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ABSTRACT 
Time-dependent 2D-flow of dusty gas through a set of two cascades of airfoils (blades) is studied numerically. 
The first cascade moves (rotor) and the second one is immovable (stator). Such a flow can be considered, in 
some sense, as a flow in an inlet stage of a turbomachine, for example, for an inlet compressor of an aircraft 
turbojet engine. The dust particles’ concentration is assumed to be very low, so that the inter-particle collisions 
and effect of the dispersed phase on the carrier gas are negligible. Flow of the carrier gas is described by the 
complete Navier–Stokes equations. In calculations of the particles’ motion, they were assumed to be solid 
spheres. The particle drag force, the transverse Magnus force, and the damping torque are taken into account 
in the model of gas–particle interaction. Impact interaction of particles with blades is considered as frictional 
and not completely elastic. The effects of particles’ distribution in size and the particles’ scattering in particle–
blade collisions are investigated. Flow fields of the carrier gas and the flow patterns of the particle phase are 
obtained and discussed.  
 
 
1.  INTRODUCTION  
 
Flow through cascades of airfoils occurs in aircraft turbojet engines and other axial turbomachines. In practice, 
a working gas flowing through a machine channel often contains suspended solid particles or liquid droplets. 
The presence of a dispersed phase in the flow results in some new effects which more often than not, are un-
desirable. Specifically, it causes the erosion of blades due to multiple impacts of particles or droplets with them 
and the additional momentum and energy losses [1]. In this case, one of important problems is the protection 
of blades and other parts of a channel from erosion. The most vulnerable to particles’ “attack” is an inlet stage 
of a turbomachine. With application to an aircraft turbojet engine (see Fig. 1) it is an inlet compressor. For pre-
diction of areas on blade surfaces which are exposed to the strongest erosive effect, it is necessary to have a 
clear insight into of characteristic features of particles’ behaviour in the flow. Actual flow in a turbomachine 
channel is, strictly speaking, three-dimensional. The 3D-effects are particularly essential near the axis and 
near the channel walls. However, some important flow features in the inlet stage and in the sequential rims 
can be studied with the use of 2D-flow model in the plane, which represents a developed mean circle cross-
section (see Fig. 2). Such an approach turned out very fruitful and brought the well-known 2D-theory of cas-
cade flow into being (e.g., [2]). This theory deals with steady-state dust-free gas flows. Steady-state flow of 
gas-particle mixture through an immovable cascade was analyzed by Hussein & Tabakoff  [3]. Steady-state 
gas-particle flow approximation was used in [4] to study the flow in a single rotating cascade.  
 

 
 

Fig. 1.  Dusty gas flow through an aircraft turbojet engine.  
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Fig. 2.  Scheme of going from 3D-configuration of a rim of blades to 2D-configuration of a cascade of airfoils.  
 
In the present study the behaviour of solid particles in the time-dependent high-speed subsonic 2D-flow 

in a set of two, moving and stationary, cascades of blades is simulated numerically and analyzed. The particle 
mass load is assumed to be very low, so that the inter-particle collisions and the effect of the dispersed phase 
on the carrier gas flow can be neglected. In this case, the problem of two-phase flow simulation is reduced to 
the sequential solving of two problems: (i) computation of the carrier gas flow field, and (ii) calculation of the 
particles' motion in this flow field. The input data in computations (flow properties, speed of the moving cas-
cade, airfoil sizes, etc.) were taken close to those in the flow through an axial compressor of an aircraft turbojet 
engine. The main aim of this study is to understand how such actual effects as the particles’ distribution in size 
and the scattering of particles in particle–blade collisions influence the particle phase flow structure in a com-
plex flow of dusty gas through the inlet system “rotor–stator” of a turbojet engine.  
 
 
2.  FORMULATION OF THE PROBLEM AND NUMERICAL METHOD  
 
2.1.  Schematic of flow  
We consider a two-phase gas–particle flow though a set of two cascades, the first of which moves with the 
constant velocity rV  and the second one is stationary (see Fig. 3). Both cascades have the same step s  (dis-
tance between airfoils along a cascade). Airfoils of the first cascade are set at angle β  with respect to the un-
disturbed flow direction. For visualization of the particle-phase flow in computational simulation, particles from 
a cloud of finite width h equal to the airfoil chord l were considered.  

 

 
 

Fig. 3.  Schematic of arrangement of the two cascades in an undisturbed flow.  
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Under the above assumptions a two-phase flow can be considered as one-way coupled and dilute. Esti-
mates for the particle concentration when this model is valid were obtained in [5]. They show that the upper 
bound of the concentration depends on the particle size, all other parameters being fixed. Motion of particles is 
governed by the gas–particle interaction and the particle–airfoil collisions. Particles being more inertial com-
pared with the carrier gas do not follow streamlines and they can collide with airfoils and rebound from them. 
Trajectories of rebounded (reflected) particles can intersect with each other and with the ones of incident parti-
cles. Calculations of a large number of particles allow an understanding of specific features of particles’ behav-
iour in the flow. Because the gas–particle flow considered in the present study is time-dependent, instant flow 
patterns of the carrier gas and the particle phase will be given and discussed below.  
 
2.2.  Modelling of the carrier gas flow  
The classical theory of cascades is based on the model of inviscid gas. Preliminary computational simulation 
of a high-speed subsonic gas flow through the “rotor–stator” set of cascades was performed on the basis of 
the Euler equations and the complete Navier–Stokes equations. The same grid was used in the computation 
domain in both cases. Comparison of the results showed that the effects associated with gas viscosity (devel-
opment of boundary layers on airfoils and vortex wakes behind them) played an important role in forming the 
flow structure. The Reynolds number ρ μRe V l /     (l  is the chord of an airfoil) in our problem is ap-
proximately equal to 61 4 10. , hence, the flow is turbulent, and the conventional approach requires in this 
case to use the Reynolds averaged Navier–Stokes equations (or like that) instead of the Navier–Stokes equa-
tions by themselves. However, we share this judgment only in part. The matter is that the large-scale vortex 
flow structure, which is of greatest important in many applications, can be obtained very often without fine 
modelling of the turbulence and even without the boundary layer effects. In the present study a large-scale 
vortex street arises behind airfoils due to interaction of boundary layers separated run off airfoils. This effect 
will be best demonstrated by computational results in Section 3.  

The Navier–Stokes equations for time-depended compressible 2D-flow can be written in Cartesian coor-
dinates (x, y) in the following compact form [6]:  
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In the above equations, t  is the time; ρ , p, e, T, μ , λ   are the gas density, the pressure, the specific total 
energy, the temperature, the viscosity, and the thermal conductivity, respectively; u  and  v  are the  x-  and  
y-components of the velocity vector; R  is the specific gas constant, Vc  is the specific heat at constant vol-
ume. In the present study the following relations for μ  and λ  are used  
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where the first relation is the Sutherland formula, 5

0μ 1 71 10.    Ns/m2, 0 288T   K, 0 117S   K,  Pr  is 
the Prandtl number, pc  is the specific heat at constant pressure.  

The Navier–Stokes equations are solved numerically, and the boundary conditions with application to the 
computation domain will be described and discussed in subsection 2.4.  
 
2.3.  Modelling of the particle phase flow  
The Lagrangian approach is used for modelling of the particles’ motion. The motion of a particle is described  
by the momentum and angular momentum equations which are added by the kinematic relation between the 
particle position vector r  and the velocity vector vp  
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Here  34ρ π 3m r /p p p , 22 5J m r /p p p , rp , and ωp ,  are the particle mass, the moment of inertia, the 
radius, and the rotational velocity, respectively. We include into the force on a particle the drag force fD  and 
the lift Magnus force fM , which dominate over other components in the considered flow. The Magnus force is 
developed due to simultaneous translational and rotational motion of a particle, and it can be significant for 
particles twisted in particle–airfoil collisions. The damping torque Lp  acts on a particle if its relative rotational 
velocity is not zero. We use the conventional relations for calculation of fD , fM  and Lp   
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The coefficients CD , ωC , and LC  depend on dimensionless flow parameters around a particle: the relative 
Mach and Reynolds numbers, the relative rotational Reynolds number, etc. These coefficients are calculated 
from approximate formulae which are constructed on the basis of theoretical solutions, numerical results and 
experimental data. We have used the Henderson relations [10] for CD . For calculation of ωC  we have used 
the exact solution by Rubinow and Keller [11] or the formula suggested by Oesterlè and Bui Dinh [12]. The 
expression for LC  has been taken in the form suggested by Dennis et. al. [13].  

For determination of the particle parameters just after its rebound from an airfoil surface, we use the 
semi-empirical model [7] for spherical particles and the simplified model with constant restitution coefficients 
for the normal and tangential components of the contact point velocity [8] for non-spherical particles. The semi-
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empirical model is based on the mechanics laws and the experimental data on the restitution coefficients of 
the translational velocity components.  

In the majority of papers on two-phase gas–particle flow, the particles are assumed to be rigid spheres of 
the same radius and no scattering in particle–wall collisions is taken into account. However in practice, parti-
cles are distributed in size that results in mixing of particles of different size in a disturbed flow. Second, the 
particles’ shape is often differs from a sphere, and this results in their scattering in particle–wall collisions. In 
the present study we investigate the behaviour of polydisperse particles with the Log-normal distribution in size 
in an undisturbed flow, and also we take into account the scattering of particles due to their non-spherical 
shape. In the case of the Log-normal law, the particle mass frequency distribution function has the form  
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Here the parameter gr  is correlated with the most probable particle size pmr  by 2σg pmexp(log )r r . The plot 
of function (4) for σ 1 2.  is shown in Fig. 4. For investigation of the effect of particle scattering we consider in 
the model of particle–wall collisions the particles with the shape of ellipsoids of revolution (Fig. 5). The ratio of 
axes b /a  (a  is the axis in ξ-direction, b  is the axis in η- and ζ-direction) is taken close to a unity (0.8 and 
1.25), so that the particle shape is close to sphere but does differ from it. A collision of a non-spherical particle 
with a wall is three-dimensional. The model of such collision and the scattering properties for particles of dif-
ferent shape are described in [8, 9]. In computational simulation of a particle–wall collision in the present 
study, the particle orientation in space just before a collision is considered as random with the assumption that 
the orientations of axes ξ, η and ζ relative to x, y, z are equiprobable. A particle just after a collision has three 
components of both, translational and rotational, velocities. However in simulation of the particle-phase flow 
we consider the reflected particles as spherical and take into account their scattering only in (x,y)-plane. Such 
an approach allows to understand whether the effect of scattering is of great importance or not, but the ques-
tion of validation of the flow model remains open.  
 

        
       Fig. 4.  Log-normal distribution.  

 

            

Fig. 5.  Shape of particles in modelling of their scattering in particle–
airfoil collisions: prolate with axes ratio 0.8 (left) and oblate with axes 
ratio 1.25 (right) ellipsoids of revolution.  
 

 
2.4.  Numerical method  
Computation domain consists of two blocks (see Fig. 6). The left block moves together with a rotor blade, and 
right one is stationary. A structured curvilinear grid fitted to the blade contours is introduced in each block. 
Both grids are refined to the blade surfaces and in the areas behind blades to resolve the flow structure inside 
the boundary layers and in the wakes. The length of computation domain in the main flow direction is 4.4l  . 

A finite-volume explicit in time method is used for numerical solving the Navier–Stokes equations (1). The 
“inviscid” fluxes xF and yF  of conservative variables U (see Eq. (2)) through the cell faces are calculated by 
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the Roe scheme [14] with the use of the entropy correction suggested by Harten [15]. For calculation of the 
“viscous” fluxes xG  and yG , the reconstruction of gas parameters on the grid with taking into account their 
gradients inside every cell are used. The method used is of the second order in space. The time step is cho-
sen from the conventional stability condition.  

 

 
Fig. 6.  Computational domain and schematic of a grid. 

 

The periodic conditions in y-direction are set at the top and bottom boundaries of each block. This is 
possible if no large-scale areas of separated flow arise. A special matching procedure is used at the contact 
boundary between the moving and stationary blocks [16]. At the inflow boundary of the moving block, the ve-
locity and density calculated from the given total enthalpy and entropy in the undisturbed flow are specified, 
and the pressure is extrapolated from the computation domain. At the outflow boundary of the stationary block, 
the pressure is taken equal to 1 2. p  (this value agrees with some experiments) and other parameters are 
extrapolated from the computation domain. Such a technique is in agreement with the characteristic properties 
of gas dynamic equations. At the airfoil surface, the no-slip condition and the constant-temperature wall condi-
tion are enforced.  

A uniform flow with the undisturbed parameters is taken at the initial instant 0t  , and then computa-
tional simulations of the carrier gas flow is going on up to a quasi-time-periodic solution is reached. After this 
the particles are introduced into the simulation procedure.  

The equations (3) for a particle are solved by a predictor–corrector method of the second order. Calcula-
tions are carried out simultaneously with the continuing solving of the Navier–Stokes equations. The total num-
ber of particles in a cloud is varied from 50,000 to 5,000,000.  
 
 
3.  RESULTS OF COMPUTATIONAL SIMULATION AND DISCUSSION  
 
3.1.  Input data 
Parameters of the cascades and flow properties are taken in calculations close to those which are typical for 
an inlet compressor of a turbojet engine. The chord of airfoils is equal to l = 10  cm, the cascade step 
s = 7 cm, the angle of attack β = 45 , the profile of blades is NACA0012, the main (undisturbed) flow velocity 
V = 200 m/s, the cascade velocity rV = 150 m/s, the carrier gas is air (R = 287 J/(kg K), /p Vc c = 1.4), the 
Prandtl number Pr = 0.72, the flow density and temperature ρ = 1.21kg/m3 and T = 288 K. These values 
correspond to the Mach number M = 0.59. The particle and blade materials are 2SiO and steel, respectively.  
 
3.2.  Results for the carrier gas  
The majority of calculations of the carrier gas flow field were performed for the Navier–Stokes equations. How-
ever for comparison and for estimation of the “numerical scheme viscosity”, calculations were also carried out 
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for the Euler equation using the same grids. Flow fields were obtained in both cases. The results for the en-
tropy function γθ ρ/p  are shown in Fig. 7. It is clearly seen that in the case of the Euler equations we have 
nearly homogeneous entropy field that is in good agreement with the theoretical statement that the entropy in 
a flow of ideal gas remains constant. In the field of a viscous gas (Fig. 7, b) we see spots with much higher 
entropy than in the main stream. These inhomogeneities arise due to the entropy production in boundary lay-
ers at the blade surfaces and inside separated eddies in the vortex wakes behind blades. The structure of 
wakes is similar to that of the von Karman vortex street. Flow in both cases is subsonic in the stationary sys-
tem of coordinates. In the outlet boundary of the calculation domain (right boundary of the stationary grid 
block), the gas velocity, the density, and the temperature reach nearly constant values: V = 115 m/s, ρ = 1.56 
kg/m3, T = 304 K. These parameters correspond to the Mach number M = 0.33.  
 

                           
 

                           
 

Fig. 7.  Instant field of the entropy function γθ ρ/p  in the carrier gas flow: computation of  
the Euler (a) and Navier–Stokes (b) equations. 

 

    
 

Fig. 8.  Mach number in front of a stator airfoil as a function of time: computation of the Euler (a)  
and Navier–Stokes (b) equations. 

(b) 

(a) 

(a) (b) 
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The computational experiments have shown that numerical solution of the Euler equations reaches with 
time a strictly periodic behaviour that is illustrated by Fig. 8, a. In the figure τ = / st t , where st = / rs V  
( st = .  30 47 10 s for the given values of s  and rV ). The period includes three maximums and three mini-
mums. For the Navier–Stokes equations, the time-dependent character of a solution is illustrated by Fig. 8, b. 
It is seen that in this case a time-periodic solution is absent. Such a situation is connected with two independ-
ent periodic in time processes: separation of eddies from blades, and motion of spatially periodic rotor blades 
relative to the stator blades with the same spatial period. The first process is determined by the Reynolds 
number of flow around a blade, whereas the second one is determined by the velocity rV  and the cascade 
step s . If the periods of both processes are not multiple, their interaction can result in “stochastic” behaviour 
of flow parameters with time.  
 
3.3. Results for the particle-phase 
For visualization of the particle-phase flow we consider a particle cloud of finite width h in an undisturbed flow 
(see Fig. 1). In calculations h was taken equal to l. Particles in the cloud were distributed in space randomly by 
the uniform distribution. The below results were obtained for the carrier gas flow field computed from the Na-
vier–Stokes equations. Instant particle flow patterns at the same moment are shown in Figs. 9 – 11. Particle 
radiuses pr = 5 µm, 10 µm and 20 µm correspond to the Stokes numbers Stk = 1.70, 6.82 and 27.28, respec-
tively. The Stokes number is defined as the ratio of the particle dynamic relaxation length (with the use of the 
Stokes law for a particle drag force) to the characteristic length in the flow l: Stk = ρ μr V l 

2
p p2 /(9 ) .  

Figure 9 illustrates the dependence of flow structure of monosized spherical particles on their radius. A 
cloud stretches in the flow, and the distribution of particles in space becomes strongly non-uniform. Narrow 
layers with high particle concentration are clearly discernible. Such a redistribution of particles occurs by the  

 

                                        
 

                                        
 

Fig. 9.  For caption see next page.  

(a) 

(b) 
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Fig. 9.  Instant patterns of monosized spherical particles depending on the particle radius: pr = 5 µm (a),  
10 µm (b), 20 µm (c); a semi-empirical model of particle–wall collisions [7] is used.  

 
action of non-uniform flow field of the carrier gas. For small particles (Stk < 10) the effect of boundary layers 
and vortex wakes is of great importance in the process of redistribution. For large particles (Stk > 20), this ef-
fect is negligible, but the particle–blade collisions play a key role.  

Instant patterns of spherical particles log-normally distributed in size in an initial cloud are shown in Fig. 
10. One can see also a strong redistribution of particles in the flow, but in this case, in contrast to Fig. 9, nar-
row layers with high particle concentration disappear. Thus, the polydispersity of the particle phase results in 
“smearing” of the concentration field. The physical reason of this effect is mixing of particles of different sizes 
in a flow.  
 

                                     
 

                                     
 

Fig. 10.  For caption see next page.  

(a) 

(b) 

(c) 
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Fig. 10.  Instant patterns of polydisperse spherical particles (Log-normal law (4) with σ =1.2 is taken in an initial  
cloud) depending on the most probable particle size: pmr = 5 µm (a), 10 µm (b), 20 µm (c);  

a semi-empirical model of particle–wall collisions [7] is used.  
 

Consider now the effect of particle scattering in particle–blade collisions due to non-spherical particles‘ 
shape and the joint effect of scattering and mixing. In this part of the study we assume particles to be solid 
spheres in calculation of their moving in the flow, but we consider them as ellipsoids in collisions with blades. 
The collision model for non-spherical particles tested for validity, to the authors’ knowledge, is absent now, that 
is why a simplified collision model is used here. The restitution coefficients of the normal ( Cna ) and tangential 
( τCa )  velocities of the particle contact point are assumed to be constant.  We take Cna = 0.8  and τCa = 0. 
 

                                     
 

                                     
 

Fig. 11.  For caption see next page.  

(b) 

(c) 

(a) 



 11

                                     
 

Fig. 11.  Instant patterns of particles: monosized spherical particles of radius pr = 10 µm (a); effect of scattering  
in particle–wall collisions (b); joint effect of scattering and mixing (c): Log-normal law (4)  

with σ =1.2 is taken in an initial cloud.  
 
This means that we consider a non-completely elastic and non-sliding collision. This model was used also for 
spherical particles the motion of which was calculated for comparison. The results for the case of prolate ellip-
soids (see Fig. 5, a) are shown in Fig. 11. It is seen from the figures (a) and (b) that the effect of particle scat-
tering is similar to that of mixing discussed above: the particle concentration field becomes smearing. How-
ever, the joint effect of scattering and mixing is found to be unexpected at the first glance (cf. figures (b) and 
(c)). This result can be explained by a substantial increase of a number of small particles in a polydisperse 
mixture. Small particles follow the gas flow more closely than the large ones, and the majority of them do not 
collide with blades, so that the effect of scattering decreases in this case.  
 
 
4.  CONCLUDING REMARKS  
The present investigation of dusty gas flow through a set “rotor–stator” of 2D-cascades has shown that dis-
persed particles are redistributed strongly in the flow. The behaviour of the particle phase depends substan-
tially on the particle size. Motion of small particles is governed mainly by the carrier gas flow which is rather 
complicated due to separation of eddies from blades with forming the vortex wakes. Large particles colliding 
with the blades rebound from them and the rebounded particles can collide later with both, nearest and far 
blades, that makes the particle phase flow more complicated. In the case of monosized spherical particles, the 
narrow layers with high particle concentration arise. Mixing of particles of different sizes and particles’ scatter-
ing due to their non-spherical shape result in smearing of these layers. This allow us to conclude that in actual 
dusty gas flows the erosive damage from the particles’ impacts is less that it can be predicted by the classical 
two-phase flow theory assuming the particles to be spheres of the same radius.  
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