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Abstract

In the current study, Reduced Order Models (ROMs) targeting strategies for experimental
feedback flow control are disscussed. For practical reasons, that model should incorporate a
range of flow operating conditions with small number of degrees of freedom. Standard POD
Galerkin models are challenged by the over-optimization at one operating condition (Deane et
al. [1]). The extention of dynamic range with additional global flow stability modes is the first
applied technique. Further side constraints for control-oriented ROMs are taken into account
by a ’least-dimensional’ Galerkin approximation based on a novel technique for continuous
mode interpolation (Morzyński et al. [2]). This interpolation allows to preserve the model
dimension of a single state while covering several states by adjusting (interpolated) modes.
The resulting 3-dimensional Galerkin model is presented for the transient flow around NACA
0012 airfoil and shown to be in good agreement with the corresponding direct numerical
simulation.

1 Introduction

The computational fluid dynamics (CFD) is a mature tool used in design and improvement of
performance of the transport systems like airplanes, trains or cars. Development of High Fidelity
CFD systems is accompanied by the clear conclusion that parametric studies cannot relay only on
increasing computer CPU power or even parallelization [3]. The design process opens myriads of
versions to be analyzed. Low Fidelity Analysis and/or Reduced Order Models (ROMs) are presently
the only realistic alternative. The ROMs are also necessary in the close-loop flow control. Model-
based flow control requires online-capable feedback laws. In this paper we focus on a system
reduction and the use of global flow stability eigenmodes as the key strategy to improve the flow
model dynamics. Traditionally, POD modes, being the result of pure signal processing, were used
for ROMs. Poor performance of models build with this basis trigered several novel ideas and
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improvements [1, 4, 5, 6, 7, 8]. The succesfull approaches incorporated more physical information
about the modeled system. The use of stability eigenmodes and continuous mode interpolation
presented in this paper is the example of this strategy.

2 Empirical Galerkin model

Standard Galerkin method [9] decomposes the velocity field in a base flow u0 and fluctuation u′.
Velocity field is approximated in physical domain Ω with space dependent expansion modes ui

and time-dependent Fourier coefficients aj

u[0..N ] = u0 +
N∑

j=1

αjuj, a0 ≡ 1. (1)

The ansatz (1) can serve for deriving high dimensional FEM model (computational Galerkin
method) if expansion modes have local compact support on grid cells (FEM’s hats). Low dimen-
sionality and robustness which is our goal in designing flow model requires traditional Galerkin
method which is based on global expansion modes. The Galerkin system, resulting from projection
of the Navier-Stokes equation onto the space spanned by the expansion modes has the form:

d

dt
ai =

1

Re

N∑

j=0

lijaj +
N∑

j,k=0

qijkajak, (2)

where:

lij =
(
ui,4uj

)
Ω

and qijk = −
(
ui,∇ · (uj ⊗ uk)

)
Ω

(3)

The pressure term may be neglected in the case of absolutely unstable wake flows and arbitrarily
large domains [10]. Equation 2 is a low dimensional analogon of DNS. The RANS-equivalent form
together with Finite Time Thermodynamic (FTT) closure is described in details in [11].

3 Global flow stability eigenmodes

The incompressible Navier-Stokes equation

u̇i + ui,juj + p,i − 1

Re
ui,jj = 0 (4)

linearized for small disturbances, with the exponential anzatz for the time dependence yields the
generalized complex eigenvalue problem:

λũi + ũjūi,j + ūjũi,j + p̃,i − 1

Re
ũi,jj = 0

ũi,i = 0 (5)
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Figure 1: Left: Streamlines of the most unstable modes corresponding to critical Reynolds
numbers at different angles of attack. Right: The evolution of the most unstable eigenmodes
with the growth of Reynolds number for α = 300 . On the figure, the streamlines are visualised

After discretization Eq. (5) takes the form:

Ax− λBx = 0 (6)

characterized by a very large dimension of the weak conditioned unsymmetric matrices. Several
papers deal with the solution global flow stability problem to mention for example the recent ones
[12, 13, 15] and the review given in [14]. In [16] the solution of large global stability eigenvalue
problem with unstructured 3D FEM is disscussed.

Stability analysis is traditionally a tool for prediction of amplification or damping of external
disturbances present in all real flows. Usually this method delivers two kinds of information - the
physical modes (eigenmodes) being the form of (spatial) disturbance development and eigenvalues
where real and imaginary part is the measure of periodicity in time and amplification of a flow
structure - growth rate.

The physical modes are of particular interest for flow modeling. In Fig. 1 the real part of the
eigenvector is shown for the flow around NACA 0012 airfoil at different flow conditions.

4 Improvements of Galerkin model

4.1 Mean-field correction

Reduced Order Model obtained with the POD Galerkin method is highly efficient and resolves
nearly perfectly the kinematics of the flow. At the same time it is highly fragile and sensitive to
changes in the parameters or operating conditions. First two POD modes capture about 95% of
the perturbation energy, yet Galerkin model, based on these two modes, is structurally unstable.
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The inclusion of eight POD modes, capturing the first four harmonics of the attractor, suffices to
achieve nearly perfect resolution and structurally stable GS. Yet the correct prediction of dynamic
of the system with this model is limited to a small neighborhood of the attractor, and to relatively
small Reynolds number perturbations. Stabilization of the GM can be obtained with the shift
mode [17] as suggested by mean-field theory. Shift mode is a normalized difference u0−us where
u0 is mean flow solution and us is (unstable) steady solution.

The inclusion of the shift mode reduces model sensitivity to parameter variations and is an
enabler for the low dimensional representation of transient manifolds, such as the one connecting
the unstable steady solution to the attractor. The dynamics of the minimum Galerkin Model with
a shift mode is compared with DNS in Fig. 2. Shift mode is the key enabler for construction of
transient, control-oriented models.

4.2 Hybrid model employing stability modes

Further improvement of the model dynamics is obtained with hybrid model employing stability
modes [18]. In this model POD resolve the attractor and stability eigenmodes resolve the linearized
dynamics. Thus, dynamic transient and post-transient flow behavior was accurately predicted.
The concept of hybrid model reduces significantly the number of necessary degrees of freedom
of the system. This approach is demonstrated for benchmark problem of the flow around circular
cylinder in [17]. The transients of the hybrid models are compared with DNS in Fig. 2. The
hybrid model combines the advantages of both reduced models. It converges to the limit cycle
preserving initially the growth rate predicted by global stability analysis.

Figure 2: Transients of Galerkin models for flow around a circular cylinder. Improvement - hybrid
model and continuous mode interpolation

4.3 Continuous mode interpolation

Furher improvement in designing least-dimensional ROM flow model is continuous mode inter-
polation technique applied for circular cylinder flow in [2]. The mode interpolation smoothly
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connects not only different operating conditions, but also stability and POD modes (Fig. 3).

Figure 3: Principal sketch of continuous mode interpolation. Left: Transition between stabilty
eigenmodes and POD modes. Right: streamlines of the intermediate states

In this technique, two eigenproblems A0 and A1, representing the terminal states, are linearly
interpolated in κ ∈ [0, 1] (7):

Aκ = A0 + κ(A1 − A0), (7)

In the case of POD modes, the matrices represent discretized Fredholm kernels (autocorrelation
function) (8)

Aκ(x, y) = uκ
1(x)⊗ uκ

1(y) + uκ
2(x)⊗ uκ

2(y) + ... (8)

of Fredholm eigenproblem in space domain (9)
∫

Ω
A(x, y)ui(y)dy = λiui(x) (9)

In the case of eigenmode interpolation, the matrices representing linearized Navier-Stokes
equations are utilized.

Eigenvectors of interpolated eigenproblem (interpolated modes) uκ can be used to model all
the intermediate states between κ = 0 and κ = 1. In addition, the extrapolation of modes outside
the design conditions is possible.

Interpolated modes enable ’least-order’ Galerkin models keeping the dimension from a single
operating condition but resolving several states (10).

ȧκ
i =

1

Re

N∑

j=0

lκija
κ
j +

N∑

j=0

N∑

k=0

qκ
ijka

κ
j a

κ
k, (10)

5



where
κ̇ = F (κ, aκ, t) (11)

These models are especially well suited for control design. The results showing transients of
circular cylinder flow modeled with the use of continuous mode interpolation are depicted in Fig.
2.

5 Least-order Galerkin model of NACA-0012 airfoil flow

The technique presented in previous section is applied here for laminar flow around NACA-0012
airfoil (Fig. 4). More technical details of the approach can be found in [19].

 Steady solution

 DNS
 t = 0.000T

Figure 4: Flow around NACA-0012 airfoil. Top: streamlines of the steady solution. Bottom:
streamlines of the snapshot from the periodic (limit-cycle) flow.

In present study, a number of different mode bases are considered in the construction of
Reduced Order Models.

Empirical models use POD modes (Fig. 5) computed with the snapshot technique of Sirovich
[20], from the snapshots of periodic flow. We analyze here models based on two and eight
most-energetic POD.

 POD mode 1  POD mode 2

 POD mode 3  POD mode 4

Figure 5: First 4 POD modes used in Galerkin modelling

The another flow model is designed with the stability eigenmodes, computed using steady and
time-averaged solutions as a base flow (Fig. 6).
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 EigS mode 1  EigS mode 2

 EigM mode 1  EigM mode 2

Figure 6: The most dominant eigenmodes based on steady solution (top, λ = −0.147± 0.720ı
) and time-averaged solution (bottom, λ = 0.018± 0.915ı)

The last of the models presented in this paper is the least-dimensional model of two modes
and continuous mode interpolation. The mean-field correction (shift mode) is employed for all
presented here models to avoid the structural instability and the fragility. The comparison of all
models is shown in figures 7 and 8.
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Figure 7: Shift-mode coefficient as a function of TKE for POD-based models (left), eigenmode-
based models (middle), and interpolated model (right)

It can be seen in Fig. 8 that POD modes allow the reconstruction of Navier-Stokes attractor
(limit cycle), but they are unable to reproduce the dynamical properties of transitional flow. For
the flow states close to fixed point (steady solution, small values of shift-mode coefficient), the
kinetic energy of the flow is overestimated - especially in POD-2 Galerkin model.

The models based on the two most unstable eigenmodes (Fig. 7, middle) reconstruct the flow
states close to fixed-point (steady solution) and the transition to limit cycle better than POD
Galerkin models. On the other hand the limit-cycle disturbance kinetic energy and shift-mode
coefficients of periodic flow are significantly underestimated with these mode bases.

To take the adventage of both mode bases, interpolated model of the flow around NACA-0012
airfoil is used.

In the case of transition between unstable (steady solution) and stable (limit cycle oscillations)
attractor, interpolation parameter κ is related to shift-mode amplitude (coefficient). κ = 0
represents steady state and dynamics described by the most stable stability eigenmodes, while
κ = 1 is related to limit-cycle dynamics and POD modes.
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Such a model preserves low dimensionality (4 equations for shift-mode amplitude, interpolated
mode amplitudes and κ) and provides high accuracy in a wide range of operating conditions.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300

T
K

E

t

GM-POD-8
GM-POD-2
GM-EigE-2
GM-EigM-2
GM-EigS-2

GM-Hybrid-2-2
GM-int

DNS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250  300

κ

t

Figure 8: The variation of disturbance kinetic energy (TKE) for different Galerkin models and
interpolation parameter κ in function of time, for transition from steady state to the limit cycle
oscillation

6 Conclusions

In the present paper we emphasised the necessity of Reduced Order Models of flows in closed
loop flow control as well as in the design process. ROM is able to deliver technically relevant
answers in fraction of time necessary for full scale computations. Robust ROM of the flow is also
the most important element of the online-capable feedback flow control. We concentrate here on
assuring adequate dynamical properties of the model. Traditional methods of ROM construction,
based on assemble of POD modes, are dynamically fragile and over-optimized at single operating
conditions. Enrichment of the mode basis is one of the key technique of improvement. Shift mode,
providing the missing direction from the fix point to the limit cycle assures the convergence of the
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Reduced Order Galerkin Model. Hybrid models, employing stability eigenmodes further improve
the dynamics. The construction of the least-dimensional flow model, preserving accuracy in a
wide range of operating conditions, is possible with continues mode interpolation between POD
and stability eigenmodes. A key enabler in ROMs presented here and flow control is the global
stability analysis.
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