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Abstract
In this work we study the feasibility of Residual Distribution Method (RDM) to com-

pute linear wave solutions. The Linearized Euler Equations are used therefore and it was
found that weak numerical instability waves are formed ahead of the propagating waves. We
present a Fourier analysis of acoustic modes for some Residual Distribution (RD) schemes
for coupled space-time discretization. The numerical dispersion error and dissipation are
calculated in order to identify the source of numerical instabilities. It is found that the mul-
tidimensional upwind schemes reduces the cross dissipation of the schemes (compared to the
dimension splitting upwind schemes) resulting in less overal dissipation in case of two or three
dimensional problems.Then, based on the Fourier analysis, we suggest an additional selective
filtering (numerical dumping) which we support by numerical experiments.

1 Introduction

In case of higher order discretization, the wavelengths of the artificial waves which create insta-
bilities are concentrated in a narrow band in the unresolved wave region of the numerical scheme
[2]. The dominant wavelength can be identified by Fourier analysis of the scheme. In general,
the Fourier analysis of the considered schemes can provide the number of nodes needed to re-
solve accurately a given wavelength with a given gridspacing. The analysis moreover give detailed
description of the dissipation and the dispersion behaviour along the propagation direction.

The oscillations created by the underresolved waves can be eliminated by adding artificial nu-
merical viscosity, however this treatment inevitably reduces the abilities of the given numerical
scheme. Since the wavenumber found to lie in the under-resolved region of the numerical scheme
it seems to be more appropriate to apply numerical viscosity just in that region. This idea was in-
troduced by Tam and Shen[9] and the present work extends their filtering formulation for Residual
Distribution Method.

First, we describe the residual schemes and the ways of discretizing unsteady problems. Then,
through the Fourier analysis we show the abilities of these schemes. Based on the Fourier analysis
a selective filtering is suggested in the third section and justified by numerical examples.

2 Numerical discretization

Residual Distribution Method is a numerical discretization technique somewhere between Finite
Volume and Finite Element Method. The idea was introduced in 1982 by P.L. Roe [8] for the solu-
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tion of conservation laws on unstructured meshes. It provides true multidimensional propagation
of information resulting in schemes with a rather small cross-diffusion.

The applied numerical method is described through the unsteady scalar advection problem:

∂u

∂t
+∇~λ · u = 0 ∀(x, y, t) ∈ Ωt = Ω× [0, tf ] (1)

In the space-time framework, time is considered as a third dimension and Ωt is discretised by
a succession of prismatic elements as shown on Figure 1. For any given function u, its restriction
on the prism is defined by :

uh(x, y, t) =
∑
l

H l(t)
∑
i∈T

ψi(x, y)uli , (2)

where uli is the value of uh at node i and time tl : uli = uh(xi, yi, tl), H
l is the 1D linear basis

function and ψi(x, y) denotes the (mesh dependent) linear continuous Lagrangian basis function.
In each space-time element un is considered as known and un+1 is the unknown.

The first step of the discretization is the computation of the residual on each space-time prism:

Φ =

∫ tn+1

tn

∫
T

(
∂u

∂t
+∇ ·

−→
λ · u

)
dΩ dt (3)

After some algebraic it yields to:

Φ =
|T |
3

∑
i∈T

(uni − un+1
i ) +

∆t

2
((Φadv ,T )n + (Φadv ,T )n+1)

The residual Φadv can be computed either with integrating directly on the element or with the
help of Gauss theorem by computing the contour integral. The later is the so-called Contour
Residual Distribution (CRD) developed by Ricchiuto [6]. This formulation automatically ensures
conservation so in this work we only consider CRD schemes. The residual is then:

Φadv =

∮
∂T

−→
λ · u · n̂ dl dΩ.

This formulation ensures conservativity automatically and in this article we only consider CRD
schemes.

The second step is the distribution of the residual to the nodes of the prism. To respect the
physical meaning of time, we do not want to distribute to the nodes of the level n. The consistency
of the scheme is ensured by a constaint on the time step called past-shield condition. Under this
condition it is possible to distribute the residual Φ only to the nodes of the level n+ 1:{

Φn
i = 0

Φn+1
i = βiΦ

K

The Residual distributive scheme in pratice is defined through the distribution coefficient βi.
The multidimensional upwinding property is the major difference to other methods like Finite
Difference (FD) or Finite Volume (FV). With this property, the scheme follows better the original
physical problem, improving the accuracy without increasing the number of degrees of freedom
involved in the scheme’s stencil. (This brings very low cross diffusion as was justified by the
authors in a previous paper [5].)
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In order to mimic the behaviour of exact solutions to scalar advection equation, multidimen-
sional upwind schemes only distribute the residual to nodes which belong downstream with respect
to the orientation of ~λ. WeFor each time layer, we can define for every node an upwind parameter
as:

ki =
1

2

−→
λ · −→ni ; (4)

where ~ni is the inward normal to the edge of T facing node i ∈ T as shown on Figure 2. The norm
of ~ni is equal to the length of the edge. With the help of the upwind parameters it is possible to
construct special multi-dimensional upwinding schemes.

Figure 1: Space-time prism. Figure 2: Definition of ~ni.

The same idea leads to k̃j, the space-time upwind parameter for level n and n+ 1:

k̃ni =
∆t

2
ki −

|T |
3

k̃n+1
i =

∆t

2
ki +

|T |
3

(5)

where ∆t = tn+1 − tn, |T | is the area of the element T and ki is the upwind-parameter of the
steady state.

The scheme used through the paper is called low diffusion A (LDA) because it is one of the less
dissipative schemes constructed till now for RDM. Here we present the extension of LDA scheme
to the space-time framework. The distribution coefficient of this scheme, is defined by:

βLDA
i =

k̃n+1,+
i∑

j∈T

k̃n+1,+
j

The LDA scheme is a multidimensional upwind scheme and in case of linear elements it is
found to be 2nd order accurate, while in case of quadratic elements its order is around 3. After
distribution of the residual, we assemble all the contributions to each node into the nodal Equation
6. This system of equations is solved by pseudo-time iterations as in Equation 7.∑

T,i∈T

Φn+1
i = 0 (6)

un+1,κ+1
i = Un+1,κ

i +
∆τ

Ci

(∑
T,i∈T

ΦT,n+1
i

)κ

(7)
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2.1 Extension to high order discretization

We use the approach of [7] to extend space-time schemes to high order discretization. To provide
high order of accuracy both in space and in time we combine quadratic triangular elements in
space with a quadratic discretization of time. This means that each triangular element in space is
equipped with 6 degrees of freedom (see figure 3(a)). We split this triangle in four sub-elements
{Ts}s=1,4 as on Figure 3(a). This yields to the new space-time prism of figure 3(b) that has

(a) Quadratic elements in
space

(b) Quadratic space-time ele-
ment

Figure 3: High order elements

three levels in time. Each level is composed of quadratic triangles in space. In this prism u is
approximated in the same way as before, by Equation 2, where uli is the value of uh at node i and
time tl : uli = uh(xi, yi, tl) like before, but ψi(x, y) now denotes the (mesh dependent) quadratic
continuous Lagrangian basis function, and H l is the 1D quadratic basis function. We decompose
this prism in sub-prisms which levels are the sub-element of the quadratic triangle (as illustrated
on Figure 3(b)). In each of this sub-prism we can still define a space-time upwind parameters in the
same way as for the linear elements (Equation 1) but now the upwind parameter ki is defined with
the well scaled normals of the sub-triangle Ts. At each time iteration un−1 and un are known and
we want to compute un+1 using the usual steps. First, we compute the residual on each sub-prism
between tn+1 and tn:

ΦKs =

∫ tn+1

tn

∫
Ts

(
∂u

∂t
+∇ ·

−→
λ · u

)
dΩ dt

Then, the residual is distributed to all the nodes of the sub-triangle Ts of the level n+ 1. Finally,
we use pseudo-time iterations to solve the final system as before.

3 Wavenumber analysis of the LDA scheme

The Fourier-analysis of the discretization method can provide a detailed information about the
numerical response of the considered scheme to periodic wave excitation. Usually, aerodynamically
generated noise is a decomposition of different sound wave modes. Thus, any numerical method
used to compute noise generation and/or propagation must be able to represent these modes.
Therefore it is necessary to perform a wavelength based numerical analysis in order to identify the
limits of the chosen discretization. The perturbation involved in acoustic waves are very small so
the response of the acoustic field is linear [1]. A main consequence is that there is no interaction
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between different acoustic waves, so it is enough to see the numerical response of the system to one
mode. The dispersion and dissipation of the space operator detached from the time discretization
can be found in Koloszar et al.[5]. In this paper the Fourier analysis of the full discretization is
provided to get an insight to the behaviour of the complete system in case of linear and quadratic
elements. Consider the two-dimensional unsteady scalar advection equation (Equation 1). Suppose
that the solution is periodic over the domain [0, L]2 and the grid spacing is h for both directions
on a structured triangulation. Furthermore, suppose that the variable is periodic in time as well
and the domain is extended in the time dimension - defined through the space-time approach -

with grid spacing ∆t = CFL · h/|
−→
λ |. The periodic variable u can be expressed as:

u(t, x, y) =

L
2∑

n=−L
2

ûne2πı(
kn
x x

L
+

kn
y y

L
+

kn
t t

T
)

Equation 6 is a discrete relationship between the nodes, but it is not the discrete form of the
original partial differential equation (Equation 1). The integration over the element is included
as well resulting a discrete formulation to Equation 3. To be able to reconstruct the discrete
formulation of the original partial differencial equation, one has to follow three steps:

• Recast the formula to a Finite Different (quadrilateral) grid:∫ tn

tn−1

∫
Ts

(
−→
λ∇u) dΩ dt =

∆x

2

∑
n,i,j∈Ts

(τn,i,j + a · αn,i,j + b · βn,i,j) · un,i,j

• The grid has equidistant spacing so the right hand side do not depend on the global x and
y coordinates, rather on the relative distance between the nodes set by the nodes involved
in the given stencil, so take the derivative in x and y of both side gives the derivative along
the propagation direction:

−→
λ∇u =

1

2∆x

∑
n,i,j∈Ts

(τn,i,j + a · αn,i,j + b · βn,i,j) · un,i,j (8)

• Take the 3D Fourier transform of both side of Equation 8 and after reordering one can obtain
a relationship between the physical and the numerical wavenumber:

τ + a · α + b · β = −ı
∑

n,i,j∈Ts
(τn,i,j + a · αn,i,j + b · βn,i,j) · e(nτ∆t+iα∆x+jβ∆y)

2∆x

Figure 4 shows the relations between the exact (x-axis) and the numerical (y axis) wavenumbers
over the interval 0 to π, both for dispersion and dissipation. The linear LDA scheme (time and space
discretization, CFL=0.7) is compared with the first and second order FD formulations (only space
discretization). Due to multidimensional upwinding the dissipation is less along the streamlines
than in case of dimensional splitting techniques. Although less significant there is also small
improvement in the dispersion relation as well. For up to the wavenumber 0.75 the numerical
wavenumber is very close to the exact one, thus the linear LDA scheme can give an adequate
approximation to the original partial differential equation for waves with wavelength longer than
8 mesh spacings.

Figure 5 compares the LDA scheme over linear and quadratic triangular elements. Now the
plots are given along the space-time streamlines, so along the line defined by the space-time
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(a) Dispersion relation (b) Dissipation

Figure 4: Relations between the exact (x-axis) and the numerical wavenumbers (y axis) for linear
LDA, FD 1st order and second order upwind schemes.

advection vector
−→
λ = [1 a b]. In this way the difference between the behaviour of LDA scheme

over the linear and quadratic elements are more visible. In the legend one can see that there is
an order difference between the CFL number for linear and quadratic elements. This is due to
the past-shield condition. It is possible to overcome on this limitation by double time-stepping
[4]. Figure 5 shows that in case of the linear elements the dispersion is more sensible to the CFL
number, while in case of the quadratic element the dispersion is almost the same however the
dissipation reduces significantly with the CFL number.

(a) Dispersion relation (b) Dissipation

Figure 5: Relations between the exact (x-axis) and the numerical wavenumbers (y axis) for linear
and quadratic LDA scheme.

4 Artificial numerical damping

The formulation is based on the work of Tam and Shen [9] and extended for Residual Distribution
Method. In the original Finite Difference formulation a smoothing operator is introduced as source
term:

SourceFDMi = − νa
∆x2

3∑
j=−3

cjui+j
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So a selective artificial damping is defined as artificial dissipation in a fixed wavenumber region.
In order to achive this nice feature, the optimization of the filter is done in the frequency space:
the coefficient cj is adjusted to activate the filtering only in the desired wavenumber region.

The filtering operator is introduced as a source term in Residual Distribution Method as well,
however due to the non-uniform mesh the generalization of the filtering is not straightforward.
The filter has to rely on relative internode distances instead of grid spacing between them, like in
the Finite Different formulation. Two different types of filtering are discussed here: the Laplacian
filtering and the artificial selective damping.

In case of the Laplacian filter the following term is discretized through Residual Distribution
Method:

SourceLi = − νa
∆x2
∇
−→
λ∇u

Through the Fourier analysis of the Laplacian filter two major observations were made. First,
the Laplacian filtering (Figure 6) does not affect the dispersion relation of the given scheme (now
the LDA scheme over linear elements) it just adds dissipation gradually for all the wavenumbers.
Definitly, this kind of filter won’t change the propagation speed of the acoustic waves, however it
will dissipate all the wavelengthes intensively, not just the high-frequency oscillations.

(a) Dispersion relation (b) Dissipation

Figure 6: Relations between the exact (x-axis) and the numerical wavenumbers (y axis) for Lapla-
cian filtering.

To weight the dissipation more in the high frequency region a form close to the original operator
has been implemented:

SourceSELi = − νa
∆x2

·
∑
T,i∈T

nTi
∑
j∈T

cjuj

With ni = nx + ny + nz belongs to node i and cj = |−→xi − −→xj |, based on the distance between
the target node −→xi and the other nodes −→xj involved in the discretization. The properties of the
filter can be seen in Figure 7. In the left hand side the dispersion relation shows that the filter do
change slightly the dispersion relation of the original scheme. However on the right figure one can
see that the dissipation is unchanged for the long waves and gradually increased for the short ones.
So this filter is more suitable for substructing high-frequency numerical noise without contaminate
the solution too much.
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(a) Dispersion relation (b) Dissipation

Figure 7: Relations between the exact (x-axis) and the numerical wavenumbers (y axis) for artificial
selective damping.

5 Computational results

The previously described method has been applied to discretize the Linearized Euler Equations. We
consider these equations in two spatial directions, as derived by Bailly et al. [3] for inhomogeneous
mean flow written in conservative variables:

∂
−→
U

∂t
+ A

∂
−→
U

∂x
+ B

∂
−→
U

∂y
+
−→
H =

−→
S (9)

The vectors and matrices read as follows:

−→
U =


ρ
ρ0u
ρ0u
p

 ,A =
∂
−→
F

∂
−→
U

=


u0 1 0 0
0 u0 0 1
0 0 u0 0
0 c2 0 u0

 ,B =
∂
−→
G

∂
−→
U

=


v0 0 1 0
0 v0 0 0
0 0 v0 1
0 0 c2 v0

 .

−→
H =


0

(ρ′u0 + ρ0u
′)∂u0

∂x
+ (ρ′v0 + ρ0v

′)∂u0

∂x

(ρ′u0 + ρ0u
′)∂v0
∂x

+ (ρ′v0 + ρ0v
′)∂v0
∂x

(γ − 1)p′(∂u0

∂x
+ ∂v0

∂x
)− (γ − 1)(u′ ∂p0

∂x
+ v′ ∂p0

∂x
)

 .
And

−→
S represents the artificial sources such as monopole, dipole, etc. To preserve numerical

stability the terms containing the derivatives of the background flow (
−→
H ) are treated as source

terms. To illustrate the effect of the two elements (linear, quadratic), as well as the different
filtering techniques of the numerical solution an acoustic pulse centered at the origin is computed.

The following initial value problem is solved: ρ = e−(ln2) x2+y2

9 u = v = 0 p = e−(ln2) x2+y2

9 The pulse
is placed into a quiscent flow. In order to fullfil the past-shield condition, the highest CFL number
CFL = 0.7 was used in case of linear elements and CFL = 0.07 for the quadratic elements. The
computational domain extends from −100 ≤ x, y ≤ 100 embedded in free space and discretized
by 201X201 nodes. The perturbation velocities, density and pressure are normalized by c (speed
of sound), ρ0 (ambient density) and, ρ0c

2 respectively. To compare the linear and the quadratic
implementations, the same time step with CFL = 0.07 has been used to compute the propagation
of the acoustic pulse. The time instant of t = 45 is shown on Figure 8. On the contour plot the
instability waves due to the discretization are clearly visible on the front of the pulse.
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(a) Contours of pressure with contours between
−0.18 and 0.18 plus 10−8.

(b) Plot along the x-axis.

Figure 8: Results with linear and quadratic elements.

Comparing the density signal along the x-axis (Figure 8 (b)) shows the advantage of the
quadratic element over the linear one. The small CFL number due to the very thin prisms cause
numerical instability problems in the case of the linear elements. This additional waves are not
the “regular”instability waves due to the discretization and they are not present in case of higher
CFL numbers, they are simply the side-effect of the ill-shaped elements.

In case of the filtering the main objective is to remove the high frequency numerical waves
without modify much the original signal. As shown in Figure 9, the area where these waves are
still active is reduced by both the Laplacian and the selective filter. However, if we plot the signals
along the x-axis it can be observed that the selective filter destroys the original signal less than
the Laplacian filter.

(a) Contours of pressure, red - without filter, green
- Laplacian filtering, lue - selective damping.

(b) Plot along the x-axis.

Figure 9: Effect of filtering.
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6 Conclusions

This paper shows that the Residual Distribution Method is an alternative method to resolve acous-
tic waves through Linearized Euler Equations. Due to the multidimensional upwind formulation,
high accuracy is achieved with linear and quadratic discretizations. The space-time formulation
ensures the consistent space and time discretization related to the original partial differential
equations. Fourier analysis showed that multidimensional upwinding has less dissipation than di-
mensional splitting techniques with the same stencil size. Artificial selective damping has been
adapted to the Residual Distribution Method, however due to the in built dissipation of upwind
schemes the amplitude of these waves are so small (seven order smaller) that there is strong need for
it on the testcases computed so far. The future work will focus to the developement of appropriate
non-reflecting boundary treatment.
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