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Abstract
In the framework of CNES/DLA research activities, and in collaboration with ENSTA (H. Zidani) and Uiversity 
Denis Diderot (O. Bokaowski), we have studied the applicability of Hamilton-Jacobi approach for trajectory 
optimization of space launcher  Ariane 5. 
Because of the well known "curse of dimension", dynamic programming principle had  been considered as un-
usable method of solving space launcher trajectory problems. In view of some recent advances on numerical 
schemes for partial differential equations (PDE) and the increase of computer's power, the use of dynamical 
programming becomes possible by integration of Hamilton-Jacobi-Bellmann (HJB) equation. Recall that this 
method has the great advantage to give access to the global optimum and to obtain a feed-back control low.
We will present a simplified 4-dimensional climbing problem and the main ideas of the method. We will also 
discuss some perspectives: combination of our method with parallel calculus, the use of HJB approach in order to 
obtain a good initialization of the shooting method.
This method is patent pending.

1. Introduction

During mission analysis, or launcher development, computation of space launcher trajectory  is in the middle 

of all processes. It is essential to get the optimal trajectory  for various missions. In a non convex setting, 

classical iterative methods  compute local optimal solution. Moreover, the  initialization of these methods is 

(very  often) difficult. In the contrary, Hamilton-Jacobi-Bellman (HJB) approach allows to compute the global 

optimal solution and does not need any  initialization process, but this approach needs huge computation 

capabilities. 

In this part, we focus on advantage and drawback of this approach.

1.1 Advantages

The classical methods used for trajectory optimization of space launchers are those based on total 

discretization of the problem or on shooting algorithms (using Pontryagin’s principle), see for instance  for 

an overview  of the popular algorithms. These methods are know to be very  accurate. However, their use 

presents several difficulties. The first obvious difficulty comes from the fact that the optimization problem is 

non-convex and then the classical methods are not able to avoid local minima, especially  for shooting 

methods that have the reputation to have a small convergence radius. The initialization of the methods is 

then very  hard. Moreover, it is often required to have a good knowledge of the global behavior of the 

solution before calculating it (existence of singular arcs, number of commutations and so on).
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An interesting by-product of the HJB approach is the synthesis of the optimal control in feedback 
form. Once the HJB equation is solved, for any starting point, the reconstruction of the optimal trajectory 

can be performed in real time.

An other main advantages of this kind of method is that it leads to the global optimum of the 

problem and is not perturbed by local optimum. 

The HJB approach is based on the dynamic programming principle of Bellman and consists in 

characterizing the value function of the control problem as a unique solution of a nonlinear  Partial 

Differential Equation (PDE - see paragraph 3). This  PDE can be solved by a non iterative method. Then, 

we never fall into a non-convergent algorithm which fall into an infinite loop.

Furthermore thanks to this approach, no initialization is required.

In classical optimization method, constraints on state and control can introduce complexity of 

analysis. Especially  for shooting method where a co-state should be computed, and where discontinuity  of 

co-state can appear at activation of some state constraint. In the HJB approach, the state constraints can 

help to reduce the domain of integration of the PDE, which implies also a reduction of  the computation time. 

In fact constraints (state, control or mixed) help the algorithm.

1.2 Drawbacks

The big and first disadvantage of the method is that we have to solve a PDE that have the dimension of the 

state system plus one for the time. Then a basic discretization and standard integration lead to an explosion 

of computation complexity. This problem is well known since the first formulation of dynamical principle.

In order to reduce the complexity, we suggest some new tools to obtain a n efficient and fast algorithm for 

solving the HJB equation  :

- a new  discretization scheme

- a specific sparse storage method

- and a model reduction of the initial control problem.

An other drawback of this approach is that, the solution obtained is as precise as the discretization, then we 

can not get a very accurate solution. In order to improve the accuracy of the solution, we will interface HJB 

solution to initialize precise method like shooting method.

In the next part, we will focus on the state reduction of the initial problem.
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2. Reduction of full model

2.1 Full dimensional problem

We focus on the trajectory  of space launcher with some stages like Ariane 5. The aim of the launcher is to 

steer a payload onto an orbit like GTO ones. In our study, we are looking for the trajectory  of the center of 

gravity  of the launcher, and we are looking for the command law that maximize the mass of the final 

payload, or we will look for the trajectory that minimize the consumption if a payload is already defined.

If we conceder the full 3D motion of the center of gravity  of the launcher the dynamic of the system is of 

dimension 6 for position and velocity and 1 more for the mass.
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M :  centre of gravity of launcher
(eE,eN,eV) :  Local Est, Nord, Vertical 

reference frame
r = OM =  radius of position
λ : latitude
ϕ : longitude
v :  norm of velocity
γ :  path angle
χ :  azimuth of velocity
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The state of the system is then:

- the position in radius, longitude and latitude, with 

- the velocity described by its norm, the path angle and the azimuth, and

- the mass of the launcher.

The control variable is the attitude of the launcher that can described by the angle of attack in the vertical 

plan and horizontal one. Then the dynamic of the full 6D problem is given by :
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   (1)

FD is the drag force, FT is the thrust, Ω is the rotation velocity of earth and f is a complex function that 

correspond to the dynamic of the azimuth of velocity.

2.2 Reduction of problem

If we consider a plan trajectory we can focus on the main parameters: radius, norm of velocity  and angle of 

attack. The  command variable being the angle of attack in the vertical plan.

  (2)

The longitude and azimuth variables can be assumed as null. The reduced model still contain the main 

difficulties of introducing energy  in the system via propulsion. The out of plan maneuver is neglected. For 

more detail see [R6].
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3. HJB solver

In this section, we present the Hamilton-Jacobi-Bellman approach for a general optimal control problem, we 

will underline the advantages of this approach, and the difficulties to pass trough in order to find the 

optimum of the optimization problem.

3.1 Preliminaries

The trajectory optimization we are interested in enters in a general setting of  optimal control problems:  

  (3)

with :
-  the state depending of the initial state ,
-  the control,
-  the dynamic of the system,
-  the constraint function.

In order to adjust problem formulation (1) into the form (3), we will look for the set of initial state that can 

reach the final orbit. 

3.2 PDE formulation

Problem (3) leads to the computation of the following Hamilton-Jacobi-Bellman equation : 

  (4)

And the solution of this equation coincides with the value function of the problem:

, and 
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In the equation (4),  is the derivative with respect to the time variable, and  is the gradient of the 

function  with respect to variable .

The function  is called accessibility  function and takes null value if it exist a trajectory  

which reach  before the time t and starting from the initial position , and takes unit value otherwise. The 

set  is called catch basin  of the problem P. For the catch basin  we 

associate the front  which is the boundary of .

3.3 Resolution

The HJB equation is solved by the Ultra Bee scheme ( and ) which is known for its non-diffusive 

property. To speed up the computation and save memory, we use the storage technique developed in . This 

storage method consists in storing in a special dynamic data structure only a subset of the grid nodes at 

each time step and compute the solution only at these nodes. This technique allows to have a fast and 

efficient local algorithm which concentrates, at each time step, the numerical effort in a small tube.

4. Numerical application 

In our setting, the target is a part of GTO orbit (in the state space (r,v,γ)). In the following figure, we compare 

the optimal solution computed by  HJB approach by  the one obtained by   shooting method. As we can see, 

the trajectory has the same global behavior than the one obtained by  shooting method. The main difference 

comes from the fact that the HJB approach seems to find an other point on the GTO.
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Further investigation is still in progress.

Conclusion

Hamilton-Jacobi-Bellman approach, when used with suitable discretization scheme and an efficient storage 

method,  gives good results in very  reasonable cpu time.  In order to increase the accuracy of this method 

and to speed the computation,  parallel calculus method should be coupled to our algorithm. An other issue 

of our algorithm is the exploitation of HJB solution for initializing a (more accurate) local method, which 

usually needs a good initialization of the iterative process,  as the well known shooting methods.
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