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ABSTRACT 

Structural optimization is a well known discipline in aerospace applications since most of the 

optimization problems were stated in order to solve aeronautic structures. Since first works about 

structural optimization were published, different formulations had been proposed to obtain the 

most adequate structure. Topology optimization of structures is the most recent branch of 

structural optimization. In this discipline, the aim is to distribute a predefined amount of material in 

a predefined domain. The most usual formulation tries to maximize the stiffness of the structure 

by using a predefined amount of material.  In this paper, we propose a minimum weight with 

stress constraints formulation that avoids most of the drawbacks associated to maximum stiffness 

approaches as it can be observed in the applications examples that we have analyzed. 

1. INTRODUCTION 

Topology optimization of structures is a relatively recent discipline in the field of structural 

optimization. Since the first model was introduced a lot of effort has been dedicated to deal with 

this problem. However, the most of the works about this topic has been driven to maximum 

stiffness formulations due to computational reasons, among other considerations. More recently, 

different approaches with stress constraints have been proposed due to the important 

advantages that they offer (avoids checkerboard solutions, guarantees the feasibility of the 

solution, ...). However, the computational resources required are more restrictive because the 

underlying optimization problem is much more complicated. 

In this paper we present and compare three different approaches for topology optimization of 

structures that incorporate stress constraints. Finally, two application examples are presented. 

2. TOPOLOGY OPTIMIZATION PROBLEM 

The minimum weight with stress constraints topology optimization problem can be written, 

according to [1], in the following terms: 



    (1) 

where the design variable  is the relative density of element  (assumed uniform within the 

element) and  is the total number of elements in the mesh (the lower limit of the relative 

density, , is slightly higher than zero to avoid the stiffness matrix to become singular). The 

model of microstructure used is the SIMP model without any penalization of the intermediate 

densities. The penalization of the intermediate densities is included in the objective function as 

   (2) 

where  is the element number ,  is the density of the material, and  is the 

penalization parameter of the intermediate densities used to favor a mainly compact distribution 

of material [1]. 

3. STRESS CONSTRAINTS 

In order to consider stress constraints we analyze three different formulations. First, we propose 

to impose one stress constraint in the central point of each element, which is usually known as 

the local approach of the stress constraints [1, 2, 3, 4, 5]. This local stress constraint can be 

introduced as 

   (3) 

being 

    (4) 

where  is the stress constraint of the element  and  is the reference stress used (usually the 

Von Mises criterion) obtained through the calculated stress tensor  in the central point of the 

element. In order to avoid singularity phenomena when the relative density tends to zero this 

constraint has been relaxed by using the function  [2, 6]. The “relaxation parameter”  usually 

takes values between  and . In addition, the exponent  allows to deal with real stress 

(when ) or effective stress (when ). According to [1, 3] the use of effective stress 

reports important advantages because it reduces the non-linearity of the stress constraints when 

the relative density tends to zero. 



The local approach of stress constraints usually requires to impose a high number of constraints 

due to the number of elements (and design variables). Consequently, this approach requires, 

nowadays, a high computing effort when thousands of design variables are used. 

Due to this fact, several alternative formulations have been derived in order to reduce the 

computing effort required: thus we propose to use a global function that aggregates the effect of 

all the local constraints from a global point of view [3]. This global function was first proposed by 

Kreisselmeier-Steinhauser (and later used in [7], for example) and it is defined as 

     (5) 

being 

          (6) 

where  is the aggregation parameter and it usually takes values between 15 to 40 [3, 5]. Values 

smaller than 15 allow an excessive violation of the local constraints and values higher than 40 

produce a highly non-linear function. 

The use of this global function reduces enormously the computing effort required but it also leads 

to a loss of information in the sensitivity analysis due to the aggregation. In addition, the non-

linearity of the stress constraints is increased. 

Due to this fact, we have also proposed a different strategy that forms groups of elements that we 

call blocks (figure 1). Each block contains approximately an equal number of elements. 

 

 
Figure 1. Example of block definition 

 



Thus, the main idea is to impose over the elements of each block one global stress constraint like 

the proposed in the global approach. The global function to impose over each block of elements 

is defined as 

  (7) 

being 

        (8) 

 

where  is the number of elements aggregated in block  and  is the set of elements in block 

. 

This approach allows to define the number of blocks to use and consequently the number of 

stress constraints to impose. Thus, this formulation is more general than the local or the global 

ones and includes them as a particular case [5, 8]. 

The number of blocks used and the way of defining the geometry of the blocks are the most 

important features of this formulation. However, we have observed that the geometry of the 

blocks does not influence considerably the final solution. The number of blocks and the 

parameter of aggregation are much more critical. 

In the application examples presented in this paper, the definition of the blocks of elements is 

developed according to the numbering used in the FEM formulation. This algorithm usually 

produces deformed long blocks for the most usual FEM meshes used in topology optimization 

problems. As it was mentioned before this fact does not influence significantly the final solution 

obtained. However, a more compact definition of blocks (like the proposed in figure 1) could lead 

to a more efficient problem. The global constraints and the sensitivity analysis would produce 

more appropriate information to the optimization algorithm. Thus, further research is necessary to 

develop more specific techniques to define the blocks in order to obtain a better performance. 

4. OPTIMIZATION ALGORITHM 

According to the approaches introduced in the previous section, the topology optimization of 

structures with stress constraints leads to mathematical programming problems type (1) with a 

large number of highly non-linear constraints type (3), (5) or (7) and a non linear objective 

function. 



An improved SLP algorithm with quadratic line-search seems to be a right choice to solve this 

kind of problems [1, 4, 9] . Thus, the linear approximation to problem (1) is stated (with additional 

side constraints) and solved at each iteration by means of the Simplex method [10]. This 

algorithm has demonstrated to work properly even if the global approach is used (only one 

constraint) [11]. The inactive constraints are disregarded, with the aim of saving computational 

resources. 

The required sensitivity analysis can be computed analytically. Full first order derivatives of the 

stress constraints are obtained via the adjunct variable method in order to reduce the 

computational effort. However, the second order directional derivatives are computed analytically 

via a direct differentiation technique. With this procedure, directional derivatives of all the stress 

constraints can be obtained although full first order derivative have not been calculated. 

5. APPLICATION EXAMPLES 

In this section, we present two structural problems frequently analysed in topology optimization. 

These examples are 2D structures in plane stress but we show three dimensional figures to 

better understand the solutions obtained. 

The first example corresponds to a classic MBB-type beam with sliding supports [12]. Only half of 

the structure is analysed because of symmetry. Figure 2 shows the dimensions of the domain 

and the position of the external load. Self-weight is considered. The domain of the structure is 

discretized in  eight-node quadrilateral elements. The material being 

used is steel with density , Young's modulus , 

Poisson's ratio  and elastic limit . The thickness of the structure is 

 

 
Figure 2. Geometry of the MBB beam type 

 

This example is solved with the three formulations of stress constraints proposed in section 3 in 

order to compare the solutions obtained with them. Figures 3, 4 and 5 show the solutions 



obtained with the local, the global and the block-aggregation approaches of the stress 

constraints. 

 
Figure 3. MBB solution with the local approach of the stress constraints 

 
Figure 4. MBB solution with the global approach of the stress constraints 

 
Figure 5. MBB solution with the block-aggregation approach of the stress constraints [ ] 



Table 1 shows the most important parameters of this problem in order to better understand them 

and in order to verify the weight of the final solutions obtained with the approaches of the stress 

constraints proposed. 

Table 1. Summary of the MBB-Beam solutions 
     Final Weight 

Local approach (Figure 3) 1 0.01 4 - 15.41 % 

Global approach (Figure 4) - 0.01 4 40 13.62 % 

Block aggr. Approach (Figure 5) - 0.01 4 40 14.24 % 
 

The second example is the optimal design of a cantilever beam with null displacements in the left 

border and with a vertical force applied in the middle of the right border. Figure 6 shows the 

dimensions of the domain and the position of the vertical forces applied. In this example, self-

weight of the structure has also been included as a structural load. The domain of the structure 

has been discretized by using a homogeneous mesh with  8-node quadrilateral 

elements. The thickness of the structure is . The external force applied  has 

been distributed on four contiguous elements in order to avoid stress accumulation phenomena. 

The material being used in this problem is steel with density , Young 

Modulus  Poisson ratio  and elastic limit . 

 

 
 

Figure 6. Scheme of the cantilever beam problem (units in m) 

Figure 7 shows the optimal solution for the cantilever beam problem obtained by using the local 

approach of stress constraints. 

 



 
 

Figure 7. Optimal solution of the cantilever beam problem by using 
the local approach of stress constraints. 

Figure 8 shows the optimal solution for the cantilever beam problem obtained by using the global 

approach of stress constraints. 

 

 
 

Figure 8. Optimal solution of the cantilever beam problem by using 
the global approach of stress constraints. 

Figure 9 shows the optimal solution for the cantilever beam problem obtained by using the block 

aggregated approach of stress constraints. The number of blocks used is 120. 

 

 
 

Figure 9. Optimal solution of the cantilever beam problem by using 
the global approach of stress constraints. 



The solution obtained must be symmetric since the material being used presents an equal 

behaviour in tension and compression. However, we have analyzed the entire domain and do not 

consider this fact in order to verify the methodology proposed. Note that the optimal material 

distribution obtained is symmetric although this issue has not been forced. This symmetric 

distribution remarks the validity of the techniques proposed. In addition, the relaxation parameter 

also introduces a small effect on the stress constraints for intermediate values of the relative 

densities. This small decrease of the stress constraints due to the relaxation allows a larger 

weight reduction than the expected one without any relaxation. 

Table 2 shows the most important parameters of this problem in order to fix their value and better 

understand them. 

Table 2. Summary of the Cantilever Beam solutions 
     Final Weight 

Local approach (Fig. 7) 1 0.01 4 - 18.27 % 

Global approach (Fig. 8) - 0.01 4 40 16.22 % 

Block aggr. Approach (Fig. 9) - 0.01 4 40 16.61 % 
 

6. CONCLUSIONS 

Structural Topology optimization with stress constraints is an unusual branch in topology 

optimization problems. However, this kind of formulations offers important advantages versus 

maximum stiffness approaches because it avoids checkerboard layouts without using 

stabilization. In addition, it imposes a more realistic objective function from an engineering point 

of view and guarantees the feasibility of the solution because stress constraints are considered. 

In this paper we propose three different formulations to impose stress constraints. The most usual 

and reliable procedure is the local approach of stress constraints because one stress constraint 

per element is introduced. However, this methodology imposes a large number of constraints 

when fine FEM meshes are used. Thus, the optimization algorithms require much more effort to 

obtain the optimum solution and the computing time increases considerably. 

Due to this fact, two additional procedures are analyzed in order to reduce the computational 

effort: the global approach and the block aggregation approach. The global approach imposes 

only one global constraint that tries to aggregate the effect of all the local constraints. However, 

this formulation does not strictly guarantee the feasibility of the local constraints. On the other 

hand, the block aggregation of elements allows to define a more general methodology that takes 



the most important advantages of the local and the global approaches. The stress constraints are 

much more conveniently satisfied and the computing time is only slightly increased. Thus, if a 

large number of design variables is used, the block aggregation of elements is the most 

appropriate technique due to computational considerations. However, if the computing time is not 

too much restrictive the local approach is the most reliable formulation. 

Finally, it is important to remark that minimum weight with stress constraints formulations produce 

fully satisfactory results versus maximum stiffness approaches. The use of maximum stiffness 

formulations should be replaced by minimum weight formulations because they offer very 

important advantages and the computational effort required is completely affordable nowadays. 
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