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Abstract

The Herschel-Quincke (HQ) tubes, consisting in putting tubes in derivation
along a main wave guide, are used as passive devices to control fan noise.
In order to assess the efficiency of this system, analytical and semi-analytical
models proposed in the literature all rely on the assumption that only plane
waves are allowed to propagate in the tube which then restrict the pressure
and the normal acoustic velocity to be constant over the duct-tube interface.
We show that these simplifications are too limited especially when dealing with
high frequency modes in the main duct. To make some progress, a new mixed
analytical-numerical approach is proposed. The method, based on the discrete
modal analysis of the tube allows to take into account its exact shape as well
as the non-uniformity of the acoustic velocity at the interface.

1 INTRODUCTION

One of the most significant sources of noise of an aircraft is due to the propelling
system. This noise, which is present during all flight phases, can be decomposed into
several types : classical jet noise outside the exhaust nozzle and inner turbo machinery
noise (fan, compressor, turbine & combustion). In particular, fan noise is responsible
for pure tones at the Blade Passage Frequency (BPF) harmonics, due to the interaction
between the rotor wakes and the stator vanes. In order to reduce noise level in modern
turbofan engines, sound waves generated by the fan are typically absorbed by acoustic
lining covering the duct engine. Though efficient, these treatments seem to have reach
their limit and there is still a need for considering other passive techniques to reduce
further the sound radiation from the duct outlet. In this context Herschel-Quincke
tubes concept could prove to be a reliable option.

In 1833, Herschel [6] first discussed the idea of using acoustic interferences of tones
by simply connecting a tube to the main duct in view of reducing the transmitted
acoustic waves. 33 years later, Quincke [9] experimentally validated Herschel’s theory
and many works and experiments have been carried out to explain physical phenomena
and explore the potentiality of this system as a noise control device [2, 13].
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The assessment of the efficiency of such a system requires a precise knowledge of
the acoustic field in the duct. Though standard Finite Element (FE) software could, in
principle, be used for this purpose, a full 3D FE model would be extremely demanding
as the number of variables is expected to grow like f 3 (f is the frequency). This can
have a negative impact when, for instance, some efficient optimizations (geometry of
the HQ tubes and their positions) are needed.

Assuming plane wave propagation, the resonance behavior of two duct combina-
tion was first established analytically by Selamet et al. [11] and then extended to a
multiple duct configuration [12]. The proposed approach is simple to implement and
allows a very fast computation of the transmitted wave but it is unfortunately limited
to low frequency applications. To make some progress, Brady [1] proposed a two-
dimensional model including multi-modal analysis in the main duct using a Green’s
function formalism. The three-dimensional model was then extended by Hallez [4].
Finally, Poirier [8] proposed an improvement by taking into account the exact shape of
the interface between the main cylindrical duct and the HQ tube. All the authors just
cited simplified their analysis by assuming that the acoustic velocity is constant over
the duct-tube interface. Furthermore they all modelized the HQ tubes as if they were
straight waveguides in which only plane waves are allowed to propagate.

Because these assumptions are known to break down as the frequency increases
(see for instance Tang & Lam [14]), the aim of the present work is to propose a model
taking into account (i) the exact shape of the HQ tube(s) and (ii) the non uniformity
of the acoustic velocity over the interfaces. We will show that these improvements can
be made with a relatively small additional computational cost while leading to very
accurate results even in the mid-frequency regime.

2 PROBLEM STATEMENT

The problem under consideration as illustrated in Fig. 1 consists of a two-dimensional
main duct Ω of width h on witch is connected a single HQ tube. Given an incident
pressure wave Pi stemming from the left, we wish to evaluate the reflected wave Pr as
well as the transmitted one, Pt. We call Γw the rigid wall of the main duct and ΓHQ

the interfaces with the HQ tube.

Pi

Pt

Pr

Γw

Γw ΓwΓwΓHQ ΓHQ

Ω

Figure 1: Main duct with one Herschel-Quincke tube
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In the main duct and in the HQ tube, the acoustic pressure p must satisfy the
Helmholtz equation

∆p+ k2p = 0 (1)

as well as the hard wall condition on Γw, that is ∂np = iωρvn = 0. Here, we adopt
e−iωt-convention, k = ω/c is the wave number and vn denotes the acoustic velocity
normal to the boundary. Finally, we require that p and its normal derivative (or vn) to
be continuous across the interface ΓHQ.

3 MIXED NUMERICAL-ANALYTICAL MODEL

In this section, we shall present the main ingredients of the method, that is (i) the
establishment of a numerical impedance matrix describing the dependence of p and its
normal derivative on both interfaces of the HQ tube (ii) the Green’s formalism in the
main duct.

3.1 Calculation of the numerical impedance matrix

Impedance matrices considered in Ref. [1, 4, 11, 12] are built with the restriction that
only plane waves are allowed to propagate in the HQ tube. By calling L the average
HQ tube length (see Fig. 3), the 2 × 2 matrix has the explicit form

Z(ω) =
1

k sin (kL)

[
cos (kL) 1

1 cos (kL)

]

(2)

where it is understood that the pressure and its normal derivative at the interface are
connected via the impedance condition

pint = Z(ω)
∂p

∂n

∣
∣
∣
∣
int

. (3)

Under the plane wave assumption, the vector pint simply contains the value of the
constant pressure on both interface and similarly for the normal derivative.
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Figure 2: Meshing of different HQ tubes with linear triangular elements : (a)
half-circular (805 nodes) and (b) “drainpipe-shaped” (826 nodes) tubes

3



In order to take into account the acoustic particle velocity variation at the interfaces,
numerical impedance matrices can be built via finite element discretization of the
acoustic pressure field in the tube HQ. For the sake of illustration, typical meshes for
two different tube shapes are shown in Fig. 2. The first step is to compute a set of
eigenmodes (Φn, ωn) of the tube with rigid wall conditions on the boundary. Once
the number Nm of modes has been chosen, a numerical impedance matrix can be
recovered as follows

Z(ω) = 〈Φ̃1 . . . Φ̃Nm
〉









1
ω2

1
−ω2

0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1

ω2

Nm
−ω2









〈Φ̃1 . . . Φ̃Nm
〉T

+ R(ω) (4)

Here, the tilde symbol signifies that we only retain the nodal values of the eigen-
modes on the interface. Similarly, the vector pint (resp. ∂np|int) now contains the
value of the pressure (resp. the normal derivative) at each node of the FEM mesh
on the interface. The interest of such a decomposition is that when the frequency of
interest is taken well below the highest modal resonant frequency (i.e. ω ≪ ωNm

), the
correction term R(ω) is quasi-constant so we can take R(ω) ≈ R(0) and store the
so-called static correction matrix once for all. This renders the computation of (4) like
a very fast and simple procedure.

In the present study, the maximum frequency of interest is fmax = 5000 Hz so we
choose to truncate the modal basis at 4fmax= 20000 Hz. In this scenario only the first
350 eigenmodes are kept for the calculation of the numerical impedance matrix.

3.2 Green’s formalism in the main duct

The theory starts by introducing the hard-walled duct Green’s function satisfying the
usual modal radiation condition on both ends of the main duct, i.e.

G(x,x0) = −
∞∑

n=0

ψn(x)ψn(x0)

2iβn

eiβn|z−z0| (5)

where x = (x, z) and x0 = (x0, z0) are two points in the propagative domain Ω.
Functions ψn are the transverse modes satisfying the hard-wall conditions

ψn (x) =







1√
h

if n = 0,

√

2

h
cos(αnx) otherwise.

(6)

where αn = nπ/h and βn are the associated axial wave numbers given by the dispersion
relation as

βn =
√

k2 − α2
n. (7)
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Using the Green’s theorem, the pressure anywhere in the duct is given via the
convolution integral

p(x) = Pi(x) +

∫

ΓHQ

G(x,x0)
∂p

∂n
(x0) dΓ(x0) (8)

The integral over ΓHQ is then computed using the same discretization scheme as
for the boundary nodes of the HQ tube FE mesh. If we call Nelt the total number
of finite elements on the boundary (Γi for i = 1, . . . , Nelt), then assuming standard
piecewise linear interpolation, we have

∫

ΓHQ

G(x,x0)
∂p

∂n
(x0) dΓ(x0) =

Nelt∑

i=1

∫

Γi

G(x,x0)

×
(

∂p

∂n

∣
∣
∣
∣
i,1

N1(x0) +
∂p

∂n

∣
∣
∣
∣
i,2

N2(x0)

)

dΓi(x0) (9)

where N1 and N2 stand for the standard linear shape functions and ∂np|i,1 and ∂np|i,2
are the nodal values of the normal derivative of the pressure on the ith element.

Finally by collocating the integral equation precisely on each node of the problem,
we find the discrete form of (8) as

pint = Pi + G(ω)
∂p

∂n

∣
∣
∣
∣
int

(10)

where the frequency dependence of the Green matrix G has been highlighted on pur-
pose.

Physically, the Green matrix can be interpreted as the impedance matrix of the
main duct.

3.3 Matrix system for several tubes

The same procedure can be repeated for an arbitrary number Ntubes of HQ tubes. This
then yields the general block diagonal form

pint =






Z1(ω) 0
. . .

0 ZNtubes
(ω)






︸ ︷︷ ︸

Z(ω)

∂p

∂n

∣
∣
∣
∣
int

(11)

where Zn is the numerical impedance matrix of the nth tube. Now using the previous
result together with (10) yields the numerical solution for the acoustic velocity vector
at the interface as

∂p

∂n

∣
∣
∣
∣
int

= (Z(ω) − G(ω))−1
Pi (12)
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The reflected and transmitted pressures waves can then be calculated using (8).
Because the method just described is based on the analytical solution of the Green’s
function and on the numerical discretization of the tubes, this shall be referred as
the mixed numerical-analytical model as opposed to the full FE model of the problem
which is then purely numerical.

4 RESULTS AND CONCLUDING REMARKS

L

dint

2d2d

Figure 3: Parameters of a HQ tube

This section presents numerical results based on the HQ tube displayed in Fig. 3
which dimensions can be found in Ref. [11]. These are recalled in Table 1

Radius d = 0.02337 m
Distance between interfaces dint = 0.3985 m
Average length of HQ tube L = 0.7845 m

Table 1: Parameters of the HQ tube

The width of main duct is h = 2a = 0.04859 m. The results are presented
with respect to the dimensionless variable ka. The study is carried out from very low
frequency up to kamax = 2.23 (which corresponds to fmax = 5000 Hz) with a very
small stepsize 1 Hz. In the overall frequency range, the incident pressure is a plane
wave wave and above cut-off (see Table 2), the next order mode becomes propagative.

Mode number Cut-off frequency
0 (plane) ka = 0

1 ka = π
2

(f ≈ 3523 Hz)

Table 2: Propagative modes in the main duct

In Fig. 4 are plotted the Transmission Loss (TL) curves computed with three
different methods. The TL is defined as the ratio of transmitted acoustic power with
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respect to the incident one, that is

TL = 10 log10

(

1

β0 |Ai
0|

2

Mprop−1
∑

n=0

βn

∣
∣At

n

∣
∣
2

)

. (13)

Here, Mprop is the number of propagative modes, Ai
0 is the amplitude of the incident

plane wave and At
n is the transmitted modal amplitude of the nth mode.

The black curve in Fig. 4 is related to the mixed model. In this example, each
interface of the HQ tube contains about 12 elements.

On the left, we compare the results with those obtained with standard FE method
using 28684 degrees of freedom. In this latter, the non reflecting conditions are imposed
using the Dirichlet-to-Neumann (DtN) map as described for instance in Refs. [3, 5, 10].
The very good agreement validate our method and the small discrepancies noticeable
at high frequency are thought to be due to the full FE model which then start losing
accuracy.

The green curve on the right is the TL obtained with the plane-wave model of
Brady [1]. This shows noticeable differences as the frequency increases and this would
have been even more remarkable by considering the next propagative mode in the
incident field. It is already anticipated, from other calculations not shown here, that
the differences should be even amplified in the 3D case.
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Figure 4: Half-circular HQ tube transmission loss : full finite element model,
model [1] with plane wave in straight HQ tube, mixed model

Fig. 5 shows the importance of taking into account the real geometry of the HQ
tube. In this example, both HQ tubes have the same parameters (see Table 1) and
only the geometry is different (see Fig. 2). If the circular pipe is expected to behave
almost like a straight waveguide (at least in the low frequency regime), the small
curvature of the drainpipe-shaped pipe can have noticeable effects on the TL due to
some internal reflection of the sound waves in the pipe and this is clearly visible on the
graph especially above the first cut-on frequency.

It is instructive to observe that the first series of peaks corresponds to two types
of destructive interferences as discussed in [7, 8, 11]. The type I interference occurs
when the acoustic pressure is zero at the downstream interface but nonzero at the
upstream interface. The type II interference occurs when the acoustic pressure is zero
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Figure 5: Effect of the HQ tube shape on the Transmission Loss:
“drainpipe-shaped” HQ tube and circular HQ tube.

at both interfaces. These resonances, evaluated from the plane-wave model, are given
explicitly by 





(L− dint) = (2n− 1)
λ

2
type I,

(L+ dint) = mλ type II.
(14)

where λ is the ‘resonant’ wavelength and m,n ∈ N
∗. It is found in this example that

these formulas only hold for sufficiently low frequency (say ka < 1).
From these early results, it has been shown that the real geometry of the HQ

tubes and the non-uniformity of the normal acoustic velocity at the interfaces can have
noticeable effects on the TL. Keeping in mind that typical frequencies of interest in
turbofan engines can reach as much as ka ≈ 50 in a cylindrical duct (a is the radius), it
is anticipated that the proposed mixed-numerical model should prove to be extremely
beneficial in designing optimized HQ systems.
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