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Abstract

The general context of this paper is the assessment of Sliding Mode Control (SMC) techniques for ren-
dezvous missions in space, under realistic simulations, i.e. considering the coupling between attitude and
translational motions, propellant sloshing, flexible modes of the solar arrays and the most dimensioning
space disturbances (i.e. second zonal harmonic J,, atmospheric drag, magnetic disturbance, gravity gradi-
ent and solar radiation pressure). A SMC technique fitted with a state feedback linearisation is proposed
in a backstepping setup. Simulation results demonstrate the potential of the proposed solution.

1. Introduction

In missions of spacecraft interceptions or in-orbit assembly tasks, there is a need to provide Guidance Navigation and
Control (GNC) solutions to accurately and automatically achieve the rendezvous and the capture phases, in an uncer-
tain and disturbed environment. The work addressed in this paper must be understood in this context. The aim is to
assess the potential of Sliding Mode Control (SMC) techniques for autonomous rendezvous in space on a circular orbit
with a passive target, i.e. the target has no sensor, no actuator and no onboard telemetry data processing algorithm so
that it cannot neither communicate with the ground stations, nor with the chaser spacecraft that is in charge of capture.

In such a context, the design of robust controllers for automatic rendezvous is a topic of great importance. In the
literature, several control theories have been used to tackle such a problem, e.g. by using H., theory (Gao et al., 2012),
gain scheduling concept (Wang et al., 2015) and adaptive control strategies (Zhao et al., 2013) to name a few. Note that
the recent non-smooth H,, theory is currently investigated by the European Space Agency (ESA) through numerous
research projects, like microvibrations mitigation for satellite observation mission that requires high pointing stability
(Predaetal., 2017, 2018), autonomous assembly in space of huge flexible structures like telescopes (Colmenarejo et al.,
2018b) or autonomous debris removal like the e.Deorbit mission that aims at removing the defunct Envisat satellite
from the Earth orbit (Colmenarejo et al., 2017, 2018a; Henry et al., 2019).

Another control technique that receives recently attention in the research community is the backstepping technique.
Backstepping is an iterative approach that uses part of the states as virtual controls to drive the other states. It has, as
one disadvantage, performance degradation under the presence of parametric uncertainties. Solutions have been pro-
posed in literature adding to the backstepping approach other control techniques, see for example backstepping with a
PID in (Krogstad et al., 2007), optimal control in (Krstic and Tsiotras, 1999) or sliding-mode control (SMC) techniques
(De Loza et al., 2015; Zenteno-Torres et al., 2019). In this paper, the focus is on this latest technique.

SMC theory has received a growing attention during the two last decades, mainly due to the famous finite-time and
insensitivity properties against matched perturbations (i.e. those which impact directly the input channels, see (Shtessel
et al., 2014)). Within the aerospace area, the SMC technique has been firstly applied for attitude stabilization in the
90’s, see (Lo and Chen, 1995) and (Crassidis and Markley, 1996). In (Park et al., 1999), a two-step SMC scheme is
proposed to tackle the earth’s gravitational disturbance. A SMC strategy has been developed for an exoatmospheric
interceptor in (Ebrahimi et al., 2008). In (Imani and Beigzadeh, 2016), two controllers are designed using optimal
sliding-mode control and backstepping for attitude control of a spacecraft in elliptical orbit considering the J, and at-
mospheric drag disturbances. The approach is based on a SMC law fitted by an integral. A solution for automatic space
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rendezvous and docking is proposed in (Tournes et al., 2011) using a second order sliding mode control approach. In
(Liu et al., 2016), the authors propose a SMC solution for rendezvous and docking with a tumbling spacecraft based on
the backstepping technique. In (Cong et al., 2013), a backstepping based adaptive sliding-mode control is used for the
attitude control of a spacecraft with uncertainties. Recently, the works reported in (Huang and Jia, 2017) and (Dong
et al., 2017) propose an alternative approach by using an adaptive mechanism, for spacecraft rendezvous. An attitude
controller for a spacecraft is designed (Davila and Gémez-Cortes, 2013) using backstepping techniques based on High
Order Sliding-Modes (HOSM).

Even if these results are promising, they do not consider the solar arrays and propellant sloshing effects which creates
a coupling between rotational and translational dynamics. Although in (Hu et al., 2009) solar arrays are considered,
the designed controller is dedicated for the spacecraft’s attitude. The contribution of the paper must be thought in this
context. Controllers for attitude and translational dynamics are designed based on SMC combined with backstepping,
given that the coupling effect appears when considering propellant sloshing effects, flexible modes of the solar arrays
and the most dimensioning space disturbances, i.e. second zonal harmonic J,, atmospheric drag, magnetic disturbance,
gravity gradient and solar radiation pressure. Attitude and position control is considered in (Zenteno-Torres et al., 2018,
2019), but is limited to the influence of the flexible modes of the solar arrays, i.e. propellant sloshing is not considered.

The paper is organized as follows. Section 2 briefly recalls the theory of the proposed SMC algorithm. Section 3
is devoted to the space mission and presents the results.

2. Material backgrounds

In the interest of brevity, throughout this section an earnest attempt will be made to avoid duplicating material presented
in (Zenteno-Torres et al., 2018). Towards this end, the focus of this section will lie wholly with the results summarized
by theorem 1. Thus, we will assume the reader is familiar with the developments presented in (Zenteno-Torres et al.,
2018), and will often refer the reader to this paper for necessary backgrounds and proofs.

Consider the following form of a system’s model, composed into two connected sub-systems
X _[An Anf|x
| |Aan Axn||x
yl_|Ct Of|xt
X2 B 0 I[m X2

Here x = [x] x!]" € R", u € R™ and v € R" refer to the system’s state, control input and (matched) disturbance vectors

respectively. The sub-system defined by the first state equation represents the sub-actuated dynamics and the second

state equation corresponds to the actuated dynamics. Thus, x; € R"™ and x, € R™. The matrices A;;,7, j = 1,2 and C;

are of adequate dimension.

The goal we pursue is to design the state feedback sliding mode control law that obeys to a backstepping paradigm so

that y(¢) follows an a priori given trajectory y.(7), YVt > 0.

1(31] (u+v)

+

ey

The following assumptions are made:

A.1) The component v; of v are bounded, i.e. [v| < v; and thus |||/ < oo.

A.2) The time derivatives of y.(¢) up to order 2 are assumed to be available.

Assumption A.1 is a well known condition for the existence of a first generation sliding mode control, see (Shtessel
et al., 2014) for instance. Assumption A.2 is reasonable from a practical point of view since the time derivatives of
v.(?) are generally endogenous signals in a trajectory planing algorithm. Sliding mode-based differentiation techniques
can be used in case of, see (Levant, 2003; Mboup et al., 2007). Analysis of these techniques is out of the scope of the

paper.

Remark 1 It can be noted from equation (1) that x, is assumed to be measured. This assumption can obviously be
relaxed by using a state estimator. There exist multiple techniques to address this issue. Within the sliding mode setting,
one can mention the HOSM observer approach, see for instance (De Loza, Cieslak, Henry, Zolghadri, and Fridman,
2015). Designing such an estimator is out of the scope of this paper, so it is not addressed in the following.
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The backstepping strategy proposed in (Zenteno-Torres et al., 2018) can be sum up as follows:

Define the tracking error e, = y. — y and the following control law u:
u= ¢ — Ay x1 —Apxy — asign(e¢) + (C]A[z)Té’y — L2€¢ 2)

This first order sliding-mode control law consists of two parts, a linear part (say up) and a discontinuous part (say uy)
so that u = uy + uy, where ug corresponds to the feedback linearization by backstepping approach and u, corresponds
to the sliding-mode term used to compensate the disturbances. In this equation:

o the sliding gain matrix « is defined according to a = diag(a;) with a; > 0V j;
e ¢ and the error e, are defined according
¢ =(C1A12) (e — C1A11x1 + Liey) 3)
e =¢—x “
e L € R™™ and L, € R™ are matrices to be designed.
The following theorem gives the solution to the control design problem:

Theorem 1 Consider the system (1) with the SMC law (2). The closed loop is asymptotically stable and the controller
(2) tracks the reference signal y. while annihilating v (matched perturbations) if (sufficient condition) Ly < 0,k = 1,2
and a; > v;f, Y.

Proof: see (Zenteno-Torres et al., 2018).

Tuning Ly, k = 1,2 enables to manage the convergence time of x;(f) to ¢(r) and x,(¢) to x;.(¢), so it is for y(¢) to
ve(t). Therefore, the convergence time of e,(#) to zero can be reduced if L; has small eigenvalues (fast dynamics).
Similarly, the eigenvalues of L, enables to manage the closed loop dynamics, see equation (2).

3. Application to a rendezvous mission

3.1 The reference scenario
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Figure 1: The orbit and rendezvous trajectory in ¥; (left) and in the LVLH frame #; (right). The trajectory corresponds to the
results in section 3.4

The reference scenario consists of two vehicles inserted into the same circular orbit around Earth. One vehicle
(the target) is a passive spacecraft (i.e. no sensors and actuators) while the second one (the chaser), is equipped by a set
of rendezvous sensors and actuators and a complete GNC (Guidance and Navigation Control) unit. The characteristics
of the orbit’s rendezvous are a semi-major axis @ = 7068 km, an eccentricity e = 0 and an inclination { = 0deg.
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The trajectories of the spacecraft on this orbit are characterized by constant longitude of the ascending node and ar-
gument of periapsis (fixed to Q = Orad and w = Orad respectively) with initial values of the true anomaly fixed to
¥(0) = 1,5.103rad for the target and v(0) = Orad for the chaser. With these orbital parameters, the initial distance
between the two spacecraft is 100m approximatively in the —y-axis direction in the so called Local Vertical Local Hor-
izontal (LVLH) frame #; = {O;; )z, ﬁ, Z}l. The spacecraft trajectories in the inertial frame F; = {Og; )?i, S_(:,Z}z and
in F; are illustrated on Fig. 1 for a better understanding. The considered rendezvous trajectory corresponds to i) target
acquisition where the chaser keeps its position at its initial position and rotates to acquire the target and i) rendezvous
where the chaser’s attitude is controlled to keep the capture mechanism aligned with the target and while, at the same
time, it performs a forced translation.

The avionics architecture retained for the mission, is composed of a LIDAR which provides relative positions and
velocities, an IMU and a Star Tracker. It is worth noting that, in this work, it is assumed a perfect navigation unit, i.e.
all the measurements are assumed to be noise free. The actuation consists of 12 thrusters of 4N for both attitude and
position control.

The complete mission is modelled into a so-called functional engineering simulator developed in Matlab/Simulink.
Both chaser and target have each one an associated environment module as some characteristics depend on specific
spacecraft properties. Typically, the chaser has two half-filled tanks that cause propellant sloshing and a solar array
with two flexible modes, whereas the target is assumed to be a spherical object. For the chaser, the considered dis-
turbances are the second-order zonal harmonic J;, the atmospheric drag, the gravity gradient and effect of the Earth
magnetic filed. With regard to the target, it is assumed to be affected by the J, disturbance and the atmospheric drag.

3.2 Modelling issues

In the following, we use the notations v/, v/, v” to refer to a variable v given in the frame %;, 7, ¥, respectively. 7, =

- — —
{Op; Xy, Yp, Zp} is the chaser’s body frame.? The superscript i, ”I”,”b” is omitted when there exists no ambiguity.

3.2.1 Modelling the relative translational motion between the two spacecraft
Let (x, Y., 2.) be the coordinates of the chaser’s center of mass (CoM), in ¥;. Then, the dynamics of the chaser’s

translational motion is described according to (Wied, 1998; Montenbruck and Gill, 2012):

. i i 0; i i i i
X, = f(xc) + [H; (yu TYgt Ve T ydc) (5)

In this equation X = [x, y, Z¢ X¢ Ve z'C]T is the state vector composed by the position and velocities of the chaser along
f:ach axi§ of #; and y;, yi " yf'm,.yéc refer to the 3-d.imensi0nal accelerations due to the propulsion unit, propellant slosh-
ing, flexible appendages and disturbances respectively.

Similarly, let (x;, y;, z;) be the coordinates of the target’s CoM in ;. Then, the dynamics of the target’s translational
motion can be described according to

03
I

. Yh (©6)

X = f(x) +

where x| = [x,y; 2, % 31 Z,]T is the state vector composed by the positions and velocities of the target. 72: refers to the
disturbances (accelerations) about the target’s CoM.

— —
I'The origin of the LVLH frame is at the target center of mass, the axis Zj is pointing to the opposite of O, the axis Y] is aligned with the negative

orbital momentum vector and i; completes the frame.

2The inertial frame 77 is defined as on Fig. 1

3The center of this frame coincides with the chaser’s CoM and its axes are oriented in such a way that an attitude angle equal to [000]” means
that the chaser is aligned with the target.
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In Eq. (5) and (6), the nonlinear state dependent function f (Xj.), Jj € {c, 1} is given by

FO) = (aaza)T | J € let) (7)

u = Gmg is the Earth gravitational constant where G and mg are the universal gravitational constant and the mass of
the Earth planet, respectively.

Subscribing Eq. (6) to Eq. (5) leads to the relative translational motion between the two spacecraft, given in 7;.
The result is a state space model that involves the relative position Ax' = x — x and the relative velocities Ax' = X — ..

Now, consider the rotation matrix Rﬁ(a, e,i,Q, w,v) that performs the projection of a vector v € R3? from 7; to 77,
see (Montenbruck and Gill, 2012). With the retained target orbital parameters (see section 3.1), it can be verified that
Rf(a, e,i,Q, w,v) depends only on the semi-major axis a and the true anomaly v, that is Rf(a, v). Applying the change
of coordinates p = Rl(a,v)Ax' = [n ¢ £]” (and therefore p = Rl(a, v)Ax' = [17 { €]7), it follows that the state space
model that describes the dynamics of the relative translational motion between the two spacecrafts in ¥, takes the form
of (8) where j = {c, t} and g(.) is a function that depend nonlinearly on p, p, a, v, yflj.

03
I

. ' . |
m = g(p. P, @, v, ¥y)) + (—Ff, + Yyt Ylm) (®)
b m

In Eq. (8), m is the total mass of the chaser’s spacecraft, F!, = me(a, v)y! is the three-dimensional forces due to the
thruster-based propulsion unit, ¥/, = mRi(a,v)y', and ¥, = mR(a,v)y', are forces due to propellant sloshing and the

flexible appendages respectively, given in 7.

Since the target follows a circular Keplerian orbit, the velocity of the true anomaly satisfies the third Kepler law,
ie.

v2a® = constant = u = Gmp = v = 1/% =n )
a
where p = 3.9858 x 10'*. Then, because the distance between the target and the chaser during the rendezvous is much

smaller than the orbit, i.e., ||p|ll» < a, it is possible to perform a first order Taylor approximation of (8). This leads to
the so called Clohessy-Wiltshire equations, also named the Hill equations (Wied, 1998; Montenbruck and Gill, 2012):

00 0 1 00
00 0 0 1 0

pl Lo 0o 0o o o 1] [0s] 1.

[p]_ 0 0 0 2 oflp|t|n| @ (10)
0 0 0 -2 0 0
0 0 -2 0 0 0

In this equation, . is a generalized disturbance acceleration which is an additive approximation of the effects that
Vi Via and ¥y = Ria, v)v4, j = {c, 1} have on the dynamics of the relative position and relative velocity.
Remark 2 It should be outlined that yé " yl, and yilj, Jj = lc,t} enter endogenously the state space model (8). So,

approximating them into a form of a generalized exogenous signal v, must be validated. Especially such an approxi-
mation is valid if yi " y, and y;j, J = {c, t} do not destabilize the control loop that we will develop later. Fortunately,
this has been revealed to be the case, see the simulation results presented in 3.4 that are obtained from the functional
engineering simulator that does not consider any kind of approximation.

3.2.2 Modelling the attitude of the chaser’s spacecraft

The rotational motion of the chaser caused by an applied moment (sum of all torques acting on it) can be derived from
the Euler’s second law in the body frame ¥ according to:

wzJ‘IZTk—J‘IwXJw (11)
k
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Here, @ = [p ¢ r]” is the angular velocity vector and J € R*3 is the inertia matrix of the chaser’s spacecraft without
considering the solar array. In (11), >, Ty = T, + Ty + T, + T4 describes the sum of torques about the chaser’s CoM,
in Fp. T, refers to the moment caused by the thruster-based propulsion unit and Ty, Ty, T4 refer to the moment caused
by propellant sloshing, the solar array and the exogenous disturbances.

Using the individual rotation matrices from Euler (3,2,1) rotation, the relationship between the rotational velocities
@ and the rate of the Euler angles ® = [¢ 6 ¢]” is given after by

cos(f) sin(¢)sin(f)  cos(¢) sin(6)
0 cos(¢) cos(d) —sin(¢) cos(0) | @ (12)
0 sin(¢) cos(¢)

Performing a first order Taylor approximation of Egs. (11) and (12) around @ = 0 and ® = 0, leads to the following
linear state space model of the attitude of the chaser:

HE

Here, T? is a generalized disturbance moment (given in #3) which is an additive approximation of the effects that
Ty, Tyq, T4 have on the dynamics of the attitude and angular velocity. Note that since Ty, Ty, are endogenous signals,
a similar remark than remark 3 yields.

1
" cos(6)

(C)

03 b
o + - T,+T)) (13)

3.3 Derivation of the control law parameters

Coming back to equations (10) and (13), it is easy to see that if we define the control inputs and matched disturbances
according to

o u= %F ! ‘and v = y! in the case of (10). This is equivalent to say that the control signal is defined in terms of

linear accelerations in the frame 7.

e u=J'T,and v = J“Tf,’ in the case of (13). This means that the control signal is defined in terms of angular
accelerations in the frame ¥;

Then, (10) and (13) are of the form (1) where:
& X|=p,X =P, X € R3,k = 1,2 in the case of the model (10),
o x| =0,x; =w,x € R3 k= 1,2 in the case of the model (13).

Furthermore, since the LIDAR provides the measurement of the states x; = p and x, = p in the case of the model (10),
the Star Tracker provides the measurement of the state x; = ® and the IMU provides the measurement of the state
X, = w in the case of the model (13), then the problem’s formulation obeys to the one stated in section 2 with C; = I3
(see equation (1)). Thus, two separate controllers will be designed, one based on the model (10) for relative position
tracking and another one based on the model (13) for attitude tracking.

Following theorem 1, three matrices have to be chosen for each control law, namely a = diag(a;), j = ﬁ Ly and L,.
With respect to L; and L,, no real guidelines have been provided in (Zenteno-Torres et al., 2018) for a systemic tuning.
However, the reasoning presented in (Zenteno-Torres et al., 2018) is thought valuable, i.e.:

o the SMC law basically results in an inner loop that computes ¢ and an outer loop that computes u,

e L;,i = 1,2 are error gains (i.e. the terms L;e, and L,¢ in equations (3) and (2) respectively) that enters linearly
in equations (3) and (2),

Thus, it is reasonable to choose L; and L, so that |1;(L;)| > |4;(L,)| meaning that the inner loop is faster than the outer
loop. Here, A; stands for the eigenvalues of the associated matrix. This boils down to L; = —I3, L, = —0.113 for both
the attitude loop and relative position loop.

Dealing with the sliding gain diagonal terms «;, they must be chosen so that they enforce the sliding motion under
assumption A.1. For that purpose, it is required to fix (not too conservatively) the terms v]f, j = 1,3 for both the attitude
and relative position loops. Fundamentally, they represent upper-bounds of the disturbances given by J~'T? (for the
case of the attitude control loop) and !, (for the case of the relative position control loop). These parameters have been
estimated using the functional engineering simulator, through a numerous of simulations. This leads to @ = 0.25I; for
the attitude loop and @ = 0.0051; for the relative position loop.
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3.4 Simulation results

The performance of the designed SMC control laws are finally assessed using the functional engineering simulator (see
figure 1 for an illustration of the played scenario).

A control allocation algorithm is considered to compute the thruster opening commands u7(f), i.e. to allocate the
forces F%(t) and the moments 7,(t) on the thrusters. For this purpose, the control allocation algorithm presented in
(Fonod et al., 2015) is retained. It is mainly based on the computation of the optimal generalized inverse of the thruster
configuration matrix, in the £, sense, i.e. it solves the following optimisation problem:

ur = argmin IW,(Mur — vl (14)

ur€Ur={ur, :0<ur, <tir, }.k=1,12
v, = [F' ij TMT 1" is the vector of the desired force and torque commands, %7y is the maximum opening value of the kth
thruster and M refers to the thruster configuration matrix, see Fig. 2 for an illustration of the position and direction
spanned by M. The nonsingular weighting matrix W, affects the prioritization among force/torque components. The
choice of the £; norm in (14) results in minimum power allocation.

A path planning (guidance) algorithm is implemented too. It is in charge of generating the position/velocity and
attitude/angular velocity profiles for the target acquisition, rendezvous and capture phases. Here, it is based on a
spline-based approach to generate smooth profiles in order to approach the target along its velocity axis smoothly. We
recall that the simulator considers the nonlinear models and their coupling effects, the second-order zonal harmonic J5,
atmospheric drag, gravity gradient, magnetic disturbances, propellant sloshing and the flexible modes of the solar array.

We recall too that the navigation unit is assumed to be perfect, which is equivalent to say that there is no measure-
ment noise. The investigated scenario used the following parameters:

- Chaser’s mass m = 300kg

-Chaser’sinertiaJ =[30 1 1;1 40 1;1 1 25]

- Thruster’s saturation= 4N, Minimum Impulse Bit = 0.1

- Thruster configuration and geometry of the chaser (including the location of its CoM) as shown in figure 2.

- Sampling time= 0.25s

—THR (opposite direction)
{ CoM

/ 4
?\\\v(‘// 1.5

y -2 X

Figure 2: Thruster configuration and geometry of the chaser (including the location of its CoM)

The control signals provided by the attitude and translational sliding-mode controllers are shown in Fig. 3 (top and
middle). Fig. 3 top illustrates the time behaviour of the moments T,(¢), whereas Fig. 3 middle illustrates the time
behavior of the forces F’ ,(f)(t). Fig. 3 bottom illustrates the thruster opening commands u7(¢) applied to the set of the 12
thrusters. A zoom is provided for each signal to better appreciate their time behaviour.

Fig. 4 illustrates the behaviour of the attitude ®(r) = [¢(¢) 8(¢) ¥(1)]” and the relative position p(¢) = [(¢) {(t) &(1)]7.
Their references generated by the path planning algorithm (i.e. the guidance unit) are superposed to appreciate the
performance of the proposed control strategy. The angular velocity @(f) = [p(t) ¢(t) r(£)]” and the relative velocity
p@®) = [7(0) () EB]T is too superposed on the plots. Furthermore, the "target acquisition phase" and the "rendezvous
phase" are highlighted for a better understanding of the motion performed by the chaser. We recall that the "target
acquisition phase" consists in tracking an attitude reference whereas the "rendezvous phase" consists of a forced trans-
lation to the target while maintaining the chaser’s attitude to zero so that the capture mechanism is aligned with the
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target.

It can be inferred from all the presented figures that the obtained results are promising since, as it can be seen, the
presented plots exhibit satisfactory tracking performance, i.e. the relative position and the attitude follows their ref-
erences without saturation of the thrusters (the maximum magnitude reached by the thrusters is close to 2.2N < 4N).
This is confirmed by figure 5 that illustrates the tracking errors.

D%ontrol signal provided by attitude controller . Zoom on attitude control signal
’ Lp.v.}-u..l.lmi_;vlne.r AN oot e i ek ‘rJ
0.2 05T
0 AN A
\, o Ly
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Control signal provided by position controller _ Zoom on translational control signal
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4 4t
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Figure 3: Behaviour of the moments T,(7) (top), forces F (#) (middle) and the thruster opening commands uz(f) (bottom).

4. Concluding remarks

This paper investigates Sliding Mode Control (SMC) techniques for rendezvous missions in space. The proposed
control architecture is based on a SMC used in a backstepping setup. The proposed methodology is applied to a
functional engineering simulator that accurately simulates a rendezvous mission between a chaser spacecraft and a
passive target onto a circular orbit around Earth, taking into account the coupling between attitude and translational
motions, propellant sloshing, modes of the flexible appendages and the most dimensioning space disturbances (e.g.
second zonal harmonic J,, atmospheric drag, magnetic disturbance). Simulation results demonstrate the potential of
the proposed approach.
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Figure 4: Behaviour of the attitude @(¢) =
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Respanse of the system to translational controller
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Figure 5: Tracking errors: relative position (left), attitude (right).
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