flexibility of data replication;
•simplifies VE objects state management;
•easy programmable.

3.4. Object ownership management
When building DVR system it is very important to correctly handle requests of multiple users to the

same data. This situation often occurs, for example, when multiple users attempt to simultaneously
manipulate the same object. The actions of different users overlapping in time should not interfere with
each other. To do this a mechanism is needed to control access to the objects states.

The proposed architecture uses an approach based on object ownership transferring. Each VE
object can be either free or owned by a single process. This ownership can be transferred between
processes. Any other process may try to seize the object by sending corresponding request to the server
process. If the requested object is free (i.e. not occupied by another process), then the server marks it in a
global storage as “owned” and sends the user a positive response. After this only owner process is able to
alter object state in the global storage.

If the requested object is owned by another process, the server sends ownership request to this
process. The owner process may either meet this request and grant membership or reject request,
depending on his needs. Owner process may also block access to the object. In this case any membership
request is automatically declined.
3.5. Clock synchronization

Clock synchronization is the technique of ensuring that physically distributed processes have a
common notion of time. Clock synchronization assumes availability of a reference clock in the system that
is stored on a dedicated process called time server. In our architecture, each newly connected client
synchronizes its clock with the server clock using a special procedure, similar to Cristian algorithm [7] or
algorithm used in Network Time Protocol [8]. Reference clock set the course of the internal model time
which is common for the entire DVR system. All events in the VE are related to particular instants of model
time. Each global VE state is calculated based on model time.
3.6. High-level communication protocol

Proposed architecture assumes applying of a specialized high-level protocol. It provides process
interaction and includes a set of messages defining various operations in VE and interactions between
processes. It is based upon two transport level protocols of TCP/IP stack: TCP and UDP, combining
reliability features of the former and speed of the latter. Individual messages that require reliable delivery
are transferred via TCP (for example, messages on creation VE objects). For often transmitted messages
that require fast delivery and are not critical for packet loss UDP is used. Such combination of protocols
allows to use network bandwidth in more efficient manner.

Protocol messages are divided into groups. The main of them are: world messages, object
messages, service messages. World messages define global operations on VE modification such as
objects creating/deleting, models loading, weather effects control, time management, camera control and
others. Object messages include operations on object state altering, DSG structure modification, ownership
management etc. Service messages provide additional communication operations on top of underlying
transport protocols, such as address send from between any two processes or batch send allowing to
group several messages into a single one.

3.7. Practical use of the architecture
Proposed architecture is employed as a basis for a software framework allowing to create DVR

systems for specific application areas. This framework is a cross-platform programming library with the C++
API. It represents a middleware for DVR system providing easy and transparent interface to work with VE
state as well as has built-in means for 3d-rendering based on OpenScenGraph [9].

The framework can be used for various applications requiring interaction of many users in real-time.
One of them is formation flight visualization. In this case virtual environment should include such objects as
terrain, buildings, ground targets and various aircraft objects. Each pilot’ work place should have interface
to control his aircraft, visual, acoustical components providing pilot with experience of being at the controls
of real aircraft. There also should be simulating component computing aircraft physics. These components
can be implemented as parts of a single aircraft simulator. Each pilot’s simulator is connected to others
through provided framework API by creating aircraft representation in VE. The framework ensures pilots
interaction in a shared VE.

Precise aircraft physical model may be rather comprehensive and its state can include large set of
attributes. However VE object model shouldn’t contain all of these attributes to be communicated to other
pilots. It is enough to keep only resulting parameters of physical model in the VE object state, such as
aircraft position, orientation, velocity and acceleration. Using dead reckoning algorithms makes it possible
to provide smooth aircraft movement on remote site.

An example of formation flight visualization system based on the developed framework is shown on fig. 6.

Figure 6. The formation flight visualization system

4. RELATED WORK
There are three main branches of DVR systems at present time:
•simulating equipment;
•networked virtual environments;
•multiplayer computer games, MMOGs and metaverses.

The first type of systems is mainly used in various military simulations: from aircraft simulators to
large-scale battlefield simulations. The well known representatives are SIMNET (SIMulation NETwork) and
its followers that had become industry standards — DIS (Distributed Interactive Simulation, IEEE Standard
1278) and HLA (High Level Architecture, IEEE Standard 1516) [10].

Networked virtual environments are mainly used for academic and educational purposes. Such
systems are applied in many research projects that require remote interaction of many participants (e.g.,
distance learning). Examples of such systems: DIVE, RING, NPSNET [11, 12].

Multiplayer networked games are the most widespread type of DVR systems and use similar to other
types of mechanisms. Among the most successful game series there are Unreal Tournament, Counter
Strike (Half-Life Source) [13], and Quake. There is growing interest in the new genre of network games —
Massively Multiplayer Online Game (MMOG), which support especially large number of users (currently, up

to hundreds of thousands). More general and global concept is used in metaverses. Metaverse is more
than game; it a lifelike complex open-ended virtual world where “winning” simply means exploring,
communicating, and creating objects. Second Life is one of the examples of metaverse [14].

The closest analogue of the proposed architecture within existing systems is HLA. The High Level
Architecture (HLA) for Modeling and Simulation was developed to facilitate interoperability among
simulations and promote reuse of simulation components. Using HLA, computer simulations can
communicate to each other regardless of the computing platforms. Communication between simulations is
managed by a Run-Time Infrastructure (simulation) (RTI). However, the HLA specification only defines a
distributed runtime infrastructure (RTI) but not its implementation. Therefore, heterogeneous RTIs can not
interoperate. In addition, various RTIs provide different performance which in most cases insufficient for
simulating VE at high rates. HLA supports only peer-to-peer communication architecture which does not
scale up well for large scale geographically distributed simulations and can be effectively used only on LAN
network. Moreover, there are no built-in mechanisms compensating hardware limitations.

5. CONCLUSION AND FUTURE WORK
In this paper we studied a number of issues taking place in DVR systems. The main components that

real DVR system can be constructed of, were considered. As a result the software architecture of DVR
system was proposed. It was shown that this architecture could be used as a basis for creating formation
flight visualization system.

In the near future, we plan further development and expansion of the proposed architecture and the
framework by improving existing mechanisms, as well as by adding new ones, such as multi-server
communication architecture and QoS for clients.

ACKNOWLEDGEMENTS
This work was supported by the State Analytical Program “The higher school scientific potential

development” (project no. 2.1.2/6718).

REFERENCES
[1] A. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algorithms, and Systems, Cambridge University Press,

New York, NY, USA, 2008.
[2] J. Smed, H. Hakonen. Algorithms And Networking for Computer Games. UK, Chichester: John Wiley & Sons, 2006.
[3] V. Y. Kharitonov. Methods of efficiency enhancement of network interaction in distributed systems of virtual reality //

Proceedings of 2nd International Conference on Dependability of Computer Systems DepCoS-RELCOMEX 2007. IEEE
Computer Society, Los Alamitos, CA, USA, 2007. pp. 305-308.

[4] S. Singhal, M. Zyda, Networked virtual environments: design and implementation, ACM Press/Addison-Wesley Publishing
Co., New York, NY, 1999.

[5] V. Y. Kharitonov. An Approach to Consistent Displaying of Virtual Reality Moving Objects. Proceedings of 3rd International
Conference on Dependability of Computer Systems DepCoS-RELCOMEX 2008, IEEE Computer Society, Los Alamitos, CA,
USA, 2008, pp. 390-397.

[6] M. Naef, E. Lamboray, O. Staadt and M. Gross. The blue-c distributed scene graph. Proceedings of the Workshop on Virtual
Environments 2003, EGVE '03, Vol. 39. ACM, New York, NY, 2003, pp. 125-133.

[7] F. Cristian. Probabilistic clock synchronization. Distributed Computing, Vol. 3, 1989, pp. 146-158.
[8] D. L. Mills. Internet time synchronization: the network time protocol. IEEE Transactions on Communications, 39(10), 1991,

pp. 1482-1493.
[9] OpenSceneGraph — an open source high performance 3D graphics toolkit. http://www.openscenegraph.org
[10] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and Rules, IEEE Standard

1516-2000 (2000).
[11] T. Funkhouser. RING: A Client-Server System for Multi-User Virtual Environments // Symposium on Interactive 3D Graphics,

April 1995. pp. 85-92.
[12] M. Capps, D. McGregor, D. Brutzman, and M. J. Zyda. NPSNET-V: A New Begining for Dynamically Extensible Virtual

Environments // IEEE Computer Graphics & Applications, vol. 20, 2000. pp. 12-15.
[13] Source Multiplayer Networking. Valve Software, 2009.

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking.
[14] Second Life Project. www.secondlife.com.

