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Abstract

A new CFD solver for high speed viscous flows in the OpenFOAM code is validated
against published experimental data and Direct Simulation Monte Carlo (DSMC) re-
sults. The laminar flat plate and circular cylinder cases are studied for Mach numbers,
Ma, ranging from 6–12.7, and with argon and nitrogen as working gases. Simulation
results for the laminar flat plate cases show that the combination of accommodation
coefficient values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions, and
the coefficient values A1 = 1.5 and A2 = 1.0 in the second order velocity slip condition,
give best agreement with experimental data of surface pressure. The values σu = 0.7
and σT = 1.0 also give good agreement with DSMC data of surface pressure at the
stagnation point in the circular cylinder case at Kn = 0.25. The Langmuir surface ad-
sorption condition is also tested for the laminar flat plate case, but initial results were
not as good as the Maxwell/Smoluchowski boundary conditions.

1 Introduction

The efficient and accurate simulation of hypersonic rarefied gas flow is important in the
aerodynamic design of space vehicles; in particular, predictions of the temperature and
pressure experienced by the surface of the vehicle. There are different techniques for
simulating these flows, including the DSMC method and CFD. Most successful is the
DSMC method, however the computational time required is much longer than for CFD,
which generally solves the Navier-Stokes-Fourier (N-S-F) hydrodynamic equations.
The translational thermodynamic nonequilibrium of the gas flow can be characterized
by the Knudsen number:

Kn =
λ

L
≈ λ

Q
|∇Q|, (1)

where λ is the mean free path, L is the macroscopic characteristic length scale, and
Q is a quantity of interest such as the gas temperature, surface and density.

At low altitudes, the gas density is relatively high, Kn is small, and gas flows may be
effectively simulated by solving the Euler equations (when Kn ≤ 0.001) or the N-S-F
equations with no-slip boundary conditions (when 0.001 ≤ Kn ≤ 0.01). At high altitude,
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the gas density is lower, the mean free path, λ, is large, and nonequilibrium behaviour
increases. An approach to improve N-S-F predictions in the range (0.01 ≤ Kn ≤ 0.1) is
to apply velocity slip and temperature jump boundary conditions at aerodynamic sur-
faces.

Nonequilibrium velocity slip and temperature jump boundary conditions include those
proposed by Maxwell [1], Smoluchowski [2], Myong [3], and “second order” velocity
slip conditions [4]. The problem with the Maxwell/S-moluchowski (M/S) boundary con-
ditions, is that the free parameters the tangential momentum, σu, and thermal, σT ,
accommodation coefficients, critically affect simulation results. A similar problem with
the second order velocity slip boundary condition is the values of the coefficients of
the first and second order terms. The Langmuir boundary condition due to Myong [3]
overcomes this problem as the velocity slip and temperature jump coefficients are de-
termined through a Langmuir adsorption isotherm model that gives good results for
certain rarefied gas microflows.

In this paper, we present two-dimensional (2D) numerical investigations of the velocity
slip and temperature jump boundary conditions, in conjunction with the Navier-Stokes-
Fourier equations, to propose the best coefficients for hypersonic rarefied gas flow.
Our test cases are a circular cylinder in cross-flow at Kn = 0.25 and the laminar
sharp-leading-edge flat plate. In the flat plate case the local Knudsen number (i.e.
with the L in equation (1) a running distance from the leading edge) is much larger
than the overall Knudsen number (i.e. with the characteristic length being the total
streamwise length of the flat plate). For these sharp-leading-edge geometries, our
CFD predictions are expected to agree reasonably with the experimental data due to
the increased nonequilibrium behaviour near the leading edge. Our simulation results
will be compared with DSMC [5] and experimental data for the flat plate case [6, 7].
The flow conditions of the experiments [6, 7], such as freestream temperature, T∞,
freestream pressure, p∞ and freestream mean free path, λ∞, are shown in Table 1.

Table 1: Flow conditions in previous flat-plate experiments
Researcher(s) Ma T∞ (K) p∞ (Pa) λ∞(mm) Tw (K) Gas

Becker [6] 12.7 64.5 3.73 0.23 292 Argon
Metcalf et al. [7] 6.1 83.4 2.97 0.35 77 Nitrogen

2 Review of nonequilibrium boundary conditions

Most nonequilibrium slip/jump boundary conditions can be expressed in the form:

φ + a∇n (S · φ) = Φ, (2)

where φ is the variable of interest, e.g. velocity or temperature; ∇n ≡ n · ∇ is the
component of the gradient normal to the boundary surface with n being the unit nor-
mal vector defined as positive in the direction pointing out of the flow domain; a is a
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coefficient specific to each boundary condition and Φ is the limiting value in the case
of no slip/jump, e.g. the wall velocity or temperature. The tensor S = I−nn, where I is
the identity tensor, removes normal components of any non-scalar field, e.g. velocity,
so that slip only occurs in the direction tangential to the surface. The normal gradient
can be expressed numerically as

∇nφ = C∆ (φ− φi) , (3)

where the subscript ‘i’ denotes a value in the numerical cell adjacent to the boundary
face of the solid surface, and C∆ = 1/|d|, with d the distance from the numerical cell
centre to the boundary face centre of the solid surface.

Experimental observations show that the gas temperature at the surface is not
equal to the surface temperature. This difference is called the “temperature jump” and
is driven by the heat flux normal to the surface. The Smoluchowski model [2] for the
temperature jump can be written:

T +
2− σT

σT

2γ

(γ + 1) Pr
λ∇nT = Tw, (4)

where σT is the thermal accommodation coefficient 0 ≤ σT ≤ 1.0; T is the gas tem-
perature at the surface; Tw is the surface temperature; Pr is the Prandtl number; γ is
the specific heat ratio and λ is the mean free path at the wall. There are a number of
different definitions of the mean free path λ; here we use the Maxwellian

λ ≈ µ

ρ

√
π

2RT
, (5)

where ρ is the gas density at the surface; R is the specific gas constant; µ is the gas
viscosity at the surface.

The Maxwell slip boundary condition [1] including the effect of thermal creep, can
be written in vector form as:

u = −
(

2− σu

σu

)
λτ

µ
− 3

4

Pr(γ − 1)

γp
q + uw, (6)

where u is the velocity; the tangential shear stress is τ = S · (n ·Π) and the heat flux is
q = Q ·S at the surface; with bold type face denoting a vector quantity; Π is the stress
tensor at the surface; Q is the heat flux vector along the surface; p is the gas pressure
at the surface; uw is the surface velocity. The tangential momentum accommodation
coefficient, σu, determines the proportion of molecules reflected from the surface spec-
ularly (1− σu) or diffusely (σu), and 0 ≤ σu ≤ 1.

Equation (6) can be expressed in the form of equation (2) by substituting τ =
S · (n ·Π) and Π = µ∇u + Πmc, with Πmc = µ(∇u)T − (2/3)Itr(∇u) into equation (6),
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where the superscript T denotes the transpose, and tr denotes the trace. Noting that
S · ∇nφ ≡ ∇n(S · φ) equation (6) becomes:

u +

(
2− σu

σu

)
λ∇n(S · u) = uw −

(
2− σu

σu

)
λ

µ
S · (n ·Πmc)− 3

4

µ

ρ

S · ∇T

T
. (7)

The right hand side contains 3 terms that are associated with (in order): the wall
velocity, the so-called curvature effect [13], and thermal creep.

Myong’s boundary conditions for velocity slip and temperature jump are based on
the Langmuir adsorption isotherm model. Adsorption is the process by which free gas
molecules attach to a solid surface, and the boundary conditions are expressed as [3]:

φ = (1− α)φg + αφw, (8)

where the subscript ‘g’ denotes a reference value in the gas; α is the fraction of cover-
age (i.e. occupied surface sites, 0 ≤ α ≤ 1) calculated by [3]:

α =
βp

1 + βp
, (9)

where β is an equilibrium constant relating to the surface temperature and a (mea-
sured) heat of adsorption De (J/mol) and is calculated as follows:

β =
Aλ

RuTw
exp

(
De

RuTw

)
, (10)

where Ru is the universal gas constant (J/kmol K), A is the mean area of a site (m2/mol)
and is either measured or calculated approximately by NAπd2/4 [3] for monatomic and
diatomic gases, with d the molecular diameter and NA the Avogadro number.

If φg is taken as a reference value a mean free path away in the direction normal
to the surface, then φ− φg ≈ λ∇nφ. Equation (8) can therefore be expressed by:

φ +
λ

βp
∇nφ = φw. (11)

Expressed this way, the Langmuir boundary condition has the same form as the Maxwell
boundary condition without the thermal creep term and the curvature effects, but with
with (2−σu)/σu replaced by 1/βp. The coefficient for the Langmuir boundary condition
is calculated from equation (10), which depends on the values of A and De, whereas
σu is the only free parameter in the Maxwell boundary condition.

The second order velocity slip boundary condition for planar surfaces [4] can be ex-
pressed as follows:

u + A1λ∇n(S · u) + A2λ
2∇2

n(S · u) = uw, (12)

where A1 and A2 are slip coefficients for the first and second order terms respec-
tively. Their values are proposed either from theory or from experiment and are still
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the subject of much discussion. Equation (12) can be expressed in the general form
of equation (2) by substituting ∇nu = C∆(u− ui) into equation (12):

u + (A1λ + A2λ
2C4)∇n(S · u) = uw + A2λ

2C∆∇n(S · u)i. (13)

From equations (4), (7), (11) and (13), the specific coefficients a for the different models
for velocity slip and temperature jump boundary conditions in the general equation (2)
are shown in Table 2.

Table 2: Coefficient a in equation (2) for various slip/jump boundary conditions
Velocity slip Temperature jump Coefficient a

– Smoluchowski λ((2− σT )/σT )(2γ/((γ + 1)Pr))
Maxwell – λ(2− σu)/σu

Langmuir Langmuir λ/(βp)
Second-order – A1λ + A2λ

2C∆

3 Numerical implementation and simulation results

In this work we use OpenFOAM, the open source CFD software [8], that uses finite
volume (FV) numerics to solve systems of partial differential equations ascribed on
any 3-dimensional unstructured mesh of polygonal cells. FV discretisation is based
on Gaussian integration and so uses values and normal gradients of fields at cell
faces. If the face belongs to a boundary, the face value and gradient required by
the discretisation procedure must be obtained from the boundary condition. Various
fundamental types of boundary condition are implemented in OpenFOAM including
one known as “partial slip” that is a mixture of a fixed value, or Dirichlet, condition and
a zero gradient condition — a Neumann condition where the normal gradient is zero.
The “mixing” is controlled by a by a fraction coefficient θ (0 ≤ θ ≤ 1) where θ = 0 for the
zero gradient condition and θ = 1 for fixed value condition. A reference value is also
required that is assigned to the fraction of the boundary condition that is fixed value.

For the case of scalar fields, this boundary condition can be used as the basis for
any slip/jump boundary condition described by equation 2, by setting

θ = 1− aC∆

1 + aC∆

, (14)

and setting the value Φ to be the reference value for the fixed value component. For
the case of vector fields, the standard partial slip condition was modified to include
the tensor S so that only the tangential components of the field are “slipped”. In either
case, the fraction values, θ, for the boundary conditions considered are simply deter-
mined by equation (14) with the values of a from Table 2. The N-S-F equations are
implemented and solved numerically in OpenFOAM using a finite volume discretisa-
tion and high-resolution central schemes that are described in detail in [9]. These are
implemented as the solver rhoCentralFoam in OpenFOAM for simulating high speed
viscous flows. A calorically perfect gas is considered for all our simulations in the
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present study, so p = ρRT and e = cvT = (γ − 1)RT . The Sutherland law is used for
modelling the dynamic viscosity in the flat plate case, i.e.

µ = AS
T 1.5

T + TS

, (15)

where AS and TS are constants. The coefficient of thermal conductivity is then com-
puted from k = cpµ/Pr. The values AS, TS, R, γ and Pr of the working gases in the
flat plate cases are given in Table 3 [10–12].

Table 3: Coefficients for gas transport properties
Gas AS (Pa.s K−1/2) TS (K) R (m2s−2K−1) γ Pr

Argon 1.93× 10−6 142 208.1 1.67 0.67
Nitrogen 1.41× 10−6 111 296.8 1.4 0.71

The power law is used for modelling the viscosity in the cylinder case, in order to
compare with DSMC in [5], i.e.

µ = AP T s, (16)
where s = 0.734 and AP = 0.32× 10−6 (Pa.s K−s) are calculated from [5].

3.1 Flat plate case setup

Nonequilibrium boundary conditions are applied on the surface of a flat plate for the
flow variables (T , u). The boundary condition for the pressure p at the flat plate is
zero normal gradient. At the inflow boundary, the freestream conditions are main-
tained throughout the computational process. At the top boundary and the outflow
boundary fluid is allowed to leave the computing region; this condition specifies that
the normal gradients of the flow variables (p, T , u) vanish at these boundaries. At the
lower boundary in front of the flat plate, a symmetry condition is applied to all flow vari-
ables. A schematic diagram of the boundary conditions applied in the flat plate cases
is shown in figure 1. In our flat plate simulations we used a regular rectangular mesh.

Boundary layer

      Shock wave

Symmetry
Plane

Zero Gradient (p, T, u)

(p, T, u)

Zero Gradient (p, T, u)Freestream

(p, T, u)

Nonequilibrium BCs
  

Figure 1: Numerical case setup for the flat plate problem.

The computational results are sensitive to the mesh sizes near the leading edge so we
conducted a mesh independence analysis to find the mesh size at which the solution
converged. The final mesh sizes were ∆x = 0.1λ∞ and ∆y = 0.1λ∞ for Becker’s case,
and ∆x = 0.4λ∞ and ∆y = 0.9λ∞ for Metcalf et al.’s case.
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3.2 Circular cylinder case setup

A schematic diagram of the boundary conditions applied in the cylinder case is shown
in figure 2(a). The flow conditions for the circular cylinder DSMC case are as fol-

Symmetry Plane

Cylinder angle

Nonequilibrium
boundary conditions

Freestream (p, T, u)

Zero Gradient (p, T, u)

(a) Numerical case setup for the cylinder in
cross-flow

(b) Computational mesh for the cylinder
case, with 40,000 cells.

Figure 2: Setup of circular cylinder case.

lows [5]: freestream conditions Ma = 10, T∞ = 200 K, p∞ = 0.05 Pa, the surface
temperature Tw = 500 K, diameter of cylinder D = 304.8 mm, Kn = 0.25 and argon
is the working gas. The computational mesh is built to wrap around the leading bow
shock. The mesh is graded linearly over the first 100 cells near the surface, so that
the mesh size varies from 10 µm → 100µm. The smallest cell size near the surface is
∆x = 10µm, ∆y = 2.4 mm, which is approximately the same as the smallest cell size
in [5]. A typical mesh of cells for the cylinder simulations is shown in figure 2(b).

4 Results

4.1 Flat plate experimental cases

For the flat plate case, we carried out three simulations as follows: first using the M/S
boundary conditions, second using second order slip velocity and the Smoluchowski
temperature jump condition with σT = 1 (chosen from the results obtained from the
first case), and third with no-slip/jump conditions. Different values of the coefficients
σu, σT varying from 0.7 to 1 in the M/S boundary conditions, and of A1, A2 in the second
order velocity slip boundary condition, were employed to attempt to find the best val-
ues. Here, the results for surface pressure in the Metcalf et al. case [7] are presented
versus x/λ∞ = Kn−1 as an illustration.

For the M/S boundary conditions, simulations are run with σu = σT = 0.7 and 0.8,
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and also σu = 0.7 and σT = 1.0. The combination of values σu = 0.7 and σT = 1
give best agreement with the experimental data for x/λ∞ ≥ 15 (Kn ≤ 0.067). There
is a large difference between from no-slip/jump results with the experimental data at
x/λ∞ ≤ 40 (Kn ≥ 0.025), as seen in figure 3(a). For the second order velocity slip
boundary condition, simulations are done with different values of A1, A2, as seen in
figure 3(b). The values A1 = 1.5 and A2 = 1 give best agreement with the experimen-
tal data of the surface pressure. The second order term affects the surface pressure,
in that increasing the value of A2 decreases the pressure.
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(a) using the M/S boundary conditions.
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Figure 3: Metcalf et al.’s case [7], surface pressure distribution along the flat plate,
simulations with the various boundary conditions.
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Figure 4: Metcalf et al.’s case [7], surface temperature distribution along the flat plate,
simulations with the various boundary conditions.

For the surface temperature, the simulations with the M/S boundary conditions with
σu = 0.7 and σT = 1, and the second-order slip condition with A1 = 1.5, A2 = 1 and
the Smoluchowski boundary condition with σT = 1 give good predictions at the leading
edge. The value σT = 1 is better than the value σT = 0.7 in predicting the surface tem-
perature at the leading edge. The no-slip/jump results give the surface temperature 77
K along the flat plate, as seen in figure 4.
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In the Becker et al. case [6], the values σu = 0.7 and σT = 1 in the M/S boundary
conditions and the values A1 = 1.5, A2 = 1 in the second order velocity slip boundary
condition give best agreement with the experimental data of the surface pressure for
x/λ∞ ≥ 18 (Kn ≤ 0.055). There is a large difference between the no-slip/jump results
with experimental data at x/λ∞ ≤ 50 (Kn ≥ 0.02), as seen in figure 5(a). For the
slip velocity, the values σu = σT = 0.8 in the M/S boundary condition give best agree-
ment with the experimental data, as seen in figure 5(b). For the second order slip
condition, the values A1 = 1.2 and A2 = 1 give good agreement with the experimental
data. In this case, we have also applied the Langmuir boundary condition, using in
turn both the “Covalent” and the “Van der Waals” diameters d of the gas molecule.
The Covalent diameter is a measure of the size of the molecule which forms part of a
covalent bond, and the Van der Waals is the diameter of an imaginary equivalent hard
sphere molecule. Our initial results show that the Langmuir model is sensitive to the
mean area of a surface site, A = NAπd2/4 [3], and the heat of adsorption De. The
results do not give as good agreement with the experimental data as the M/S bound-
ary conditions. More investigations into the appropriate values for A and De from the
experimental literature may be needed to yield better and more reliable results.
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Figure 5: Simulation results of Becker’s flat plate case [7].

4.2 Circular cylinder DSMC case, Kn = 0.25

In the circular cylinder case, we test the coefficient values σu = 0.7 and σT = 1 in the
M/S conditions, obtained from the flat plate case, with and without the curvature effect
i.e. without including the Πmc term in equation (7), and compare with the no-slip/jump
results and DSMC data [5].

For the surface pressure, the values σu = 0.7 and σT = 1 give good agreement with the
DSMC data at the stagnation point (ϕ = 0o) while the no-slip/jump case does not. The
curvature effect does not strongly affect the surface pressure. There is a difference
between DSMC data and our CFD results of simulations with the M/S conditions at
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30o ≤ ϕ ≤ 180o, while the no-slip/jump results agree with DSMC data in this region.
For the slip-velocity, simulations with and without the curvature effect disagree with the
DSMC data at Kn = 0.25. The results show that the curvature strongly affects the slip
velocity at ϕ ≥ 60o, acting to reduce the peak value of the slip velocity.
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Figure 6: Simulation results of the circular cylinder in cross-flow case.

5 Conclusions

Our results show that including velocity slip/temperature jump boundary conditions can
improve CFD prediction of high-speed rarefied flows. The values σu = 0.7, σT = 1 in
the M/S boundary conditions, and A1 = 1.5 and A2 = 1.0 in the second order slip
condition with σT = 1.0, give best agreement with the experimental data of the surface
pressure up to Kn = 0.1 for the flat plate cases. The values σu = 0.7 and σT = 1 also
give good agreement with DSMC data of the surface pressure at the stagnation point
in the cylinder case.

The Langmuir boundary condition overpredicts the surface pressure and underpre-
dicts the slip-velocity. But the results are sensitive to the values of A and De, and more
appropriate values from experimental literature may improve these results.

From the results obtained in the flat plate case, the N-S-F equations seem to work
well with the M/S boundary conditions, or the second order velocity slip and the Smolu-
chowski boundary conditions, up to Kn = 0.1. The second order velocity slip boundary
condition is not much better than the conventional Maxwell slip boundary condition with
the N-S-F model.

The circular cylinder case shows that the N-S-F equations with the M/S boundary con-
ditions did not predict well the slip-velocity at Kn = 0.25, as compared to DSMC data.
This case shows that the curvature effect is important when simulating the slip-velocity
in blunt geometries.
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