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A novel continuous-time stochastic differential equation (SDE) for spacecraft attitude quaternion kinematics
with state-multiplicative noise and a novel continuous-time exact optimal quaternion filter are developed in the
framework of Itô (mean-square) calculus. The quaternion Itô SDE contains dissipative terms that ensure the
mean-square stability of the process. The filter gain computations, which include coupled Riccati equations of the
estimation error matrix and of the quaternion second-order moment, are not estimate-dependent and can therefore
be performed off-line. The case of gyro errors including white noise with independent identically distributed
components and additive constant biases is considered. Extensive Monte-Carlo simulations show that, for high
signal to noise ratio, the novel approach can increase the accuracy of a conventional Kalman filter by orders of
magnitudes.

INTRODUCTION
Much effort has been produced in order to develop better stochastic models of spacecraft (SC) attitude quaternions1

and of optimal stochastic estimators in the realm of Kalman filtering.2, 3, 4, 5, 6 There is an advantage of working in
the continuous-time setting since continuous-time analysis usually provides upper bounds on the performance of the
discrete-time equivalent filters. Also, analysis in continuous-time usually yields less cumbersome expressions. For
that purpose, Kalman-Bucy filtering theory7 and its extension to non-linear, non-Gaussian systems are the classical
tools.

One central issue, towards the development of quaternion Kalman filters, lies in the elaboration of a continuous-
time model for the quaternion process equation, in particular, in the passage from the physical process equation to
its mathematical approximation. The drawback that stems from previously proposed models is briefly explained
next. Consider the Langevin8, 9 stochastic differential equation (SDE) for the quaternion, qt , featuring a nominal
deterministic angular velocity, ωt , with an additive error with respect to the true value, εt

∗:

q̇t = 1

2
Ω(t)qt − 1

2
Ξ(qt) εt (1)

where Ω is a skew-symmetric matrix functions of ωt and Ξ(qt) is a linear matrix function of qt . Since the measured
angular velocity, acquired via e.g. a triad of gyroscopes, is usually more precise than the nominal angular velocity,
the commonly-used practice is to substitute the measured velocity to its nominal value. Henceforth, following the
common practice, ω

t
will denote the measured angular velocity and ε

t
will denote a zero-mean additive Gaussian

white noise. Assuming that ε
t

is white ensures the Markov property for the q
t
-process. It is known, however, that

Eq. (1) is not well-defined:8, 10 the εt -process being delta-correlated is not mean-square (m.s.) integrable and, since
its sample paths are delta functions, it is not integrable almost everywhere (a.e.). Furthermore, since white noise is an
abstraction and not a physical process, what one really means by Eq. (1) in practice is probably “an equation driven
by a stationary Gaussian process with a spectral density that is flat over a wide range of frequencies” [10, p. 156]. In
that case however, the qt -process looses the Markov property.†

The contribution of this work is twofold. First, it introduces a novel continuous-time stochastic model for the
quaternion process equation. The quaternion modelling is developed using Itô (mean-square) calculus, which is the
mathematical background for the Kalman-Bucy filter. This model provides a precise meaning to the q

t
-process while

retaining the crucial Markov property. The Itô SDE that approximates Eq. (1) presents dissipative terms in its drift
term. The special case of white noise in the gyro error is first considered but, continuing an early work,11 the case of
constant additive biases is also developed for the numerical study. Although the qt-process is not Gaussian, standard
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techniques12, 13, 14 yield closed-form deterministic equations for the second-order moment of qt . It will be seen that
the dissipative term of the Itô equation ensures the mean-square stability of the qt -process. Depending on the quality
of the gyroscopes, neglecting the dissipative terms might have serious impact on the filter performance during long
duration time-propagation stages.

In addition, based on the proposed quaternion state-space model in Itô form, an exact best linear unbiased (BLU)
filter is developed. It is seen that the Itô dissipative terms are necessary to the filter stability. The implementation of the
filter must be consistent with the Itô dynamics. The main features of this filter are that it is free from approximations
and the gain computations are deterministic. The drawback is that it requires computing simultaneously the estimation
error covariance matrix as well as the second-order moment of the qt-process. These computations, however, can be
performed off-line since they are not estimate-dependent.

The quaternion stochastic modelling is presented in the next section. Then the best linear unbiased filter is devel-
oped. The subsequent section includes a numerical study. Conclusions are proposed in the last section.

QUATERNION STOCHASTIC MODELING
Physical Process Equation

Consider a rigid-body spacecraft (SC) rotating with respect to some reference Cartesian coordinates frame, R, with
an angular velocity vector ωo

t
, as resolved along the SC Cartesian frame, Bt. Let qT

t
= [ eT , q] denote the quaternion

of rotation from R to Bt. The physical process equation modelling the quaternion kinematics is the following well-
known deterministic ordinary differential equation [1, p. 511]:

q̇t = 1

2
Ω

o

(t)qt ; q(0) = q0; t ∈ [ t0 , T ] (2)

where
Ω

o

(t) =
[− [

ωo
t
×]

ωo
t

−ωo
t

T 0

]
(3)

and
[
ωo

t
×]

denotes the cross-product matrix. The true angular velocity, ωo
t

is in general only known with an additive
error εt ; that is,

ωt = ωo
t

+ εt (4)

where εt may be a measurement error vector from gyroscopes outputs, including scale-factors, constant biases, slowly
varying drifts and rapidly fluctuating disturbances. In the following, we will focus on the latter case since the proposed
results of this work are related to the modelling of the wide-band disturbances. The treatment of the more general case
is however straightforward using state-augmentation techniques. For analytical purposes, the usual approach consists
in modelling εt as a zero-mean Gaussian white noise process, thus assuming that E{ εtετ

T } = Qtδ(t − τ), where
δ(.) denotes the Dirac delta function and E{.} denotes the unconditional expectation operator over all the underlying
random variables. Inserting Eq. (4) into Eq. (2) yields the known quaternion stochastic differential equation2, 3 in
Langevin form9 [8, p. 94]:

(L) q̇
t
= 1

2
Ω(t)q

t
− 1

2
Ξ(q

t
) ε

t
; q(0) a.e.= q0; t ∈ [ t0 , T ] (5)

Ξ(qt) =
[

[ e×] + q I3

− eT

]
(6)

where a.e stands for “almost everywhere”. As mentioned in the Introduction, the ε
t

process is delta-correlated, so ε
t

is not mean square integrable. The sample functions are delta functions, so ε
t

is not integrable with probability one
(w.p.1). “Consequently, [Eq. (5)] has no mathematical meaning” [8, p. 122]. On the other hand, modeling εt as a
wide-band process (a colored noise) would imply for Eq. (5) to loose the convenient Markov property.

Itô Stochastic Differential Equation

Proposition 1: From the theory of stochastic differential equations,15, 16 the Itô differential form for Eq. (5) is

(I) dqt = 1

2

[
Ω(t)− trQ

4
I4

]
qt dt− 1

2
Ξ(q

t
)dβ

t
; q

t
(0) a.e.= q0; t ∈ [ t0 , T ] (7)

where dβ
t

denotes infinitesimal independent increments of a Brownian motion β
t

such that E{β
t
βT

τ
} = Q (t − τ),

and Q is assumed diagonal with elements σ2
1
, σ2

2
, σ2

3
.

Proof. Equation (7) is obtained via Wong and Zakai’s theorem.15 See a detailed proof in Ref. [11].



From the viewpoint of analysis, Itô’s equation is preferable to the physical process equation with wide-band noise
since it allows a precise meaning of the process qt while retaining the Markov property. The process qt is the solution
in the mean-square sense to Eq. (7) on [ t0 , T ] and is uniquely determined, in the mean-square sense, by the initial
conditions q0. Let FI(t) denote the dynamics matrix in Eq. (7). It can be shown that its spectrum is given as follows:

Sp(FI) = {− trQ
8

;− trQ
8

;− trQ
8
± j

1

2
‖ωt‖} (8)

The diagonal terms in FI are interpreted as dissipative terms in the Itô formulation. Without them, qt would diverge
in the mean square sense. This is seen by examining the propagation equation for the second-order moment of qt .

Second-Order Moment

As seen from Eq. (7), and as recognized in earlier works,2, 3 the quaternion process equation is perturbed by a state
multiplicative noise, which is linear in qt . Thanks to this linear-in-qt property, and in spite of the non-Gaussian nature
of qt , the evolution equation for the second-order moment of qt , Xt = E{qtq

T
t
}, can be developed in closed-form.

The general case can be found e.g. in Refs. [13] or [14], from which we use the formalism. The following lemma is
central for subsequent developments.

Itô Lemma for linear systems with multiplicative noise [14, p. 212]: Consider

dxt = Atxt dt + Dtxtdβt (9)

where βt is a scalar valued standard Wiener process, such that E{dβ2
t
} = dt.

Defining Xt = E{xtx
T
t
}, the propagation equation for Xt is

Ẋt = At Xt + XtAt

T + Dt XtDt

T ; X(0) = X0 (10)

Proposition 2: Consider the case where the components of β
t

are independently identically distributed with vari-
ance parameter σ2; that is, Q = σ2 I3 . Let X denote the second-order moment of qt , Xt = E{qtq

T
t
}, then

Ẋt = 1

2

[
Ω(t)− 3σ2

4
I4

]
Xt + Xt

1

2

[
Ω(t)− 3σ2

4
I4

]T

+ σ2

4
[( tr Xt) I4 − Xt ] ; X(0) = X0 (11)

Proof. See Ref. [11].
Notice that without the dissipative terms, − 3σ2

4 I4 , Eq. (11) would have unstable poles. Conditions for bounded-
ness of linear matrix equations are given in Refs. [20]. Furthermore, Eq. (11) provides an exact and deterministic
computation of Xt . These results are central in the implementation of the Kalman filter. It will indeed allow off-line
computation of the filter gains, which is usually not the case in typical quaternion Extended Kalman filters. Further-
more, the existence of the gains will be ensured via the convergence of Eq. (11).

Length of qt

Proposition 3: Let the ϕt(qt) denote the squared length of qt solution of Eq. (7); that is

ϕt = qT
t
qt ; ϕ(0) a.e.= ‖q0‖2 = 1 (12)

Then,
ϕt

m.s.s.= ‖q0‖2 = 1; t ∈ [t0, T ] (13)

Proof. It is straightforward to check that ϕt satisfies the continuous and differentiability conditions needed in order to
apply the Itô differential rule [8, p. 112]. The above result stems from a direct application of Itô’s rule.

The above proposition states that, once the quaternion is initialized with a given length, which must be equal to one
in order for a quaternion of rotation, it keeps the same length, in the mean square sense, at any future time . Hence the
stochastic formulation of the quaternion dynamics addresses, via the dissipative terms, the issue of quaternion length
preservation in the process model equation.

Let xt denote the expected value of ‖qt‖2; that is, xt = E{‖qt‖2} and assume that the stochastic correction does
not appear in Eq. (11). Then a straightforward application of Itô’s rule yields the following propagation equation for
xt :

ẋt = 3σ2

4
xt ; x(0) = E{‖q(0)‖2} = 1 (14)



Clearly, Eq. (14) is diverging. With inertial rate gyroscopes, this divergence rate may not be a practical issue. For low
grade gyroscopes however, with σ ∼ 0.1 deg/sec3/2, and read-out rates of the order of KHz, the error growth rate
may yield the length of qt to double within a couple of weeks.

Measurement Model

New sensor packages that uses star trackers and yield the SC attitude in terms of the attitude quaternion became
available recently. Therefore, it became possible to use the quaternion supplied by such sensors as measurements.
This approach was indeed used in Ref. [17] in discrete-time. The continuous-time measurement model equation, in
Itô form, is assumed to be as follows:

dzt = qt dt + dnt (15)

where nt is a Brownian motion in R4 with intensity matrix Rt . If the measured quaternion is not constrained to be
unit-norm, which implies that the noise may be assumed independent of the true quaternion, then the intensity matrix,
Rt , may be assumed full rank. Notice that if the measured quaternion is constrained to be of norm one, previous
works about unit-norm vector measurement probability distribution (see e.g. [18]) showed that Rt , while not being
rank deficient, would however be badly conditioned. Both cases for Rt will be tested in the numerical study section.
In addition to the simple proposed model of Eq. (15), other types of quaternion measurement equations, possibly
including state-dependent non-white noises, can be dealt with along the approach previously adopted for the process
model equation.

QUATERNION BEST LINEAR UNBIASED (BLU) FILTERING
The filter is developed as the best linear unbiased (BLU) filter using the general results from Refs. [13, 14]. The

summary is described in the following and the detailed development is provided in Ref. [11].

Unconstrained BLU Filter Summary

The continuous-time equations of the unconstrained BLU quaternion filter are

F
I
(t) = 1

2

[
Ω(t)− 3σ2

4
I4

]
(16)

d̂qt = FI (t) q̂t dt + Kt(dzt − q̂t dt) (17)

Ṗt = (FI −Kt)Pt + Pt(FI −Kt)
T + σ2

4
[( tr Xt) I4 − Xt ] + KtRtK

T
t

(18)

Ẋt = FI Xt + XtF
T

I
+ σ2

4
[( tr Xt) I4 − Xt ] (19)

where the optimal gain is computed as
Kt = PtR

−1
t

(20)

with q̂(0) = E{q(0)} (for unbiasedness), X(0) = E{q(0)qT (0)} and P (0) = cov{q(0)}.

Remark 1: If the unconditional moments are unknown and the filter is initialized with a priori values, for instance
q̂(0)T = [0001], the error process becomes asymptotically unbiased as t →∞.

Remark 2: The BLU estimate is obtained uniformly in time. It is exact and enjoys therefore the orthogonality
property: If E{q̃(t0)q̂(t0)T } = 0 then E{q̃(t)q̂(t)T } = 0 ∀t ∈ [t0, T ]. Furthermore, E{q̃(t)Z

t
} = 0 ∀t ∈ [t0, T ]

where q̃(t) = q
t
− q̂

t
and Z

t
denotes any function of the past measurement history.

Remark 3: These filtering equations do not require any approximation. They are similar to the Kalman-Bucy filter7

but require that the second-order moment of q
t

be calculated. This is the computational penalty for including the
state-dependent noise. Furthermore, the stability of this filter, different from the Kalman filter, depends upon the
boundedness of Xt .20

Remark 4: The gain computation, similarly to the KF, are deterministic. For this reason the Langevin equation is
obtained from the Itô form, Eq. (17), without stochastic correction; that is,

˙̂q
t
= F

I
(t) q̂

t
+ K

t
(ż

t
− q̂

t
); q̂(0) = E{q(0)} (21)

In simulation, we will use the Langevin equation (21).

Remark 5: As opposed to a classical extended Kalman filter, the gain computations are independent from the value
of the estimate and can be therefore performed off-line. Thus, in practice, the computational burden inherited from
the computation of X

t
is not much of a drawback.



Discussion: Approximate quaternion filtering using nonlinear quaternion measurements

The previous analysis and results assumed that a full quaternion measurement was acquired along the time. Fre-
quently, however, spacecraft attitude sensors only deliver measurements that are nonlinear functions of the attitude
quaternion. This happens, for instance, when the continuously sampled quantity is the Earth Magnetic field, i.e., the
three components of the field in the SC Cartesian coordinates frame. The state-space equations for the quaternion q
are then consisting of Eq. (7) and of the following nonlinear measurement model equation:

dzt = h(qt) dt + dnt (22)

where h(qt) is defined as:2 h(qt) = A(qt) rt (23)

and, in Eq. (23), A(qt) denotes the Direction Cosine Matrix (DCM) as a function of the quaternion, rt denotes the
components of, say, the Earth Magnetic field along a reference Cartesian coordinates frame, and nt is a Brownian
motion with intensity matrix Rt . Notice that, providing that the measurements are not of unit norm, Rt is not ill-
conditioned.
For this type of measurements, the (linear) analysis that brought an exact BLU filter of q fails because the DCM
is a quadratic function of q. Nevertheless, standard approaches for developing approximate nonlinear filters, which
approximate the conditional mean and variance of the state, can then be applied. As an example, it is straightforward
to develop the quaternion Extended Kalman filtering equations for the conditional mean and variance [8, p. 338]:

d̂qt = F
I
q̂t dt + PtĤt

T
R−1

t
[dzt − h(q̂t) r2 dt] (24)

Ṗt = F
I
Pt + PtF

T
I

+ σ2

4
[( tr Xt) I4 − Xt ]− PtĤt

T
R−1

t
ĤtPt (25)

Ẋt = F
I
Xt + XtF

T
I

+ σ2

4
[( tr Xt) I4 − Xt ] (26)

where F
I

includes the Itô correction term, as given in Eq. (16), and Ĥt is the following gradient matrix:21

Ĥt = 2
[
êT r I3 + ê rT − r êT + 2 q̂ [ r×] , q̂ r + [ r×] ê

]
(27)

where ê and q̂ are the vector and scalar part of q̂.
The differential equation describing the approximate nonlinear filter, Eq. (24), is an (Itô) stochastic differential equa-
tion. The coefficient of dzt is random since the gradient matrix Ĥt is function of the random estimate q̂t . Therefore,
care must be taken in simulating Eq. (24) on a computer. Unlike the BLU filtering equation previously obtained
[Eq. (21)], Eq. (24) needs to be modified. One way of simulating the filter is first to transform the filter equation by
subtracting the Itô correction term from the drift term in Eq. (24) and, then, to use standard integration techniques.
Notice that the resulting filter still embeds the improvements in the quaternion model that were brought by Itô’s calcu-
lus tools. In particular, the gain computations involve the exact expression for the gyro quaternion-dependent intensity
matrix. This matrix might be computed beforehand, via the propagation of the matrix Xt in Eq. (26), and its val-
ues stored off-line. On the other hand, as is well known, the filter gain computations are coupled with the estimate
computations and have to be performed on-line.

NUMERICAL STUDY
Consider a spacecraft rotating around its center of mass at an angular rate, ωo, given as follows:

ωo = sin(2πt/150)
[
1 −1 1

]T
deg/sec

It is assumed that the spacecraft measures the angular velocity via a three-axis rate gyro with an output error that
includes three additive biases as well as a white Gaussian vector noise with standard deviation σ/

√
∆t, where ∆t is

the time interval between two consecutive gyro readouts. The simulation runs are performed over a time interval of
6000 seconds, which corresponds to one revolution of a typical Low-Earth-Orbit (LEO) satellite.

Model validation: Process equation

A first set of simulations were performed in order to numerically investigate the validity of the Langevin quaternion
design model, Eq. (5), and of the Itô design model, Eq. (7), and to compare between them. For that purpose, in order
to focus on the white-noise simulation issue, the value of the biases were set equal to zero. The errors in both design



models were computed as the difference between the model quaternion (qL
t for Langevin or qI

t for Itô) and the truth-
model (deterministic) quaternion, as given by Eq. (2). The following error indices were defined in order to quantify
the modeling errors: δI

q = maxt ‖qt−qI
t ‖ and δL

q = maxt ‖qt−qL
t ‖. Table 1 is a comparative table that presents the

values of the ratio δI
q/δL

q for a range of values in σ and ∆t. Notice that these values were chosen such as to preserve
the validity condition related to the Itô correction term15[p. 162], that is, such that ∆tB << 1, where B corresponds
to the bandwidth of the modeled equation. Adapting the expression for B to the current equation yields the following
necessary condition on σ and ∆t: σ2 ∆t << 1. As expected, the modeling errors, δL

q and δI
q , are growing with σ and

∆t, with common rapid growths around σ ' 10−3 rad/
√

sec. The table shows that, for small enough values of σ and
∆t, both models yield very similar error levels. Nevertheless, the error δL

q is systematically bigger than the error δI
q ,

for any value of the parameters σ and ∆t. Moreover, the error in the Langevin model grows unbounded for σ ≥ 10−2,
while the error in the Itô model remains bounded. Figure 1 depicts the time histories of the four components in the

Table 1 Ratios of the modeling quaternion errors, δI
q/δL

q , between the Itô model and the Langevin model.

∆t [sec] \ σ [ rad√
sec

] 10−4 5.10−4 10−3 5.10−3 10−2 10−1

10−3 .007
.007

.17

.19
.54
.60

1.7
7.6

1.9
144

2.1
1077

10−2 .009
.009

.17

.19
.63
.75

1.8
8.4

1.9
377

2.2
2310

10−1 .009
.009

.18

.20
.64
.80

1.9
9.9

2.1
681

2.2
3181

quaternion modeling error and the time history of the norm modeling error, in both models, for σ
√

∆t = 10−2 rad.
The norm modeling error is computed as the difference between the norm of the modeled quaternion and unity. The
red curves are related to the Langevin model and the blue curves depict the errors using the Itô model. The Itô model
consistently shows a better accuracy than the Langevin model, which displays severe instabilities, according to the
level of the noise intensity. The later fact is emphasized on the plot of the norm modeling error, where the Langevin
model is unable to preserve the squared norm of the quaternion, and shows an exponential divergence.
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Figure 1 Modeling errors in the quaternion (Langevin-red curve and Itô-blue). Single run.
σ
√

∆t = 10−2 rad. The Langevin error grows exponentially.



Model validation: Second-order moment equation

Preservation of the trace and Statistical Consistency: Simulations were performed in order to illustrate the proper-
ties of the propagation equations for the second-order moment matrices, X , of the modeled quaternion in both models.
Particular attention was given to the trace of X . Ideally, the trace of X should equal one at all times. The error induced
in the Itô model is developing much slower than in the Langevin model. The bigger the noise intensity, the higher
are these errors. However, while both models have the same accuracy for σ = 10−7 rad/

√
sec, the discrepancy in

their accuracy grows by several order of magnitudes when σ increases. For instance, at σ = 10−4 rad/
√

sec, the
final error in the Langevin model is 5.106 times larger than the error in the Itô model. This result is an illustration of
the exponential divergence of the trace of X in the Langevin model, as given in Eq. (14). Indeed, at tf = 6000 sec
that equation predicts for trX a value of exp (3/4σ2 tf ) ' 5.10−5. Graphical results, which are not shown here for
the sake of brevity, can be found in Ref. [11]. An additional set of simulations was performed in order to check the
statistical consistency of the Itô model, that is, to check that the matrix X correctly predicts the second-order moment
of the quaternion, as modeled via the Itô process equation. This was done for σ = 10−4 rad/

√
sec and ∆t = 0.1 sec.

A Monte-Carlo (MC) simulation (200 runs) was performed in order to compute the MC variances for each of the
components of the quaternion, as well as for its squared norm. It comes out that that these differences remain at 10−4

for the quaternion components, and at 10−7 for the squared norm. The accuracy in the latter result stems from the
corrective term in the Itô formulation of the quaternion model.

Estimation performance: Comparison with the Additive Extended Kalman Filter

The previous theoretical analysis showed that the proposed quaternion filter (SQKF), which includes the Ito stochas-
tic correction and the augmented second moment computations, provides a quaternion estimate with a clear mathe-
matical significance. The following numerical study will illustrate, via extensive Monte-Carlo simulations, under
what conditions the SQKF can advantageously replace the standard Additive Extended Kalman Filter. For the sake of
simplicity the quaternion measurement noise covariance, Rt , has been assumed of the following forms:

Rt = σ2
q I4 and Rt = σ2

q ( I4 − q̄t q̄t

T ) + α I4 (28)

where q̄ is the measured quaternion, σq is the variance parameter, I4 is the four dimensional identity matrix, and α
is a regularization parameter used in order to avoid singularity (typically of order 10−15). The second expression in
Eq. (28) is inspired from previous results on unit-norm vector measurements, which, usually, are 3-dimensional vector
measurements.18 Both expressions were used without noticing significant discrepancies in the performance. as given
in the left equation of Eq. (28).

Estimation performance: Attitude estimation

Several MC simulations (200 runs) were performed while varying the signal to noise ratio (SNR), which is here
defined as follows: SNR = σ

√
∆t

σq
. For each value of the SNR, the SQKF and the AEKF were implemented and

the time averages of the associated angular estimation errors were computed. Table 2 depicts the ratio of the SQKF
angular error time average over the AEKF angular error time average. In parenthesis appears the order of magnitude
of the angular error in SQKF. These results illustrate that, as expected, on the whole range of values for the SNR, the
SQKF performance are either similar or superior to the AEKF performance. This directly stems from the optimality
of the SQKF. The higher the SNR, the clearer the result becomes: for SNR = 10−5, the performance increase may
reach tens of percents. The configuration of very high SNR corresponds to very reliable sensors (quaternion units
delivering arcsecond accuracy) jointly used with very poor gyros, e.g., MEMS-based gyros, which are known for their
high-valued noises.22

In Figure 2 are plotted the time variations of the quaternion estimation error, for each component, on a single run
(green solid lines), together with the ±1σ envelope, as computed in the SQKF (green dotted lines), and the MC
averages of the estimation errors (blue solid lines). It appears that, without any need for tuning, the filter shows
statistical consistency, i.e., the single run realization is bounded by the ±1σ envelope. Furthermore, the MC averages
illustrate the unbiasedness of the SQKF. Additional Monte-Carlo simulations were performed showing that the MC
estimation error variances were close to the filter computed variances.

Estimation performance: Attitude and gyro bias estimation

In this subsection, the proposed approach for quaternion estimation is extended to the case where the gyros mea-
surements are corrupted by additive random biases, µ

t
, modeled as random walks, as well as by additive white noise:

ωt = ωo
t

+ µ
t
+ εt (29)



Table 2 Ratio of angular error MC averages of SQKF over AEKF for various SNR σ
√

∆t/σq . The error in
SQKF is systematically smaller than in AEKF and can increase the filter performance by tens of percents.

σq [rad] \ σ
√
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Figure 2 Time variations of the estimation errors in the quaternion components for a typi-
cal run of the SQKF (solid green lines). The dotted green lines depict the ±1σ envelopes as
computed by the SQKF. The solid blue lines are MC averages (200 runs). Without tuning, the
SQKF computes estimates that are consistent with their predicted statistics. The estimation
errors are unbiased. σ

√
∆t/σq = 105.

The standard approach consists in using the State Augmentation technique in order to apply the filtering theory to the
augmented following system:

dqt = 1

2

[
Ω(t)−M(t)− 3σ2

4
I4

]
qt dt− 1

2
Ξ(qt)dβt

; qt(0) a.e.= q0 (30)

dµ
t
= dη

t
, µ(0) a.e.= µ0; t ∈ [ t0 , T ] (31)

where η
t

is a standard Brownian motion with intensity σ2
η , and M(t) is defined by Eq. (3) with µ

t
substituted to

ω
t
. The development of the augmented filter follows well-known steps (see e.g.[2]) and needs no further description.



(a) Biases estimation errors in rad/sec (b) Quaternion estimation errors

Figure 3 Attitude and bias estimation. MC-mean (200runs) of the gyro biases and of the
quaternion estimation errors for σ

√
∆t/σq = 105. (SQKF in blue, AEKF in red). SQKF

produces unbiased estimates in spite of the gyro-quaternion system’s nonlinearities.

Notice that the Itô corrective term remains identical since the multiplicative noise only depends on the quaternion.
The resulting estimator is not the optimal unbiased linear filter any more since the augmented system is nonlinear with
respect to the augmented state. Nevertheless it is still possible to use, with some approximation, the analysis related
to the quaternion second-order moment propagation. Typical biases in MEMS rate gyros are of order 5 deg/hr.22

This numerical study assumed more severe cases where ‖µ(0)‖ ' 200 deg/hr. Figure 3 presents results from MC
simulation (200 runs over 6000 seconds) where σ = 10−1 rad/

√
sec, σq = 10−6 rad, ση = 10−6 rad/sec1.5,

µ0 = 10−3 rad/sec, and ∆t = 0.1 sec. The quaternion measurement noise level is chosen very low on purpose. This
choice, together with the fact that the measurement equation is linear, allows a comparison of the filters performances
solely based on how they handle the process equation nonlinearities and noise.
Figure 3-a shows the MC averages of the biases estimation errors in the SQKF and in the AEKF. It should be noticed
that the SQKF did not require any tuning. On the other hand, the AEKF performances were achieved after multiplying
the filter intensity parameter ση by a factor 10 in order to avoid divergence of the drifts estimate and in order to increase
the convergence rate. In addition, the diagonal elements of the initial filter covariance matrix, P0, that are associated
with the drift estimate were multiplied by a factor 103 with regards to unity nominal values. Both filters provide drifts
estimates that are of the same order of magnitude as the true values. The AEKF estimates are, however, depicting SC
dynamics induced oscillations, which is the consequence of an estimate-dependent filter covariance computation. In
spite of the tuning, the AEKF still shows a slower transient than the SQKF transient, which is practically immediate.
The advantage of the SQKF in steady state is clear when plotting the quaternion estimation errors. Figure 3-b shows
the MC averages of these errors over time. The AEKF presents biased errors in the first three components and an
undamped oscillatory error in the forth component. On the other hand, the SQKF produces practically unbiased
estimates (' 10−9) in all four components. The latter is remarkable in view of the nonlinearities that are present in
the bias-quaternion system’s dynamics. This last result illustrates the benefit of properly computing the quaternion-
dependent process noise covariance in the filter.



CONCLUSION
A novel continuous-time Itô stochastic differential equation for the quaternion of rotation, qt , was developed as-

suming angular velocity measurements corrupted by zero-mean gaussian white noise and slowly varying drifts. The
quaternion process equation presents dissipative terms in the dynamics matrix that ensures mean square stability. A
best (minimum-variance) linear unbiased quaternion estimator was developed, where the filtering equations include
the dissipative terms, in accordance with the Itô form of the qt-process. It was shown that neglecting these dissipative
terms would result in an exponentially diverging bias in the quaternion estimate length at a rate that is proportional to
the gyro noise variance parameter. Extensive Monte-Carlo simulation results illustrate the performance of the proposed
quaternion modeling and filtering approaches in the case of a rotating spacecraft, when compared with a standard ad-
ditive extended Kalman filter (AEKF). For high signal-to-noise ratios, the novel filter clearly outperforms the AEKF,
while maintaining, without the need for tuning, statistical consistency in its estimates. Further work remains to be
done in order to investigate the convergence properties of the Riccati second-order moment equations and to check
whether quaternion normalization may improve the filter performance.
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