# **C**ONSIDERATION OF REAL GAS EFFECTS AND CONDENSATION IN A SPRAY COMBUSTION ROCKET THRUST CHAMBER DESIGN TOOL

# Manuel Frey, Björn Kniesner and Oliver Knab Astrium GmbH, Space Transportation, D-81663 München

#### Abstract

For the prediction of hot gas side heat transfer in rocket thrust chambers, Astrium Space Transportation uses the second generation multi-phase Navier-Stokes solver Rocflam-II. To account for real-gas and condensation effects, pressure-dependent and even multi-phase fluid data is included in the chemistry tables used by the code. Thus, the changing fluid properties near the two-phase region as well as transformation from gaseous to liquid and even solid state are reflected properly.

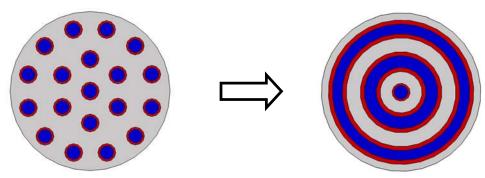
Heat flux measurements for a dedicated sub-scale test campaign with strongly cooled walls show a clearly increasing heat load as soon as the combustion gases condense at the wall, due to the released latent heat of condensation. Corresponding coupled Rocflam-II/CFX simulations show a good quantitative agreement in heat flux for load cases with and without condensation, showing the ability of the code to correctly simulate flows in the realgas and even inside the two-phase region.

#### Introduction

Astrium Space Transportation and its predecessor companies have developed and manufactured rocket thrust chambers for more than forty years. In the early days, mainly Nußelt-based correlations were applied to predict the occurring wall heat fluxes and temperatures. A large number of subscale and full-scale tests were required to reach a consolidated design. Today, the application of CFD simulations becomes more and more common during the development process of rocket engines, thereby reducing the number of required tests and saving resources. During the past five years, it has become state-of-the-art at Astrium ST to predict the heat transfer in rocket thrust chambers via coupled CFD simulations of the hot gas side and the coolant flow (conjugate heat transfer). A pre-requisite for the correct prediction of heat transfer is the precise knowledge of the fluid properties for both combustion products and coolant.

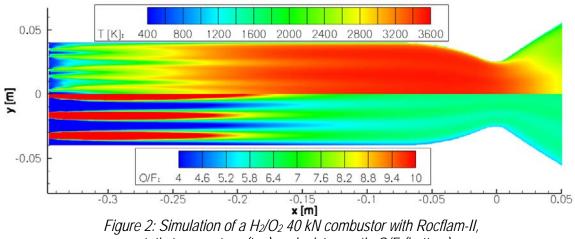
In the  $H_2/O_2$  thrust chambers Vulcain 1 and Vulcain 2 designed during the past two decades by Astrium and its predecessor companies, the philosophy for the cooling channel design was to ensure structural integrity and flaw-less function of the thrust chamber at minimum coolant pressure loss over the specified lifetime. This resulted in thrust chamber wall temperatures well above the condensation temperature of water, which is the main combustion product in  $H_2/O_2$  engines. In this temperature range, all combustion products are gaseous and their thermodynamic and transport properties do not depend on pressure. However, there are other engine configurations that inherently result in considerably colder thrust chamber walls. Two examples for such configurations are regenerative nozzles and expander cycle thrust chambers, respectively. In the former, the cold walls are due to the fact that the full amount of available fuel is used to cool the nozzle, which is far more than would actually be required to guarantee the specified life time. In the latter, the attempt to extract as much as possible energy from the combus-

tion gases in order to drive the turbines results in a very strong cooling. For such strongly cooled walls, the water steam in the combustion gases approaches the condensation line, and pressure-dependent real gas effects occur. The combustion gases can even condense or freeze at the cooled walls, as proved by a recently published American rocket engine test video of the Common Extensible Cryogenic Engine (CECE) based on the RL-10 expander design [1]: Here, liquid water and even ice can be observed at the exit of the nozzle.


As soon as such low wall temperatures are reached in thrust chambers, the standard modelling using pressureindependent fluid properties is no longer applicable. Therefore, Astrium has extended its standard coupled CFD approach for thrust chambers to be able to properly take into account real gas effects and even condensation. This paper describes the new method.

# Applied tools

Astrium follows different approaches to predict the heat transfer into the thrust chamber walls. On the one hand, the Nußelt-based engineering tool RCFS-II [2] is used mainly in the design process, delivering results within seconds of computational time. On the other hand, a more elaborate coupled CFD-approach is applied as soon as detailed analyses become necessary: The hot gas side and coolant side are simulated separately by two independent CFD tools, which are loosely coupled to each other. The wall temperature from the coolant simulation is prescribed as boundary condition for the hot gas side simulations, and the heat flux from the hot gas side simulation.


For the hot gas side, Astrium applies the axisymmetric in-house multiphase Navier-Stokes code Rocflam-II, which is a merger from two previous in-house codes, namely CryoROC [3] and ROCFLAM [4]. While CryoROC treated problems with the cryogenic propellants H<sub>2</sub> and LOX (liquid O<sub>2</sub>), ROCFLAM was mainly used to model storable propellant problems, especially MMH/NTO thrust chambers. The second generation code Rocflam-II is able to treat problems with almost arbitrary propellants [5]. As its predecessors, Rocflam-II is an axisymmetric Navier-Stokes solver with a Lagrange droplet tracking module, offering different injection possibilities, depending on the thermodynamic state of the fluid. For purely gaseous injection, the Lagrange module is switched off, and the propellants are injected through openings in the face plate. Alternatively, the gaseous components can be modelled as source terms in the conservation equations for mass momentum enthalpy and concentration or mixture fraction without modelling a wall opening. For liquid rocket engine applications as the aforementioned Vulcain 1 and 2, this injection by source terms is applied for the fuel H<sub>2</sub>, where the injection temperature is clearly above the critical temperature. In contrast, the injection of LOX is realized via droplets in the Lagrange module, where the injection temperature, momentum and a droplet distribution is prescribed. An order of magnitude of 1 million droplets is tracked throughout the combustion chamber, interacting with the gas phase and evaporating, which is modelled by source terms for mass, momentum and energy in the Navier-Stokes solver. The injection of LOX as droplet in the Lagrange module is also used in case of supercritical pressure at subcritical temperature, although no surface tension and thus different phases exist for this case.

The axisymmetric code Rocflam-II is usually applied to 3D injection configurations. For the axisymmetric simulation, the single injection elements are transferred into injection rings as shown in *Figure 1* for a subscale injection head with coaxial elements. The injection as source terms (H<sub>2</sub>) or through the Lagrange module (LOX) allows prescribing the correct injection mass flow and velocity and thus the correct injection momentum although the simulated injection area is different.



*Figure 1: Scheme of an injection head with single coaxial injection elements (left) and realization in the axisymmetric code Rocflam-II (right); red: H*<sub>2</sub>, *blue: LOX* 

Rocflam-II includes two different chemistry models, both taking into account turbulent combustion: First, a global chemistry based on globally defined reactions is available, where the reaction rate is determined with an eddy-dissipation concept or Arrhenius formulation. For each species concentration, a dedicated differential equation is solved. Second, there is an equilibrium table-based chemistry model with a one-dimensional ppdf (presumed probability density function) approach taking into account the influence of turbulent combustion. No species concentration equations are solved, only a global mixture fraction and its variance are treated by differential equations. This latter approach is today used for the simulation of  $H_2/O_2$  and Methane/O<sub>2</sub> thrust chambers.



static temperature (top) and mixture ratio O/F (bottom)

*Figure 2* shows the simulation result for a typical H<sub>2</sub>/O<sub>2</sub> subscale combustion chamber with 19 injection elements in three injection rows and wall temperature clearly above the water condensation temperature. The wall temperature was prescribed in this simulation, thus no coolant side simulation was performed. As described before, hydrogen is injected as source term, whereas the supercritical LOX is tracked via the Lagrange module. The lower half of *Figure 2* presents the mixture ratio O/F, with fully separated hydrogen and oxygen near the faceplate and more and more mixing towards the throat and exit. Note the propellants do not mix perfectly until the throat, resulting in a combustion efficiency below unity. The upper half of *Figure 2* shows the static temperature that can be used as indicator for the completeness of combustion. As expected, the static temperature increases in streamwise direction as the propellants mix and decreases as the combustion gases are expanded through the throat and nozzle. A qualitative comparison of the simulation results with test data is shown in *Figure 3*. As can be seen, the heat flux density compares well to the experimental data, except for a very small region near the face plate, where 3D effects might dominate the flow, which cannot be resolved by the axisymmetric code.

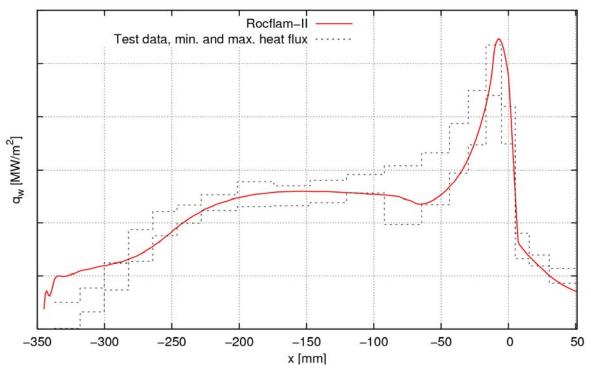



Figure 3: Comparison of numerical simulation (Rocflam-II) and test data for the 40kN combustor

Unlike in the preceding example where the wall temperature was prescribed, usual rocket problems also require the modelling of the coolant side. Astrium uses the commercial 3D CFD-package ANSYS CFX to simulate the structure of thrust chamber wall and the flow inside the cooling channels. In order to reduce the computational effort, benefit is taken from existing symmetry or periodicity conditions, and only one cooling channel is simulated in 3D. Special low-temperature data is provided to the code for the case of cryogenic coolants.

# Real gas effects occurring in H<sub>2</sub>/O<sub>2</sub> thrust chambers

Inside the core flow of combustion chamber and nozzle, the combustion products can be characterized as a mixture of ideal gases, meaning that the density can be computed from pressure and temperature and that the enthalpy only depends on temperature, but not on pressure. Of course, density and molar mass of the mixture have to be applied, and they can be computed using appropriate mixture rules based on mole fraction and molar mass of the individual gas components. Chemistry models can be applied to determine the composition of this gas mixture, which depends not only on the mixture ratio and temperature or enthalpy, but also on the pressure. Thus, a suitable chemistry model and pressure-independent fluid properties of the components are sufficient to characterize the fluid properties of the mixture. One of the most frequently used fluid properties data base, the so-called NASA-polynomials [6] also applied by the famous CEA-code [7], is pressure-independent as well. The NASApolynomials were used by the predecessors of Rocflam-II, namely CryoROC and ROCFLAM.

However, having a closer look at the thermodynamic state reveals that the assumption of pressure-independent fluid properties might not be valid everywhere in the chamber: Near the injection plane, temperatures not much above the injection temperature occur wherever the propellants have not yet reacted, and also at the cooled walls, moderate temperatures below 700K and hence near the condensation temperature of water are reached. *Figure 4* shows a phase diagram (pressure over temperature) for water where the possible pressure-temperature combina-

tions for  $H_2/O_2$  rocket thrust chambers are shown. As can be seen, the condensation line can be passed for these cases resulting in the occurrence of liquid water or even ice; hence the ideal gas assumption loses its validity.

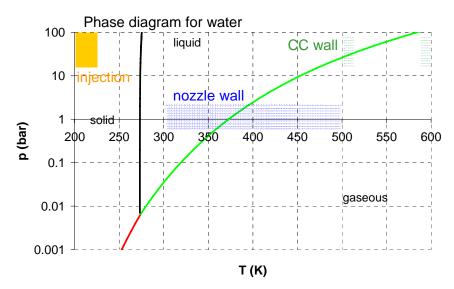



Figure 4: Phase diagram for water with regions for injection, CC and nozzle wall

A more detailed look on real-gas behaviour near the condensation line is given in *Figure 5*, where a T-S diagram for water is shown (note that the absolute values of enthalpy are arbitrary, depending on the chosen zero value). For an ideal gas, enthalpy only depends on temperature, hence enthalpy lines are horizontal lines in the T-S diagram. This is not the case for water steam as the two phase region is approached, see e. g. the enthalpy isoline marked by the green arrows in *Figure 5*. This means that even without the actual occurrence of condensed water, a real-gas behaviour is observed, which must be taken into account for modelling.

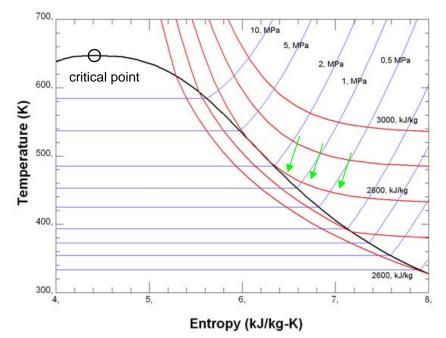
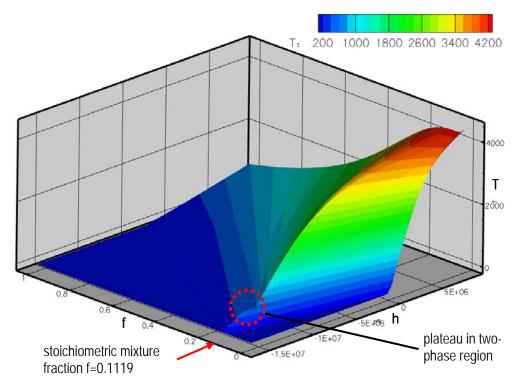



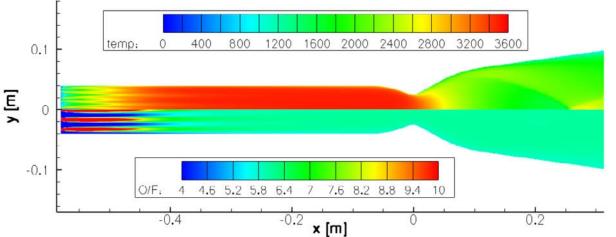

Figure 5: T-S diagram for water, including enthalpy (red) and pressure (blue) isolines

#### Implementation of real-gas effects in Rocflam-II

The basis of the equilibrium-based ppdf chemistry model is the so-called chemistry table, which contains values for temperature, density, molar mass, species concentrations and the transport properties as function of enthalpy, pressure and mixture fraction. Considering  $H_2/O_2$  combustion, at high mixture temperatures, the composition and all fluid properties are taken from CEA [7], reflecting the chemical equilibrium state. For low temperatures, the combustion gases are assumed to consist only of  $H_2O$  and  $H_2$  for fuel-rich and  $H_2O$  and  $O_2$  for oxidizer-rich cases. Note that  $H_2O$  can – dependent on its partial pressure and temperature – occur as steam, liquid water, ice or a combination of them. A two-dimensional excerpt from the three-dimensional chemistry table is shown in *Figure 6*. As an example, the value of temperature is shown as function of the mixture fraction f and the enthalpy h at a given constant pressure. The two-phase regions (gaseous-liquid and liquid-solid) can be seen as discontinuities, which are plateaus at the stoichiometric mixture fraction, but smear out towards mixture fraction values of zero (only oxygen) and unity (only hydrogen).



*Figure 6: Temperature as function of mixture fraction f and enthalpy h extracted from the Rocflam-II chemistry table at constant pressure; note the absolute values of enthalpy are arbitrary* 


Within Rocflam-II, the values for enthalpy, pressure and mixture fraction are computed by dedicated differential equations. Taking all other fluid properties from the respective point in the chemistry table would result in a pure chemical equilibrium solution. However, the variance of the mixture fraction is also computed by a differential equation, influenced strongly by turbulence parameters. Rocflam-II now evaluates the chemistry table not only at one specific mixture fraction, but at different mixture fraction values, dispersed around the actually computed value following the chosen pdf function and weighted accordingly in order to reflect the influence of turbulent combustion.

The above explained method allows to correctly simulate gaseous flows near the two-phase region, where real gas effects occur. This is important for accurate heat flux computations at regeneratively cooled walls even if the

condensation limit is not reached. In addition, the simulation of flows with the occurrence of condensation is possible. The occurring water is then treated as a dense gas without considering surface effects as they occur in liquids. As consequence, liquid water and the gaseous components mix perfectly and do not occur as droplets, bubbles, or film respectively. Note that the basis of the modelling is an equilibrium assumption, which seems to be justified by the low velocities in the boundary layer and the presence of the wall that acts as condensation nucleus. It is emphasized that the release of latent heat of condensation is correctly reflected as well as the considerable change of values for density and transport properties. This prediction capability is important for an accurate heat load management within a rocket combustion chamber and nozzle.

#### Application of Rocflam-II to a case with condensation

A dedicated subscale campaign was performed to investigate real-gas effects and condensation in the divergent section of rocket thrust chambers. For this purpose, a hydrogen-cooled copper thrust chamber was built with a maximum expansion ratio of above 15. A partly conical nozzle contour was chosen due to manufacturing reasons. During the tests, the coolant mass flow was varied, resulting in a wall temperature variation from clearly above the condensation limits to values clearly below.



*Figure 7: Coupled Rocflam-II/CFX simulation of an elongated subscale thrust chamber (hot gas side); top: static temperature; bottom: mixture ratio O/F* 

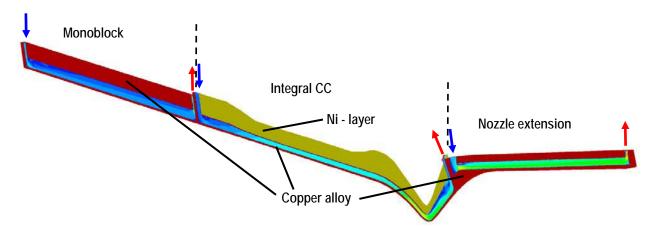



Figure 8: Coupled Rocflam-II/CFX simulation of an elongated subscale thrust chamber (coolant side); Coolant velocity shown as isoplot

Coupled Rocflam-II/CFX simulations were performed for selected load points, differing only in coolant mass flows and thus wall temperature. An isoplot of the hot gas side is shown in *Figure 7*, displaying static temperature and local mixture ratio. The global behaviour is comparable to that of the 40kN subscale thruster shown in *Figure 2*, however the longer cylindrical combustion chamber section and the different nozzle shape mark clear differences. The strong contour curvature upstream of the conical nozzle induces compression waves focusing to a weak shock without further influencing the wall flow. *Figure 8* shows the corresponding cooling channel simulation with CFX, displaying the coolant velocity as isoplot.

*Figure 9* left shows the wall temperature distribution resulting from the simulation of the subscale thrust chamber for different coolant mass flows at identical chamber pressure and mixture ratio. Condensation occurs as soon as the wall temperature drops below the condensation temperature, which is a function of the partial pressure of water steam in the combustion gases. The test with a coolant mass flow rate of 42% shows no condensation, whereas all other cases do. As expected, the wall temperature decreases with increasing coolant mass flow, but the decrease becomes weaker as the wall temperature drops below the condensation temperature due to the released heat of condensation acting as a heat source. As can be seen from *Figure 9* right, a considerable increase in heat flux is indeed visible as condensation occurs, again a result of the released heat of condensation. The fact that the specific heat flux is very sensitive to the occurrence of water whereas the wall temperature is not, implies that the comparison to experimental data should be performed in terms of heat flux rather than in terms of wall temperature, which is additionally supported by the great difficulties in measuring correct wall temperatures.

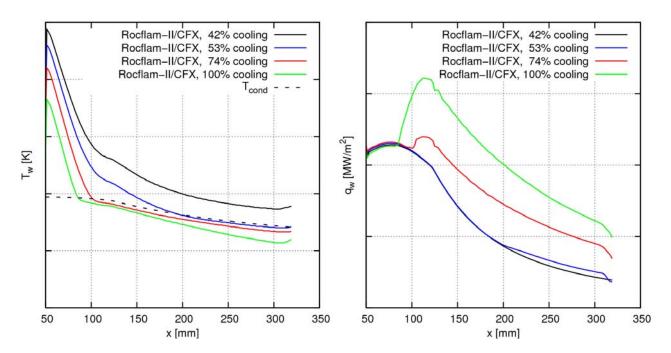



Figure 9: Wall temperature (left) and specific heat flux (right) for four different coolant mass flows; coupled Rocflam-II/CFX simulation

In the subscale tests, only the integral heat flux for the nozzle segment was measured by analysing the coolant enthalpy at inflow and outflow. This value is presented in *Figure 10* for various tests by black symbols, showing a considerable increase with cooling rate and thus decreasing wall temperature (solid black line). In flows without condensation, the same trend (higher heat flux for lower wall temperature) is visible, but at a much lower slope, represented by the dashed black line. The explanation for the considerable increase of integral heat flux is again

the released latent heat of condensation, which increases with coolant rate. Note that for the presented subscale tests, the increase in integral heat flux due to condensation is as high as 80%. In addition to the measured values, Rocflam-II simulation results are shown in *Figure 10* as red symbols, indicating a very good agreement to test data for cases without (cooling rate 42%) as well as with condensation (cooling rate 53, 74 and 100%). This confirms the ability of the chosen approach not only to correctly predict the occurrence of condensation, but also to predict the heat flux with good accuracy. Such prediction capability is only possible if the accuracy of the simulated wall temperature is high, which requires thoroughly validated tools for the hot gas as well as the coolant side.

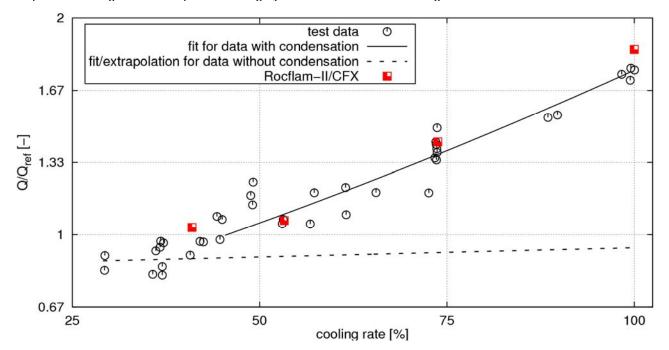



Figure 10: Comparison of measured and simulated integral heat fluxes for the subscale thrust chamber

As part of the Rocflam-II solution, the amount of condensed water is available for arbitrary cross sections of the thruster. However, a validation to test data of the water mass flow itself is not possible because no such measurements are available. However, the good agreement in terms of integral heat pick-up represents some indirect validation also for the simulated amount of water.

# Conclusion

In contrast to combustion chambers for gas-generator cycles and dump-cooled nozzles, where resulting wall temperatures usually are above the critical point of water, expander cycle thrust chambers and regenerative nozzles show considerably lower wall temperatures where real gas effects can no longer be neglected. Classical tools using pressure-independent fluid data fail in the prediction of wall heat flux for these applications. The second generation spray combustion tool Rocflam-II, however, is able to reflect the fluid data correctly in the vicinity of the two-phase region of water and even beyond, by introducing pressure-dependent and even two-phase data into the chemistry tables used for the equilibrium-based ppdf-approach. However, occurring water is modelled as a dense gas, correctly reflecting all thermodynamic and transport properties, but neglecting surface tension. Hence, water and steam mix perfectly, and typical effects of two-phase flows with surface tension, namely the formation of droplets, bubbles or closed films, cannot be reflected. Coupled Rocflam-II/CFX simulations have been compared to dedicated sub-scale test data with subcooled walls to analyze in how far the occurring real-gas effects and even condensation are reproduced by this approach. Simulation as well as experimental data show a strong increase in heat flux as soon as condensation occurs, which is due to the released latent heat of condensation. The comparison between simulation and test shows good quantitative agreement for different coolant mass flows and hence for cases with and without condensation. Consequently, Rocflam-II/CFX is suited well to predict the heat transfer for cases with cool combustion chamber or nozzle walls and can be applied in the design process of expander engines and regenerative nozzles in spite of the assumptions of the dense-gas approach.

Having reached this important step in modelling the real gas behaviour and condensation of water, the next step will be to investigate the influence of a liquid water film on the thrust chamber wall further downstream with a wall temperature exceeding the condensation temperature. In this case, the film evaporates, thereby consuming the latent heat of evaporation and cooling the warm structure. The first question to be solved in this context is whether the presented dense-gas approach assuming equilibrium phase change is suited also for the case of evaporation.

#### Acknowledgements

Part of the presented work was performed within the European expander demo programme (part of FLPP), organized by ESA via Snecma. The authors thank Jean-Noël Caruana (ESA), Lionel Denis and Isabelle Jeaugey (Snecma) as well as Thomas Mattstedt and Dietrich Haeseler (Astrium) for the fruitful cooperation. Special thanks are addressed to the Astrium colleagues Axel Preuß, responsible for the subscale tests, and Konrad Vollmer for test evaluation.

#### References

- [1] http://www.nasa.gov/mission\_pages/constellation/multimedia/cece.html
- [2] C. Mäding, D. Wiedmann, K. Quering and O. Knab: "Improved Heat Transfer Prediction Engineering Capabilities for Rocket thrust Chamber Layout", EUCASS2009-90, 3rd European Conference for Aerospace Sciences (EUCASS), Versailles, France, 2009
- [3] O. Knab, A. Fröhlich, J. Görgen and D. Wiedmann: "Advanced Thrust Chamber Layout Tools, Proceedings of 4th International Conference on Launcher Technology", Space Launcher Liquid Propulsion, Liege, Belgium, December 2002
- [4] O. Knab, A. Fröhlich and D. Wennerberg: "Design Support for Advanced Storable Propellant Engines by ROCFLAM Analyses", AIAA 99-2459, 1999.
- [5] J. Görgen, T. Aichner and M. Frey: "Spray Combustion and Heat Transfer Modelling in LOX/H2, LOX/HC and MMH/NTO Combustion Chambers", EUCASS2009-104, 3rd European Conference for Aerospace Sciences (EUCASS), Versailles, France, 2009
- [6] B. McBride, S. Gordon and M. Reno: "Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species", NASA Technical Memorandum 4513, 1993
- [7] S. Gordon and B. McBride: "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications", NASA Reference Publication 1311, 1994