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| ABSTRACT

The current developed guidance algorithms for rendezvous are able to deal with targets placed
on circular or quasi-circular orbits. This is typically the case of the far rendezvous automatic on-board
guidance of ATV (vehicle developed under ESA responsibility, with Astrium Space Transportation as
prime contractor, that successfully performed an AR&D (Automated Rendezvous and Docking) in April
2008). Thanks to recent progress in the field of relative motion modelling, it is now possible to perform
an AR&D on an elliptical orbit. The implemented techniques presented hereafter were developed in the
frame of in-house studies. They were, afterwards, used in the frame of the HARVD project (Highly
Autonomous RendezVous and Docking), under ESA responsibility. A few words about recent progress
performed are also added at the end of the article.

Il INTRODUCTION

The presented guidance algorithm is based on ATV fundamental ideas. The main difference is
in the heart of the algorithm: the relative motion model. For ATV (and others space vehicles whose
mission includes a rendezvous), there is a linear relative motion model inside the on-board guidance
algorithm. Its purpose is to give an accurate estimation of the boosts effects that the spacecraft has to
perform in order to get from a state (position and velocity) to another.

First researches on relative motion model were conducted by Clohessy and Wiltshire [1], in 1960. They
developed a method to assess the relative position and velocity of a chaser in a relative coordinate
system whose origin is the target and whose directions are given by the local vertical and local
horizontal directions. Given the initial position, velocity and true anomaly on a circular orbit, the final
position and velocity at a given true anomaly are obtained by solving a linear stationary system of
equations. This solution is only accurate when the chaser is close to the target (when the distance
target-chaser is small in comparison with the distance target-Earth’s centre) and when the eccentricity of
the target’s orbit is small (e < 0.01).

When the target is on an eccentric orbit, the relative motion of the chaser is described by non-linear
differential equations with periodic coefficients. The linearized equations are known as the Tschauner-
Hempel equations [2]. In that direction, another important research was driven by Carter [3] to change
the coordinate system in order to admit non-null eccentricity. The equations of motion are, however,
more difficult to solve. Carter proposed a solution that requires integrating some functions and uses the
eccentric anomaly. The result is not simple to use in an engineering work and has a singularity for a
circular orbit (e = 0). Note that other developments exist for relative motion model and associated state
transition matrix and/or tensor: linear model with inclusion of J; effects [4] and non-linear model [5].

The solution chosen in this document is based on the developments performed by Yamanaka
and Ankersen [6], in 2002. It uses the same inertial frame but modifies the integration term expression.
Consequently, it can be easily computed by using the variable time instead of the eccentric anomaly.
Assessment of position and velocity at a given time/true anomaly, from position and velocity at another
given time/true anomaly, is now easier to adapt to a guidance algorithm and faster to compute. An
improvement of this guidance algorithm has been recently developed, in the frame of a contract under
CNES responsibility, thanks to the solution detailed [4]. A simple comparison is presented at the end of
this article.



Il NOMENCLATURE

AR&C = Automated Rendezvous and Capture

AR&D = Automated Rendezvous and Docking

ATV = Automated Transfer Vehicle

CoM = Centre of Mass

GC = Guidance and Control

GNC = Guidance Navigation and Control

GTO = Geostationary Transfer Orbit

HARVD= Highly Autonomous RendezVous and Docking
MCI = Mass, Centring and Inertia

WRT = With Respect To

IV LINEAR MOTION MODEL
Hypothesis

The whole relative motion model is
based on a single hypothesis: the relative
distance between the chaser and the target is
small when compared to the distance between
the target and the Earth centre. This assumption
will help us to simplify the chaser's equations of
motion. One recalls that only the gravitational
force is taken into account by this model. Neither
the J, disturbance, nor the atmospheric drag, nor
the vehicle thrust, are taken into account.

One notes R the absolute position of the target . .
in the equatorial frame and 7 the relative Fig0:The LVLH (Local Vertical / Local Horizontal) frame

position of the chaser wrt the target, in the LVLH
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frame based on the target CoM (see Fig. 1). The gravitational force uses the ratio to be

determined. This term is estimated linearly wrt. the relative position of the chaser:
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This approximation allows us to get simple linear equations for the chaser's relative motion, linking the

chaser's relative position, velocity and acceleration as follows:
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where k = % C is the orbital angular momentum of the target, w is the target orbital rate and 7 is

CE
replaced by its components x, y and z .

Equations simplification

These equations cannot be simply solved. Time cannot be used as the reference variable
(usually used to place the target on its orbit and to derive the position to get the velocity, and the velocity
to get the acceleration). One needs a variable giving the target position on its orbit without ambiguity. By
ambiguity, one means leading to an undetermination due to the target's motion periodicity, like the
target's radius would do, for instance. The chosen variable is the target's true anomaly _, the angle
between the perigee vector and the position vector:

X = X

¥=w’x"+owx' ,where p = (1 + ecos(H)) and x’' = Z—;

' = -2k’esin(0)p
Deriving wrt. the true anomaly, the new system is:
px" = 2esin(0)x' - ecos(0)x = 2pz' - 2esin(0)z
(1.2) py" —2esin(0)y = -y
pz" =2esin(0)z' — (3 +ecos(0))z = -2 px" + 2esin(0)x

X X
As it remains difficult to solve, a new variable change is performed: |y | = p|y
z z

The final solvable system is:

}4!! = 22/

(1.3) 1oy'=-y
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Linear problem solution
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The system’s solution for the out-of-plane motion is simple and corresponds to the y
state at another date 7 as follows:
(1.4 y 1 cos(6 -6,) sin(6 -6,)
' V.| p@-6,)|-sin(@-6,) cos®-6,)
one replaces X' in Z" equation.
Ankersen and K. Yamanaka contribution, [6], to the J. Tschauner and P. Hempel first solution, [2]. Their
solution has no singularity:

component — its solution is periodical. Given the satellite state at a date #,, one can get the satellite's
y
The solution of the linear system on the XoZ plane is not trivial. One starts by integrating once X" and
Now, one looks for the homogeneous second-order differential equation. One focuses on the F.
0
(15) Q= Clp(e)sin(e)f
0

~dt - p(6)cos(0) + C,
p(T)



The great interest of such a formulation is on the integral part because it allows a fast computation of its
value. Indeed, it can be assessed by using the time separating the two limit true anomalies:

0
(1.6) J(0) ={p(i)2 dv =k>(t-1,)
The final equation form is:
X1 1 -cl+1/p) s(+1/p) 3p%J K,
17) X' _|0 s c (2 -3esJ) K,
zZ 0 2s 2c-e 3(1-2esJ) K,
zZ'l |0 s' ' —3e(y'J+s/,o2 o 1 K4

where ¢ = cos(0), s =sin(0), ¢’ = —[sin(0)+ esin(20 )], s'=cos(0) +ecos(20), J =k’ (t-t,)
and Ky, Kz, Ks and K4 are constants.

Final expression

One transforms the obtained variables in order to get the solution with the initial variables.
The chaser's state at a true anomaly _, knowing its state at the true anomaly _o, is:

x 1 —c(+1/p) s(+1/p) 30°J 1 —c(+1/p) s0+1/p) o 1 X,
X - Mar. 0 s c (2-3esJ) 0 s c 2 Mat™ X,
z |0 2s 2c-e 3(1-2esJ) 0 2s 2c-e 3 "z,
z 0 s' ' —3e(.y'J+s/p2 .10 s' ' ~3es/p? 6 Z,
/o 0 0 O o, 0 0 O
0 1 0 O 0 0 0 2esi 2
Where: Mat _ = /p , M = Po , O = H 651;1(6), p = a p’
a 0 B 0 1y, 0 5, O C C’
0 a 0 B 0 y, 0 94,
1

p, =1+ecos(@,), y, =-esin(@,), 6, =———

For simplicity sake, one defines:

X, = M(Hlaeo)Xo
Where M is the product of the different matrices participating in the final state computation, X; is the
chaser state (position and velocity) at a give true anomaly _.

V GUIDANCE

One assumes that it is possible to drive a satellite from a state to another, in space, by using
only two boosts: one performed when leaving a first position, and the other, when arriving at the aimed
position. The linear relative motion model is used by the guidance algorithm in order to get boosts
directions and durations estimations, able to drive the chaser.



Background

The general on-board guidance problem may be generically described as follows:
Find a control u (driving force orientation)
starting from the current estimated state
ii. to reach a targeted state
iv. under a set of constraints, including:
a.  The dynamics of the vehicle
b.  Intermediate path constraints
V. and possibly also allowing minimizing a criterion.

For launchers, the general problem of the on-board guidance algorithm has been solved under
the particular case of no criterion considered [7]. The solution uses a segmentation of the trajectory and
a time parameterization of the sought control. This scheme is currently part of the Ariane 5 launch
vehicle exo-atmospheric guidance.

Following this development, in house advanced studies have also been performed to extend these basic
elements through application of collocation and pseudospectral type methods to on-board guidance in
the mid-nineties, in [8] and [9]. Indeed, this allows coping with the general problem including both the
path constraints and the criterion. However, the parametric problem obtained after transcription of the
optimal control setting remains to be solved by a reliable NLP solver, and one knows that for on-board
application additional research is needed based on the structure of the problem at hand to get positive
convergence results and full mastering of optimizer behaviour.

Considering the state of the art with regard to collocation and pseudo spectral methods, (despite recent
progress on the latter approach [10]), a guidance scheme without explicit on board management of
intermediate path constraints has been selected, i.e. choice has been made to use the specific
dynamics of rendezvous but to rely on off-line mission analysis work to tackle the intermediate
constraints (forbidden volume for the trajectory for instance).

Principle

. pLH
In a guidance 1

algorithm, the interest of <LVLH LVLH

the relative motion Vl— V1+

model may be to predict
a future state of the
chaser knowing a
previous one, or to get
the Lambert's problem
solution. For the
reasons explained in the
previous paragraph, one
is interested in getting v

the Lambert's problem Fig 0 : Two-boosts guidance principle

solution.

|deal
trajectory

LVLH
One recalls that this problem aims at getting the transfer orbit linking two positions PO and
LVLH : :
Pl in space in a given time duration. Its solution is the first and most important step to deal with.

LVLH LVLH -
Indeed, the comparison between the velocities on the transfer orbit, V0+ and Vl_ , the initial



LVLH
velocity VO_ and the final aimed velocity VlfVLH gives us the differences of velocity (DeltaV) to

perform at the beginning and at the end of the transfer in order to reach the final aimed state. These
differences of velocity are recorded as accelerations and durations to be ordered.

However, boosts cannot be performed instantaneously. If the last computed values were commanded,
the chaser would not be driven to the correct final state. Therefore, they have to be computed again,
taking into account their durations. This is the second step of the guidance algorithm which may now
compute the spread boosts effects on the chaser's state. The trajectory is not simulated by the linear
motion model but by a gravity model simulator. The dispersions due to the J> term of the Earth
gravitational field or the atmospheric drag will not be inserted into the simulator. Thus, by iteratively
modifying the boosts directions, norms and durations, one will reach a solution theoretically driving the
chaser, as exactly as wished, to the final aimed state.

Tests

One performs first series of tests. They show us the guidance algorithm accuracy on elliptical
orbits, since this is its design purpose. One considers a manoeuvre on a highly elliptical orbit: a GTO
(Geosynchronous Transfer Orbit), whose eccentricity is 0.73. One also considers manoeuvres starting
far from the target. Based on ATV manoeuvres, one chooses a transfer lasting half an orbital period and
whose initial state is (-25km , 12km) in X_Z LVLH frame and whose finale state is (-25km , 680 m).
Since the guidance algorithm is to take into account an ideal gravitational field and nothing more, one
tests it by adding the disturbances due to the atmospheric drag and to the J. term of the Earth
gravitational field.

Open-loop scheme - ’—\
One first runs tests following an open- ?/W .-

loop scheme. By open-loop, one means that Simulated |deal Boost
the boosts directions, norms and durations are trajectory: trajectory

computed once, at the beginning of the '
transfer, when the chaser is in its initial state. N
This will show us how far our model is from the RO
reality (see Fig. 3).

One runs 20 tests. For each of them, the initial

position and velocity are randomly chosen Fig 0 : Open-loop scheme trajectory
according to a Gaussian law, around a given

position and velocity. One sets the 3-_

dispersion at 3000 m on position and 0.5 m/s on velocity. This shows the initial state influence on the
final state dispersion.

One obtains the following results:



Fig. 1. Position accuracy (Open-loop) Fig. 2. Velocity accuracy (Open-loop)

On Fig. 4 and Fig. 5 are plot the final position and final velocity errors in the LVLH frame. One observes
that the dispersion due to the atmospheric drag and to the J» term, may drive the chaser more than 1
km away from the targeted position and more than 1 m/s away from the targeted velocity. Moreover, the
obtained final states are not even centred around 0. These results (1 km and 1 m/s) are not acceptable
when compared to the ATV GNC requirements (30 m and 0.2 m/s). In spite of not seeking better
accuracy than ATV GNC requirements, they are used as a reference for the guidance scheme in order
to establish a first conclusion on its possible use on board a chaser.

Concerning the effects of the initial state on the final accuracy, one concludes that it has a small impact
on the final velocity, but a strong one on the final position.

Closed-loop scheme

This mode is able to deal with the disturbances
occurring during the achievement of the 1st
C

boost and the manoeuvre free-drift phase. orrection s \

During this mode, correction boosts are /V .
. . Boost / Main

regularly computed and performed if their (

magnitude is high enough (see Fig. 6). . Boost

Once again, on Fig. 7 and Fig. 8, the final ™

position and final velocity errors in the LVLH v
frame are plot. Now one observes that position

and velocity accuracy allows concluding the

chaser is correctly driven to the final aimed

state. The position accuracy is close to 15 m

and on velocity is close to 0.08 m/s. Space environment disturbances are correctly treated, as well as
dispersions on initial position and velocity.

Fig 2 : Closed-loop trajectory

This kind of guidance scheme can be used on-board as well as during preliminary mission analyses.
Indeed, boost timeline and consumption estimations can be assessed and optimized on ground thanks
to this same algorithm. It can be let free to perform correction boost whenever it considers it is
necessary or it can be forced to respect a given timeline.



Fig. 3. Position accuracy (Closed-loop) Fig. 4. Velocity accuracy (Closed-loop)

VI IMPROVEMENTS

Recent progress has been achieved, in the frame of a contract under CNES responsibility,

thanks to the use of a more precise state transition matrix obtained by Gim and Alfriend [4]. This matrix
not only works for elliptical orbits. It also takes into account the J, disturbance induced by the Earth
oblateness. Therefore, the boosts estimations, computed thanks to this matrix, stick in a better way to
the real dynamics of the chaser and generate fewer correction boosts.
The principles of this new guidance algorithm have also been improved: it now studies both 2-boosts
and 3-boosts transfers, the latter being two adjacent 2-boosts transfers. Different transfer solutions are
assessed by the algorithm which chooses the least consuming one. However, it does not take into
account spread boosts but considers they are performed instantaneously.

Consequently, this new algorithm allows reducing the chaser consumption significantly. For
example, considering the rendezvous performed in the tests, its cost when performed with the guidance
algorithm developed in the article is of 3.82 m/s. With this new algorithm, it only costs 2.53 m/s.

VIICONCLUSION

A guidance algorithm working on elliptical orbits has equally been designed and tested. It is a
useful tool to analyze and manage the atmospheric drag and the Earth gravitational field J2 term
disturbances effects, as well as thrusters malfunctions or navigation errors. Moreover, it needs little
enough CPU load to be used on board a satellite, making rendezvous on an elliptical orbit possible. The
preliminary performances are encouraging as well as the ones of the new algorithm. The latter could,
however, be problematic concerning CPU load.

The strong points of these two algorithms (spread boosts, for the first one, and more precise
state transition matrix and consumption minimization, for the second one) could, in future developments,
be combined to increase final accuracy and overall consumption.
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