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ABSTRACT 
Quasi-one-dimensional gas-particle fluid dynamics in combustion chamber, local thermal conduction 

within solid propellant, and quasi-steady flame model over propellant surface are simultaneously solved to 
predict linear acoustic stability characteristics of metallized solid propellant combustion in a motor-nozzle 
system. Simulation results, compared with a linear theory, show good agreement except at high particle 
diameters for heavily loaded conditions, where gas-particle equilibrium assumption breaks. Effects of 
realistic drag and heat transfer model are also discussed. 

INTRODUCTION 
The oscillatory combustion of solid rocket motor (SRM) is classified into the acoustic combustion 

instability and the non-acoustic instability. The acoustic combustion instability, which is caused by the 
resonance between the natural acoustic oscillation of the flow and the fluctuation of the propellant burning 
rate in the combustion chamber, can cause blowup of combustion chamber. 

The theoretical analysis of the combustion instability is divided into linear analyses and nonlinear 
analyses. A linear analysis is usually based on a small perturbation method and the application of the 
theory is limited to cases of small amplitude oscillations. On the other hand, a nonlinear analysis is done for 
a finite amplitude oscillation. Although many recent researches handle nonlinear problems, the linear 
analysis is also important because a nonlinear phenomenon is often a result of amplification of minute 
acoustic oscillations. 

In the past decades, ability of computational technologies has improved greatly. Researches on the 
combustion instability of SRM are heading for advanced simulations of multidimensional, turbulent, and 
multiphase flows. Recently, the author’s group has demonstrated both quasi-one-dimensional (Q1D) and 
axisymmetric non-steady analyses on combustion stability of solid rocket motor by combining CFD flow 
calculation, thermal conduction within propellant, and a quasi-steady flame model [1]. Linear and non-linear 
problems [2] have been analyzed by this methodology so far.  

In this report, the previous technique is extended to two-phase flow of aluminized solid-propellant rocket 
motor. Growth rate of a small fluctuation is evaluated and compared with theoretical values. In the following 
part of the paper, firstly the mathematical model is described, and then the numerical results will be shown. 
Discussion will be made on the growth rates versus the particle diameter for representative values of the 
loading ratio, the heat release in the surface reaction, and the activation energy.  

METHOD OF ANALYSIS 

Solid Rocket Motor Configuration 
Combustion gas in SRM is modeled as a mixture of a gas phase and a particle phase. The particle 

phase is a representative of molten-liquid droplets of aluminium and alumina. Although in reality particles of 
various diameters coexist in combustion gas, in the present modelling particles are assumed to have one 
common diameter, which is treated as one of computational parameters. 

It is known that two kinds of speed of sound can be defined at the limits of the Stokes number tS  in 
multiphase flow dynamics. A Stokes number is usually the ratio of a relaxation time of the velocity or the 
temperature between the two-phases to those of gas to a representative time scale of gas flow. When 
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Basic Equations for Fluid Dynamics in the Combustion Chamber and the Nozzle 
The governing equations for Q1D unsteady gas-particle flow with mass addition and gas-particle two-

way coupling are written. In a quasi-one-dimensional formulation, the effect of the axial change of the 
contour of the motor chamber and the nozzle appears in the first source term and for the present case as 
those including Cdr dx . The mass addition from the burning surface appears in the second source term as 
a result of integration over the perimeter boundary of the propellant grain surface. Similar approach has 
been used and reported in literature [4]. The gas-particle two-way coupling interaction appears in the third 
source term, in which the momentum and the energy coupling are considered. 
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where t  and x  are the time and the space, respectively and ( )Cr x  is the radius of the port cross section 
at x . As for the gas phase, r  is the density, u  the velocity, e  the specific total energy, p  the pressure, 
H  the total enthalpy, and pc  the specific heat of at constant pressure. As for the particle phase, pr  is the 
bulk density, pu  the velocity, pe  the specific total energy, and c  the specific heat. The flame temperature 

fT  is assumed to be common between the phases. The mass addition rates per unit surface area for gas 
phase and particle phase, respectively, are defined as 

 ( )1 ,        b s b b p s bm r m rf r fr= - =  , (6) 

where sr  is the density of propellant, br  is the linear burning rate, and f  is the mass fraction of alumina in 
combustion gas. 

Thermodynamic properties of gas, particle, and propellant are assumed to be constant for simplicity. 
The equation of state for gas is gp RTr= . The specific total energies for the two phases are given by the 
following, respectively,  
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where g  is the specific heat ratio, R  the gas constant, and gT  the gas temperature.  
The momentum exchange between phases can be written as  
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where ms  is the true density of the particle, pd  is the particle diameter, DC  is the drag coefficient, and Vt  
is a relaxation time for velocity and defined by 
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where Re r  is the particle Reynolds number based on the relative speed pu u- , m  the viscosity 
coefficient.  

The energy exchange between phases can be written as 
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where Nu is the Nusselt number, Pr is the Prandtl number, and Tt  is a relaxation time for temperature and 
defined by 
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Initial and Boundary Conditions 
The initial condition is defined as 

 ( ) ( ) ( )0,0x x x¢= +q q q . (12) 

The first term in the right-hand side is the conserved-value vector at the steady state. The second term 
in the right-hand side of Eq. (12) is a small perturbation vector. It is defined by superimposing the first mode 
standing pressure wave to the steady-state pressure field as 
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where the amplitude p¢  is set to 0.1% of the combustion pressure cp . 
The boundary conditions at 0x =  are for the specularly-reflecting wall imposed assuming that there is 

an inert wall at the head end, i.e., 
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and the supersonic outflow condition is imposed at Ex x= . The outflow condition is unsteadily imposed in 
the numerical simulation, namely, the instantaneous inner-region quantities are extrapolated to the outer 
ghost cell. 

Basic Equation for Thermal Conduction in the Solid Propellant 
Let us assume, at each station of Cx x£ , a semi-infinite, homogeneous solid propellant to burn in a 

one-dimensional manner to the negative direction of y -axis, the local coordinate system always fixed to 
the burning surface. The unsteady heat conduction in the solid propellant is described by the one-
dimensional unsteady heat conduction equation. 
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where ( ),T T y t=  is the temperature of the solid propellant, sa  is the thermal diffusivity defined by 

 ( )s s s sca l r= , (16) 

with sl  the thermal conductivity and sc  the specific heat. 
The initial condition for the thermal equation is defined by the steady-sate solution  
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for the boundary condition 
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where aT  is the initial temperature of the solid propellant. 
The boundary conditions for the thermal conduction equation are defined as 
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where the surface temperature ( )ST t  is unknown value which must be determined at each moment 
through the simultaneous solution of the fluid dynamics and the thermal conduction. The thermal 
conduction coefficient of the gas is denoted by gl  and the heat release due to the surface reaction per unit 
mass of the generated gas by SQ . 



Quasi-Steady Flame Model 
Let us consider the one dimensional 

combustion region and assume it to be divided 
into a heating zone in the solid ( 0y < ), an 
exothermic reaction surface ( 0y = ), and a 
gaseous reaction zone ( 0 y d< £ ) as shown in 
Figure 2. There have been studied by many 
researchers on the flame models and reviews on 
this topic are available [5], [6]. The flame model 
employed here was first proposed by Hanzawa in 
1976 for the theoretical study on depressurization 
induced extinction of solid propellant [7], [8]. 
Within the flame layer of the thickness d , which is considered very small, the non-constant gaseous 
reaction is considered and the solution is integrated over the thickness to get the heat feedback amount to 
the burning surface. It is also assumed that the reaction occurs through an irreversible pyrolysis process 
and the gas phase reaction through a one step-forward type overall process between gaseous fuel and 
oxidizer.  

In this study the stoichiometric mixture of the oxidizer and the fuel is considered. The Lewis number of 
the gas mixture is taken as unity. Furthermore in the flame zone ( 0 y d£ £ ) the gas phase processes are 
assumed to be quasi-steady since the relaxation times of the processes are much smaller than those of the 
solid propellant thermal conduction and the gas-dynamics in the chamber. Detailed description was given in 
the previous report [1].  

In this model, the amount of the heat feedback, i.e., the right(+)-side temperature gradient at the burning 
surface, can be expressed as follows, 
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where K  is a constant. This heat feedback law was derived based on a distributed gas phase reaction [7], 
[8]. The case of a large value of s  represents a sharp flame or flame sheet, whereas the case 1s =  
corresponds to a uniform distribution of reaction rate. Although the latter heat feedback law was first 
employed by Akiba and Tanno [9] to elucidate L* combustion instability, Krier, T’ien, Sirignano, and 
Summerfield [10] derived it theoretically for composite propellants. Thus, it is often called a KTSS model. 
The above heat feedback law accommodates both cases. It has been demonstrated in the previous papers 
[1], [2] that this heat-feedback expression is useful for the fully-coupled linear and non-linear oscillatory 
combustion fluid-dynamic computation. 

By solving the coupled system of the fluid dynamics and the thermal conduction, the surface 
temperature ( )ST t  at each time is obtained. The linear burning rate is then obtained from an Arrhenius-

type function of the surface temperature: ( ) ( ) ( )( )0
0 0exp 1 1b b s S Sr t r E R T t Té ù= - -ë û  . 

Numerical Procedure 
It has been demonstrated that a conventional Finite-Volume Method (FVM) with second-order MUSCL 

approach can provide a sufficient precision for the prediction of small perturbation growth or decay [1]. In 
the present simulation, FVM with third-order MUSCL space discretization with the 2nd-order TVD Runge-

 
Figure 2.  Quasi-steady flame model. 
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Kutta time integration is employed. Whereas in the previous paper, the local Lax-Friedrich scheme was 
used to evaluate the numerical convective flux, Simple Low-dissipative AUSM (SLAU) scheme [11] is used. 
The usage of this scheme is because of its low dissipative characteristics at low speeds, which seems to 
be good for our current purpose. As for the thermal conduction in the solid propellant, the basic equation is 
nondimensionalized and converted through an exponential transformation, and then discretized by the 
second-order finite difference method. Detailed description was given in the previous paper. 

THEORETICAL EVALUATION 

Linear Growth Rate of the First Acoustic Mode 
As the results of the linear theory [12], the growth rate of the first acoustic mode for the present gas-

particle flow situation can be written as 
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where ( )r
pR  is the real part of the response function defined by the following equation [13],[14] 
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Standard definitions of A, B, n, and l  are used as given in [1]. The definitions of the parameters in the 
expression of Pa  are given in [12] and summarized as follows. 
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Particles are assumed to be spherical throughout the study. It should be noted that, in the linear theory, 
the Stokes drag coefficient is used to evaluate the relaxation times, i.e.,  

 24
ReD

r
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RESULTS AND DISCUSSION 

Growth Rate 
The growth rate is evaluated by the same method described in Ref. [1]. The initial perturbation is a 

cosine wave of the first acoustic mode and its initial amplitude is 0.1% of the chamber pressure cp . The 
perturbation is superimposed on the steady-state solution obtained also by the present numerical method. 
The history of the pressure at the head end of the chamber is utilized to evaluate the growth rate a , i.e., 



( ) [ ]0 0 expHE HE HEp p p ta- µ .  
For the present study we employ the values shown 

in Table 1. Several simulations have been conducted 
for the sets of combination of SQ , y , and pd  with 
the nozzle mach number and the activation energy set 
to 0.2 and 9000 0R J/kg, respectively. Simulated cases 
and results of the growth rate are summarized in 
Table 2. These results of the growth rate are plotted 
against the particle diameter and compared with the 
linear theory for SQ =548400 J/kg, for 579800 J/kg, 
and for 600000 J/kg in Figs. 3, 4, and, 5, respectively.  

Comparison with the theory shows that the present 
simulation results agree fairly well for smaller loading 
ratio and for smaller particle diameters. Discrepancy 
between them is seen at large particle diameters 
when the loading ratio is high. The reason of this 
discrepancy can be attributed to the assumption of the gas-particle equilibrium used in the linear theory. 
This is understood from the value of the Stokes number plotted in Fig. 6. The Stokes number becomes 
close to unity for a large diameter and this means non-equilibrium effect becomes significant. 

Effect of Realistic Drag and Heat Transfer 
In the above simulation, the Stokes drag (Eq.(26)) and limit Nusselt number (Nu=2) are employed to 

evaluate the relaxation times. It is well known that the Reynolds and Mach number effects become 
significant as particle diameter becomes large [15]. In order to evaluate the amount of these effects, further 
simulations have been carried out for Case 2-1 using more realistic models of drag and heat transfer. For 
the drag coefficient of a sphere, Carlson and Hoglund [16] expression is used with an incompressible drag 
coefficient of Wen and Yu [17] expression. As for the Nusselt number of a sphere, Kavanau-Drake [18] 
expression is used. The expressions of these are given also in [15].  

Table 1.   Values of Combustion Parameters. 
Properties Value 

n  1.0 
s  4.0 

aT  300 K 

0ST  900 K 

0br  35 10-´  m/s 
0fT  3500 K 

Molecular Weight 18.36 g/mole 
sc , pc  1381 J-K/kg 

sa  71.5 10-´  m2/s 
SQ  548-600 kJ/kg 

0
SE R  9000 K 

 

Table 2.   Summary of Growth Rate Results for Simulation Cases.  (Stokes Drag used) 

case 0NM  
0

SE R  
K 

SQ  
J/kg 

Metal % 
mf (* ) 

Loading 
Ratio 
y (* ) 

Growth Rate, 1/s 
, mpd m  

6 12 24 48 96 
1-1 0.2 9000 548400 20 »0.6 -35.77 -62.92 -138.39 -172.97 -90.99 
1-2 0.2 9000   5 »0.1 -26.38 -32.57 -49.02 -41.90 -29.70 
1-3 0.2 9000   0.5 »0.01 -21.47 -22.34 -23.25 -22.43 -21.41 
2-1 0.2 9000 579800 20 »0.6 -10.96 -36.97 -99.16 -146.86 -70.83 
2-2 0.2 9000   5 »0.1 -5.21 -7.88 -21.34 -14.40 -6.52 
2-3 0.2 9000   0.5 »0.01 2.27 1.11 0.01 0.37 1.87 
3-1 0.2 9000 600000 20 »0.6 18.86 -2.01 -55.46 -84.71 -45.88 
3-2 0.2 9000   5 »0.1 33.11 22.56 11.76 19.45 27.21 
3-3 0.2 9000   0.5 »0.01 32.90 30.08 29.29 29.81 32.91 

(* )  
51,       

1 27
p

m

r fy f f
r f

= = =
-

 



 
Results of these simulations are shown in 

Figure 7. It is clear that when more realistic drag 
and heat transfer coefficients are used, attenuation 
rate increases in magnitude for large particles, 
whereas it decreases in magnitude for small 
particles. 

CONCLUSION 
We have extended the previously developed 

mathematical model and numerical schemes for 
the prediction of the linear stability of solid rocket 
motor combustion to include gas-particle flow 
effect. From several simulation results it is 
confirmed that the present method can provide a 
good estimation of the decay or the growth of a 
small perturbation. The present method is directly 
applicable to non-linear problems and easily 
extended to multi-dimensional problems. 

 
Figure 3  Growth Rate, Comparison with Linear 
Theory, Cases 1-1, 1-2, and 1-3. 

 

 
Figure 4  Growth Rate, Comparison with Linear 
Theory, Cases 2-1, 2-2, and 2-3. 

 

 
Figure 5  Growth Rate, Comparison with Linear 
Theory, Cases 3-1, 3-2, and 3-3. 

 
Figure 6  Stokes number vs Particle Diameter 
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Figure 7  Growth Rate, Effect of realistic drag 
and heat transfer coefficients. Symbols show 
present results and are spline interpolated. 

0 20 40 60 80 100
-60

-40

-20

MN0=0.2, CD=Stokes, Es/R=9000 K, Qs=548400 J/kg, y=0.1

Gr
ow

th 
Ra

te,
 1/

s

Particle Diameter, mm

 Stokes Drag (Linear Theory)
 Stokes Drag (Present Simulation)
 Carlson-Hoglund Drag (Present Simulation)



ACKNOWLEDGMENTS 
This research is supported by JAXA Grant B-UA-09-4K1-UHA18-1009. 

REFERENCES 
[1] Shimada, T., M. Hanzawa, T. Morita, T. Kato, T. Yoshikawa, and Y. Wada, “Stability Analysis of Solid 
Rocket Motor Combustion by Computational Fluid Dynamics,” AIAA Journal, Vol. 46, No.4, 2008, pp.947-
957. 
[2] Morita, T., Hanzawa, M., and Shimada, T., “CFD Analyses of Low Frequency Combustion Instability in 
Solid Propellant Rocket Motors,” Advancements in Energetic Materials and Chemical Propulsion, edited by 
Kenneth K. Kuo and Juan de Dios Rivera, Begell House, Inc., 2007, pp.457-475 
[3] Zinn, B., T., “Longitudinal Mode Acoustic Losses in Short Nozzles,” Journal of Sound and Vibrations, 
Vol.22, No.1, 1972, pp. 93-105. 
[4] Kooker, D.E., and Zinn, B.T., “Triggering Axial Instabilities in Solid Rockets: Numerical Predictions,” 
AIAA Paper, No.73-1298, AIAA/SAE 9th Propulsion Conference, Las Vegas, Nevada, Nov. 1973. 
[5] De Luca, L., “Theory of Nonsteady Burning and Combustion Stability of Solid Propellants by Flame 
Models,” Nonsteady Burning and Combustion Stability of Solid Propellants, Edited by De Luca, L., Price 
E.W., and Summerfield, M. Progress in Astronautics and Aeronautics, Vol. 143, AIAA, 1992, pp. 519-600. 
[6] Jackson, T.L., Massa, L., and Brewster, M.Q., “Unsteady Combustion Modelling of Energetic Solids, 
Revisited,” Combustion Theory and Modelling, Vol. 8, Issue 3, 2004, pp.513-532. 
[7] Hanzawa, M., “A Theoretical Study on the Extinction of Solid Propellants by a Rapid Pressure Decay,” 
Doctoral Dissertation, University of Tokyo, 1976. 
[8] Hanzawa, M., “A Theoretical Study on Depressurization Induced Extinction of Solid Propellant,” AIAA 
Paper No. 76-635, AIAA/SAE 12th Propulsion Conference, 1976. 
[9] Akiba, R. and Tanno, M., “Low Frequency Instability in Solid Propellant Rocket Motors,” Proceedings of 
the First International Symposium on Rockets and Astronautics, Tokyo, 1959, pp. 74-82. 
[10] Krier, H., T’ien, J.S., Sirignano, W.A., and Summerfield, M., “Non-steady Burning Phenomena of Solid 
Propellants: Theory and Experiments,” AIAA Journal, Vol. 6, No. 2, 1968, pp. 278-285. 
[11] Shima, E. and Kitammura, K, “On New Simple Low-Dissipation Scheme of AUSM-Family for All 
Speeds,” AIAA Paper 2009-136, 2009 
[12] Culick, F.E.C. and Yang, V., “Prediction of Stability of Unsteady Motions in Solid Propellant Rocket 
Motors,” Nonsteady Burning and Combustion Stability of Solid Propellant, Progress in Astronautics and 
Aeronautics, Vol. 143, 1992, pp. 719-804. 
[13] Novozhilov, B.V., “Theory of Nonsteady Burning and Combustion Stability of Solid Propellant by the 
Zeldovich-Novozhilov Method,” Nonsteady Burning and Combustion Stability of Solid Propellant, Progress 
in Astronautical and Aeronautics, Volume 143, 1992, pp. 601-641. 
[14] Culick, F.E.C., “A Review of Calculations for Unsteady Burning of a Solid Propellant,” AIAA Journal, 
Vol. 6, No. 12, 1968, pp.2241-2255. 
[15] Shimada, T., Daimon, Y., and Sekino, N., Computational Fluid Dynamics of Multiphase Flows in Solid 
Rocket Motors, JAXA Special Publication JAXA-SP-05-035E, Japan Aerospace Exploration Agency, March 
2006. 
[16] Carlson D.J. and Hoglund, R.F., “Particle drag and heat transfer in rocket nozzles,” AIAA Journal, Vol. 
2, No. 11, 1964. 
[17] Wen, C.Y. and Yu, Y.H., Chemical Engineering Progress Symposium Series, Vol. 6, p.100, 1966. 
[18] Kavanau, L.L. and Drake, R.M., Jr., “Heat Transfer from Sphere to a Rarefied Gas in Subsonic Flow,” 
Univ. of California, Rept. HE-150-108, p.9, 1953. 


