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ABSTRACT

Large eddy simulation coupled with Curle’s acoustic analogy was performed on the two dimen-
sional shallow rectangular cavity with thick incoming turbulent boundary layer. The aim of
the work is to resolve the acoustics generated from the cavities of the terrestrial and air borne
civilian vehicles. Three test cases with low Mach number 0.017, 0.058, 0.117 are performed on
the cavity of aspect ratio L/D = 4 with power law or equilibrium turbulent boundary layer as
inflow conditions. Turbulent fluctuations, energy spectra and noise emission are discussed.

1. INTRODUCTION

Open cavity flows can be found in many aerospace configurations, particularly on aircraft wings
and landing systems. Self-sustained oscillations linked to a complex feedback mechanism of
shear layer instability impinging on the downstream corner of the cavity generates unnecessary
noise. The main frequency is given by the Rossiter’s formula. Cavities are also responsible
for the increase of drag. They are therefore of interest for turbulence, flow separation and
aeroacoustic analysis. The complexity of the phenomenon occurring in such a flow depends
on the geometry characteristics (ratio length L/depth D) and on the characteristics of the
incoming boundary layer. A large literature exists on this subject.

Here the flow on the 2D rectangular cavity with L/D = 4 with an incoming turbulent bound-
ary layer is investigated. One interesting aspect of the study is the large momentum thickness θ
of the incoming boundary layer. In this case where the Mach number (M∞ < 0.3) is low, strong
shear stresses are present in the cavity and the impingings of the eddies on the downstream edge
and corner of the cavity generate large turbulent structures which interact with the downstream
boundary layer, inducing large unsteady separations. Initially, the flow is solved using Large
Eddy Simulation and then noise emission is given by Curle acoustic analogy [1]. This work is
the initial step to analyse more complex three dimensional rectangular and cylindrical cavity
flows. The LES model is presented in section 2. The equilibrium boundary profile obtained
from asymptotic analysis is explained in section 3. Section 4 discusses the aeroacoustic analogy
model. The last section is devoted to the results of different configurations.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1 Governing equations

The compressible Navier-Stokes equations in Cartesian coordinates without body forces or
external heat addition can be written as

∂U

∂t
+

∂Ej

∂xj
=

∂Fij

∂xj
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where U = [ρ, ρui, ρEt]
T is the state vector, Ej = [ρuj, ρuiuj + pδij , ρEtuj + puj]

T are the
inviscid fluxes, Fij = [0, τij , τijui − qj]

T are the diffusive fluxes and the viscous stress tensor

is τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

δij

)
, where δij is the Kronecker symbol. The heat flux from

Fourier’s heat law is given by qi = −
cpµ

Pr

∂T

∂xi

where cp is the specific heat capacity at constant

pressure, Pr is Prandtl number, Et = E + uiui/2 is the total energy, E is the internal energy

2.2 Numerical method – LES model

The parallel code AVBP from CERFACS, Toulouse, solves the laminar and turbulent com-
pressible Navier-Stokes equations in two and three space dimensions. For prediction of un-
steady turbulent flows, Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)
can be employed. The numerical schemes in AVBP are based on the cell-vertex method which
naturally ensures high compactness. The main convective schemes are a finite volume Lax–
Wendroff type scheme (LW) and a finite element two-step Taylor-Galerkin scheme (TTGC) [2].
These two schemes are respectively 2nd and 3rd order in time and space. The diffusive scheme
is a typical 2nd order compact scheme. In this work we typically use quadrangle elements for
space discretization. Time integration is fully explicit to maximize accuracy. The derivation of
the new governing equations is obtained by introducing operators to the compressible Navier-
Stokes equations. Unclosed terms arise during the derivation and need to be modeled for the
problem to be solved. The operator in LES is a spatially localized time independent filter of
given size, △, to be applied to a single realization of the studied flow. At the same time, the
unclosed terms in LES represents the physics associated with the small structures present in
the flow. The LES predictions of complex turbulent flows are closer to the physics since large
scale phenomena such as large vortex shedding and acoustic waves are embedded in the set
of governing equations [3]. The filtered compressible Navier-Stokes equations exhibit sub-grid
scale (SGS) tensors and vectors describing the interaction between the non-resolved and re-
solved motions. The influence of the SGS on the resolved motion is taken into account by a
SGS model based on the introduction of a turbulent viscosity νt. Two LES models are used

here. The first one is LES–Smagorinsky model νt = (CS△)2

√
2 S̃ijS̃ij , where CS = 0.18 is

the model constant and S̃ij is the resolved strain rate tensor. The second one is the filtered

Smagorinsky model νt = (CSF )2

√
2 HP (S̃ij)HP (S̃ij), where CSF = 0.37 is the model constant

and HP (S̃ij) denotes the resolved strain rate tensor obtained from a high-pass filtered velocity
field.

Compressible flows are characterized by waves whose physics is to be respected in numer-
ical simulations. Characteristic boundary conditions allow for the correct treatment of waves
impinging on the boundary of the computational domain. Poinsot and Lele [4] characteristic
boundary conditions are applied on all configurations . To prevent the numerical oscillations in
the region of high gradients, artificial viscosity is added. Schönfeld Lartigue Kaufmann sensor
(SLK) [5] is used with values of 0.2 and 0.05 for the 2nd and 4th order respectively.

3. INFLOW EQUILIBRIUM TURBULENT BOUNDARY LAYER

The equilibrium turbulent boundary layer is determined by the successive complemetary ex-
pansion method [6] which consists in seeking contiguous asymptotic matches between the inner
and the outer regions of an incompressible turbulent boundary layer. Just the key steps are
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reproduced in this paper.

3.1 Mixing length model

Across the boundary layer, the local shear stress is given by τ = µ
∂u

∂y
− ρu′v′ = τl + τt

,where u′ and v′ are the time-dependent fluctuations of the streamwise and flow-normal velocity
components. The Reynolds shear stress τt is evaluated using Prandtl’s mixing length model [7],
with the Van Driest [8] near-wall damping correction F̃ :

τt = ρF̃
2

ℓ2

∣∣∣∣
∂u

∂y

∣∣∣∣
(

∂u

∂y

)
, F̃ = 1 − exp

(
−y+/26

)
(1)

In the inner region, ℓ = κy, while in the outer region, ℓ/δ → 0.085 as y → δ. These two trends
can be merged analytically into a single distribution for the mixing length ℓ across the full
boundary layer by the using a blending function. Michel et al. [9] proposed

ℓ(η)/δ = cℓ tanh(κη/cℓ), cℓ = 0.085, κ = 0.41 (2)

To deliver an improved prediction of the turbulent shear stress profile at the interface between
the inner and the outer layer, at low Reynolds numbers Reτ , a new alternative function have
been implemented

ℓ(η)/δ = κη [1 + (κη/cℓ)
n]

−1/n
(3)

For 2.6 < n < 2.7, the ℓ(η) profile from equation 3 almost matches that from equation 2.

3.2 Stress and velocity profiles

Normalising the local shear stress τ in eq. 1 by ρu2
τ and assuming a monotonic velocity profile

gives
τ

τw
=

∂u+

∂y+
+ ℓ+2F̃

2

(
∂u+

∂y+

)2

, ℓ+ = ℓuτ/ν, u+ = u/ue (4)

In the inner region and in the limit y+ → 0, τ → τw the root [6] of eq. 4 is

∂u+

∂y+
=

2

1 +

√
1 + 4

[
ℓ+ (y+) F̃ (y+)

]2
(5)

Integrating equation 5 with respect to y+ with the boundary condition u+ (x, 0) = 0 gives the
inner layer tangential velocity profile that asymptotes to the log-law. In the outer region, a
similarity solution is sought in terms of the velocity defect F ′ (η) = (ue − u)/uτ . Expressing
τ/τw as a function of F and η gives [6]

τ

τw
=

(
ℓ

δ

)2

F ′′2 = 1 −
F

F1

+

(
1

F1

+ 2β

)
ηF ′ (6)

where

F =

∫ η

0

F ′ (ξ) dξ; F1 = F (1) ; β = −
δ

uτ

due

dx
(7)

In the outer region, the Reynolds stress component is dominant over the laminar shear stress,
so τ ≃ τt. From eq. 1, noting that the van Driest damping constant F̃ → 1 at y+ ≥ 100,
τ/τw = (ℓ/δ)2 F ′′2, where F ′′ = dF ′/dη.
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3.3 Asymptotic matching of the inner and outer profiles

A matching condition is sought for the velocity profiles of the inner and outer regions. Consid-
ering eq. 5 in the limit y+ → ∞ and eq. 6 in the limit η → 0 give respectively [6]

u+ = κ−1 ln y+ + C (8)

u+

e − u+ = −κ−1 ln η + Dv (9)

The addition of the both equations gives the ratio ue/uτ [6] :

u+

e = κ−1 ln
uτδ

ν
+ C + Dv (10)

Equation 10 provides the wall skin friction coefficient Cf = τw/ (0.5ρu2
e) :

(Cf/2)−1/2 = κ−1 ln
uτδ

ν
+ C + Dv (11)

The numerical implementation of the full problem resolution is detailed in [10]. The shape
factor and the boundary layers thicknesses and the ratio Rθ/Rτ are then determined. The new
mixing length model (eq. 3) has been validated with some experimental data, for a value n = 4,
on zero pressure gradient turbulent boundary layer (fig. 1).

(a) Mixing length versus normalized η. (b) Normalized eddy viscosity versus normalized dis-
tance η

Figure 1: reference data ◦: Rτ = 1540 [11], � : Rτ = 2775 [12], continuous line : results with
Michel’s model, dashed line : results with the model eq. 3, n = 4.

4. AEROACOUSTICS

Computational Aeroacoustics (CAA) aims to predict the sound radiated by turbulent flows, to
identify the source of sound and to investigate strategies by which noise could be reduced. CAA
combines the classical approaches of flow field computation with acoustics. The direct compu-
tation of sound using DNS is restricted to low Reynolds numbers and very simple geometries.
Hybrid method where the sound is obtained in a successive step, after having calculated the
flow field is employed as found in Lighthill [13] where an analogy between the propagation of
sound in an unsteady unbounded flow to that in an uniform medium at rest, generated by a dis-
tribution of quadrapole acoustic sources. In this analogy, Navier-Stokes equations are replaced
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by an inhomogeneous wave equation namely the Lighthill equation. The Lighthill analogy does
not include the effect of solid boundaries in the flow, thus it considers only aerodynamically
generated sound without solid body interaction. The formulation was extended by Curle [1]
and Ffows Williams and Hawkins [14] to take into account the generation and the scattering
mechanisms when solid bodies are present:

∂2ρ

∂t2
− a2

∞

∂2ρ

∂x2
i

=
∂2Tij

∂xi∂xj
(12)

where Tij = ρuiuj − τij + (p − a2
∞

ρ)δij is the Lighthill stress tensor and a∞ is the speed of
sound in air. The equation (12) includes all physics as no assumption is made in deriving it
from the governing equations. When an assumption of an inhomogeneous wave equation in an
isotropic medium at rest is made and while assuming ρ ∼ ρ∞ in Tij , the equation (12) can be
solved analytically. Curle [1] formulated an analogy for non-moving solid bodies using a general
solution of equation (12)

ρ(x, t) − ρ∞ =
1

4πa2
∞

∫

V

1

r

∂2Tij

∂xi∂xj
dV (y) −

1

4π

∫

S

(
1

r

∂ρ

∂n
+

1

r2

∂r

∂n
ρ +

1

a∞r

∂r

∂n

∂ρ

∂τ

)
dS(y) (13)

where x is the observer position, y is the source position and r =| x−y | is the distance between
them. The vector n is the surface normal pointing towards to fluid and τ = t − r/a∞ is the
retarded time, which is the time of the emission of a signal that reaches the observer location
at time t. After handling the equation (13) with Green’s function and considering the observer
located in a region where the flow is isentropic, the final surface integral is a line integral along
the cavity walls yielding

p(x, t) − p0 =
1

4π

∫

L

linj

[
2 arctan(b/r)

ṗδij

a∞

+ 2b
pδij

r2

]
dL(y) (14)

where li is an unit vector pointing from the source to the observer, ṗ is temporal derivative of
pressure. At low Mach numbers [15] and [16] the surface integral term in the equation (13)
is larger than the volume integral part, therefore the volume integral can be neglected. The
results presented in this work use equation (14), which takes into account the real half width
(b) of the cavity.

5. SIMULATION CHARACTERISTICS

testcase U∞ M∞ ReD δ[mm] θ[mm] Reθ L/θ at inlet
U20 20 m/s 0.058 13.68 × 103 21.92 2.133 2920 18.75 MTBL
U40 40 m/s 0.117 27.37 × 103 19.08 1.857 5100 21.54 MTBL
U5.8 5.84 m/s 0.017 3.96 × 103 21.00 2.24 900 17.85 ETBL

Table 1: Flow parameters.

The computational domain extends between 0 ≤ x/D ≤ 25 and −1 ≤ y/D ≤ 20. The cavity
is between 5 ≤ x/D ≤ 9 and −1 ≤ y/D ≤ 0. The dimensional variables which characterize
the cavity flow [17] are L, D, free stream velocity U∞, θ, a∞, and kinematic viscosity ν∞. The
role played by the θ at the leading edge of the cavity in the selection of modes is observed by
Colonius et al [18]. The flow parameters relevant to the cases in this work are given in the
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table 1. For test cases U20 and U40, a mean turbulent boundary layer (MTBL) is imposed
at the intlet and a power law boundary layer profile is imposed on the whole computational
domain as an initial condition. For the other test case U5.8, an equilibrium turbulent boundary
layer (ETBL) was created by the method from the section 3. and imposed at the inlet and on
the whole computational domain. All the three testcases were ran with the following flow state
values : P0 = 101325Pa, T0 = 288.15K, v0 = 0m/s. At the inflow, ρ = ρ∞ = 1.2kg/m3 and at
the outflow, mean pressure P = 101325Pa are imposed. The CFL value for these simulations is
0.7. The wall temperature is held constant and is equal to the free stream value T∞ = 288.15K.
For test cases U20 and U40 LES was performed with Smagorinsky model and for the test case
U5.8, it was filtered Smagorinsky model. These computations are performed in parallel on 16
to 64 nodes of IBM-SP computers at IDRIS, Paris and on Altix 3700 computers at CALMIP,
CICT, Toulouse.

6. RESULTS

6.1 Velocity profiles
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Figure 2: Boundary layer profiles for the test cases U∞ = 5.8m/s (a) and U∞ = 20m/s (b).
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Figure 3: Velocity profiles in the cavity of test cases U5.8 (a) and U20 (b).

The incoming boundary layer behaves like a flat plate boundary layer which can be observed
in the figure 2. Time averaged velocity profiles in inner coordinates are plotted at stations

6



x/D = 2, 4, and 5. Comparison with asymptotic approach have demonstrated that in the
section the boundary layer is no longer equilibrium. Typically the skin friction is lower than
the theoretical value given by eq. 11. The discrepancy increases with the inlet mean velocity.
For test cases U20 and U40, wake mode was observed. A vortex is formed from the leading edge
of the cavity and fills the cavity region the vortex detaches and impinges on the downstream
corner of the cavity. The flow above the cavity region is affected by the flow from the cavity.
The free stream flow is periodically directed into the cavity. The flow was found to be highly
unsteady and strongly influenced by the behaviour of the shear layer. Shear mode was observed
for the test case U5.8.

The velocity profiles of x-component for the test cases U5.8 and U20 at stations x/D = 6, 7, 8
are shown in figures 3(a) and 3(b) respectively. The shear mode in the test case U5.8 is clearly
evident from the figure 3(a) and the wake mode in the other testcase U20, figure 3(b).

6.2 Energy spectrum

The energy spectra of velocity component in x-direction versus the Strouhal number (StL =
fL/U∞,where f is frequency ) for the test cases U20 and U40 are calculated at point [x/D, y/D] =
[8, 0] and are plotted in figures 4(a) and 4(b) respectively. The energy spectrum demonstrates
the energy cascade where the peaks corresponding to the dominant oscillation frequency and its
harmonics can be observed. The fundamental frequency for the test case U40 is StL = 0.205,
and all higher modes are harmonics of this fundamental frequency are observed in the fig-
ure 4(b). The fundamental frequency StL reported by Larsson et al [15] is 0.245 which is worth
mentioning here. Colonius et al [19] found a fundamental frequency of StL = 0.248.
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Figure 4: Energy spectra of velocity component in x-direction of U20 (a) and U40 (b).

6.3 Reynolds stress profiles

In the figure 5, mean stresses u′u′, u′v′, v′v′ profiles at x/D = 2, 4 and 5 resemble the usual
turbulent boundary layer profiles. In the cavity at the locations x/D = 6, 7 and 8, mean
stresses u′u′, u′v′, v′v′ profiles are plotted and shown in the figure 6. The stress profiles of the
test case U5.8 are qualitatively similar to profile from Bertier et al [20] and are typically from
separated flows. The turbulent shear stress u′v′ is directly linked with large eddies motion. So
the anisotropic contribution to flow fluctuations is mostly distributed on the low frequency part
of the spectrum. u′u′ and v′v′ may contribute more significantly to the high frequencies part.
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Figure 5: Mean stress profiles u′u′, u′v′ and v′v′ at x/D = 2, 4 and 5.
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Figure 6: Mean stress profiles u′u′, u′v′ and v′v′ at stations x/D = 6, 7 and 8 in the cavity.

6.4 Sound pressure level

As mentioned in the section 6.1, the interaction of the vortex with the trailing edge of the
cavity generates pressure waves which are radiated into the far field. These pressure waves are
identified as aerodynamic noise. To determine the SPL using the acoustic analogy, an acoustic
domain of size 0 ≤ x/D ≤ 25 and −1 ≤ y/D ≤ 20 with 50 × 50 grid points is generated. The
intersection points of the grid represent the observers. The sound pressure level SPL values are
calculated for both domains. The figure 7 shows SPL iso-contours, SPL = 20 log(prms)/pref

above the enclosure of the cavity, where pref = 20 µPa and prms is the root mean square
pressure fluctuation. The contour spacing is △SPL = 2 dB. SPL iso-contours appear to be
concentric about the cavity, which confirms that the trailing edge is the main source of sound
at the selected conditions. From the figure 7, at the trailing edge of the cavity, the maximum
value of SPL is found to be 92dB for testcase U5.8 see figure 7(a) and 144dB for testcase U40
see figure 7(b) which confirms the louder flow. The direction of sound propagation appears
uniform in the current cases of low Mach number shallow cavity flow with turbulent incoming
boundary layer. But Rowley et al [21] show the peak radiation to the far field occurs at an angle
of about 135◦ from the downstream axis for the cavity L/D = and Mach number M = 0.6.
But in the present case, the directivity angle is not prominent. The discrepancy may be due to
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Figure 7: Sound Pressure Level

the low Mach number flow.

7. CONCLUSIONS

In this work, the LES has been used to investigate the nature of cavity mechanism and sound
generation. The incoming flow with a mean turbulent boundary layer profile over a two di-
mensional cavities with L/D = 4 were simulated. The main sources of sound in this low Mach
number flow are the pressure fluctuations on the walls. In addition, the sources of the sound are
large on the downstream cavity wall. The differences in the directivity of the sound propagation
is certainly an interesting part which should be studied in the future. The next step could be
studying the turbulent 2D and 3D cavity flow with the unsteady inflow data imposed at the
inlet.
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