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Abstract
The vortex shedding angle is studied in P80 (1st stage of VEGA launcher) and P120C motors (1st stage
of Ariane 6 and VEGAC launchers) with linear stability analysis. This hydrodynamic phenomenon, first
investigated by Dupays7, 8 has been recently reviewed by Lacassagne19 from an academic point of view.
Based on the method and tool used is this academic work, this study enables to demonstrate that, at the
selected operating times, the risk of triggering vortex shedding angle in the P80 and P120C is negligible.
Therefore, pressure oscillations measured in this part of the firing must be explained by another instability
source.

1. Introduction

Pressure oscillations are a major issue in solid rocket motors (SRM) dedicated for spatial missions and designing motors
that produce as small pressure oscillations as possible represents an important industrial challenge. One possible source
of pressure oscillations is hydrodynamic instabilities28 and can be due to the motors length (VSP)3, 14, 15 , can be created
by an obstacle in the geometry (VSO)9, 21, 26 or by a geometry section changes (VSA)7, 8, 19 . In the current motors
designs, the order of importance of theses instabilities is slightly modified and the vortex shedding angle (VSA), let
logically aside in the past, becomes today one of the most likely source of hydrodynamic instability. This instability
appears when geometry exhibits a propellant tapered edge, generating strong shear flows in the cross-stream direction.
Shear flows are known to be prone to instabilities since temporally or spatially growing waves are generated along the
stream and lead to the formations of unsteady vortical structures.
In the past 50 years, stability of the shear layer has been continuously studied and classical theory is nowadays well
known6, 16 . However, because of the sidewall injections, from the solid propellant burning, velocity profiles generated
in the shear layer are quite different from the one of a classical hyperbolic tangent mixing layer22, 23 . Recent studies19, 20

have shown that this difference has in fact a strong impact on the stability of the shear layer, very sensitive to the lateral
blowing. However, only academic configurations have been studied.
This work aims to apply linear stability analysis to real motor geometries, namely the P80 (1st stage of VEGA launcher)
and P120C motors (1st stage of Ariane 6 and VEGAC launchers), where the propellant exhibits section changes. This
study is being carried out in the context of the P120C development and it is part of the AGS strategy defined by a
continually improving of our knowledge and control of pressure oscillations. The P80 motor has been largely studied
in the VEGA developments4, 10, 24 . Thanks to this knowledges and due to similar geometry, P80 study aims to reinforce
P120C results.
Moreover, the physical explanations of specific bursts of these motors are still debated. A way to explain some of these
bursts, occurring in the last part of the first half of operating time, can eventually be linked to shear layer instability,
even if our CFD simulations do not exhibit this kind of phenomena. The linear stability analysis performed in this
study enable to bring answers without additional costly CFD simulations.
This paper is organized into three main parts. In the first part, the P80 and P120C solid rocket motors are presented.
The similarities between both geometries are highlighted and the analysed cases are defined. In the second part, after
a quick recall on linear stability theory, the main results of previous academic work19 are presented. The last part of
this paper is dedicated to the P80 and P120C applications. The analysis if first carried out for the P80 motor and then
compared to the one performed for the P120C motor.
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2. Presentation of the P80 and P120C motors

As presented in Figure 1, P80 and P120C geometries are very similar. It is then largely justified to first analysed the
P80, witch is the most studied and well-known motor and then applied the same kind of analysis on the newer P120C.
For each motors, four geometries are considered, named OT1, OT2, OT3 and OT4. Each geometry corresponds to a
specific operating time, located in Figure 2 and Figure 3 on the mean head-end pressure evolutions.

Figure 1: P80 (up) and P120C (down) geometries for all operating points.

Let’s focus first on the P80 configuration. As shown in Figure 2, by collecting pressure oscillation measures on static
firing tests (DM and QM) and VEGA flights (VV01, VV02 and VV03) four different bursts are clearly present: namely
B0, B1, B2 and B3. For B0 and B1, the scenario is well established. The first burst B0 is due to a hydrodynamic
instability namely the parietal vortex shedding instability, while the triggering mechanism of the second one B1 is
more "hybrid" with the combination of the parietal vortex shedding and the aluminium combustion instability called
ITHAC11–13 . However the physical explanations of the B2 and B3 bursts are not so obvious.
First, theory and simulation show that the parietal vortex shedding is not present in this second part of the firing. Then,
AGS studies demonstrate that the driving phenomenon is the aluminium combustion which leads to the modulation
of pressure oscillation levels. However, vortex shedding angle instability must not be discarded and could represent a
significant source of instability if the shear layer due to the section changes at the back-end of the motor is unstable.
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Figure 2: P80 head-end pressure evolution and pressure oscillations measured during firing tests (DM and QM) and
VEGA flights (VV01, VV02, VV03). The studied cases (OT1, OT2, OT3 and OT4) are located with red symbols.

To bring answer to this question, as shown in Figure 2, the OT1 and OT3 cases are chosen to be at the maximum of
pressure oscillations of burst B2 and B3 respectively, OT2 at the cross-bursts and OT4 after burst B3. Then, the com-
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Figure 3: P120C head-end pressure evolution. The studied cases (OT1, OT2, OT3 and OT4) are located with red
symbols.

parison of the linear stability analysis on this four operating times will enable to evaluate if the shear layer instability
is the triggering mechanisms of these bursts.
In the same way, for the P120C, the four cases are chosen in the second part of the firing before the pressure decreases
as shown in Figure 3.

As recalled in the next part, the linear stability analysis is based on mean velocity profiles. To get this information,
monophasic steady state CFD simulations are performed on each cases. These simulations are cheap, cost-effective
and sufficient to bring the input data of linear stability analysis.

3. Theory of linear stability analysis and academic cases

Linear stability analysis of the time-averaged flow has already been proven useful and powerful in a lot of various
configurations like vortex shedding downstream a cylinder,18 parietal vortex shedding1, 3, 5 and angle vortex shed-
ding7, 8, 19, 20 in solid rocket motors, as well as fuel injectors exhibiting coherent structures in swirled jets.17, 25

A local analysis formalism is used in this work, meaning that the local stability behaviour is computed at each axial
position of the flow based on local time-averaged velocity profiles at the given axial position.

3.1 The linear stability theory and numerical methods

In this approach, the Navier-Stokes equations are linearized around a steady axisymmetric base flow. Then, each
quantity Q can be decomposed into a mean part Q̄ also called the base flow and a fluctuating part q to be determined.
For an axisymmetric and incompressible flow, the decomposed variables are defined by Eq. (1).

(Ux,Ur,Uθ, P)(x, r, θ) =(Ūx, Ūr, Ūθ, P̄)(x, r) +

(ux, ur, uθ, p)(x, r, θ, t)
(1)

Following the parallel flow hypothesis, the base flow is assumed to only depend on the radial coordinate r. It should
be noted that this hypothesis is not fully satisfied here since the geometry and the parietal injection imposed an axial
dependence of the base flow, significant at the proximity of the corner, ignored here. However this assumption has been
successfully used in the stability study as well as for VSP, where good agreement between theoretical and experimental
results are found14, 27 , than for the VSA7, 20 .
Fluctuating quantities q are formulated using normal mode decomposition given by Eq. (2).

q(x, r, θ, t) = q̂(r)ei(αx+mθ−ωt) (2)

In Eq. (2) q̂ is a complex function called amplitude function, m is an integer representing the azimuthal wave number
and α and ω are generally complex numbers.
In the case of a convective instability like the one expected in the present mixing layer, using a spatial analysis for-
malism is more relevant and is the one chosen in this work. Therefore ω is a real number and α = αr + iαi is a
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complex value. In this work, the azimuthal wave number m is set to zero since only axisymmetric modes are studied in
agreement with the axisymmetric simulations presented above. Eq. (2) can then be rewritten in Eq. (3).

q(x, r, θ, t) = q̂(r)e−αi xei(αr x−ωt) (3)

In Eq. (3) the second exponential term is of norm one and describes the wavy nature of the solution for the fluctuation,
αr being the wave number and ω the circular frequency, with f = ω/2π being the frequency itself. The first exponential
in Eq. (3) is real and reflects the amplification or the attenuation of the perturbation with the distance x according to
the sign of αi and the propagation direction of the unstable mode.
The problem now is to determine the amplitude function q̂ as well as the frequency and complex wave number α, so
that perturbations given by Eq. (3) satisfy the linearized Navier-Stokes equations and boundary conditions. These
conditions constitute the dispersion relation defined by Eq. (4). Except for very simple cases, this relation cannot be
analytically determined and is solved numerically.

F (Q̄, α, ω,m) = 0 (4)

After discretization the linearized equations can be transformed into a generalized eigenvalue problem as the one
expressed in Eq. (5). X, defined by Eq. (6) is a vector holding unknowns q̂ j at each discretization point j.

A.X = α.B.X (5)

X =
[
ûx, ûr, ûθ, p̂

]
(6)

The linearized equations are associated to boundary conditions at the wall (r = R, Eq. (7)) and at the axis (r = 0, Eq.
(8) with m = 0).

ûx(R) = ûr(R) = ûθ(R) = 0 (7)

dûx

dr
(0) = ûr(0) = ûθ(0) = 0 (8)

Several methods can be used to solve an eigenvalue problem, but the one chosen is the spectral collocation method2

which consists in decomposing the functions to discretize, here the amplitude functions, on a polynomial basis. The
Tchebytchev polynomials are used associated to Gauss-Lobatto discretization points.2

To get the spatial behaviour of the mixing layer, several linear stability analysis at different axial positions are needed.
Indeed, the fluctuating quantity q, defined Eq. (3), can be rewritten by Eq. (9) with m = 0 and t = 0. This expression
introduces the perturbation modulus |q̂(r)| and phase ϕq̂(r) of the eigenfunction q̂(r). This definition also includes
integrated quantities over axial positions. The first one is the phase ϕαr , defined Eq. (10) and introduced by the axial
wave number αr. The second one is n, called the n-factor and defined Eq. (11) which represents the integration of −αi

over the axial positions, x0 being the first position studied.

q(x, r, t) = |q̂(r)|enei(ϕαr +ϕq̂(r)) (9)

ϕαr =

∫ x

x0

αr(ξ)dξ (10)

n =

∫ x

x0

−αi(ξ)dξ (11)

As observed, en is the term that modifies the amplitude of the perturbation. Since, this work aims to study the risk
of triggering instability in the shear layer, the term of interest here is en. To evaluate this term, the evolution of −αi

with the perturbation frequency f is first determined for all the axial positions. This evolution if called the dispersion
curves.
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3.2 Academic studies

Before performed the P80 and P120C analysis, it is useful to recall the main results of the academic studies performed
by Lacassagne19, 20 . Indeed, in this work, several shear layers in headwall injections configurations are studied with
unsteady simulations and linear stability method. The geometry used is recalled on the left hand side in Figure 4. If the
injection velocity applied on the upper surface is large enough, the shear layer is stable like in the R100 case presented
in Figure 4(b) and no fluctuations are measured in the shear. On the other hand, if the injection velocity is small, like
in the R000 case presented in Figure 4(c), the shear layer is unstable, velocities fluctuations are measured in the shear
linked to the creation of vorticity structures characteristics of vortex shedding angle instability (VSA).
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Figure 4: Schematic view of the configuration (a) and vorticity fields of a stable case (R100) (b) and of an unstable
case (R000) (c). Extracted from Lacassagne.19

The important point here is that, even if in a stable case, as the one shown in Figure 4(b), weak positive spatial am-
plifications −αi are found by the linear stability analysis. Indeed, as shown in Figure 5(a)(i) for the R100 case, the
dispersion curves obtained at each axial position (x0 to x9), presents a frequency range where −αi is positive meaning
where perturbation is amplified. These positive spatial amplifications lead to positive n-factor and positive en term, as
shown in Figure 5(b)(i).

However, the value of the amplification term if one order of magnitude smaller than in a real unstable case (R000).
Indeed, as shown in Figure 5(b)(ii), in the unstable R000 case the maximum of the amplification term en is about 10
times higher than the one of the stable R100 case.

It is then important to note that, with this local approach, a positive amplification term en is not sufficient to affirm that
the shear layer will be hydrodynamically unstable and that vorticity structures will be generated. These academic cases
will be used as reference cases in order to evaluate if the P80 and P120C shear layers are enable to trigger angle vortex
shedding instability.
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(a) Evolution of −αi for each axial position (x0 to x9) with the frequency F of
the perturbation.
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Figure 5: Linear stability analysis of the stable case R100 and the unstable case R000.
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4. Application to P80 and P120C motors

As explained in the introduction, the linear stability analysis is performed on the P80 motor as a first step and then
applied in the same way to the P120C.

4.1 Stability of the P80 profiles

Mean velocity profiles are extracted from steady state simulations for each geometries (OT1, OT2, OT3 and OT4) at
several axial positions in the shear layer, as shown in Figure 6.

Figure 6: Position on a mean vorticity field of the OT1 case, of the analysed cuts in the P80 shear layer, from x0 to x18.

The linear stability analysis gives the dispersion curves presented in Figure 7, for each axial position and for each
operating time.
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Figure 7: Linear stability analysis of the P80 at each operating times (OT1 to OT4). Evolution of the spatial amplifi-
cation −αi for each axial position from x0 to x9 with the frequency F of the perturbation.

First of all, positive spatial amplification −αi are obtained for all the cases but with very small levels. In the P80
shear layers, the maximum spatial amplification −αi is one order of magnitude smaller and the maximum of the en term
(cf. Figure 8) is two order of magnitude smaller than the ones of the academic stable case R100 (cf. Figure 5(a)(i) and
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Figure 5(b)(i)). The shear layers in this four P80 operating times are even more stable than the stable academic shear
layer.
Moreover, the maximum amplified frequency is around 25 Hz for all the cases, quite far from the first acoustic lon-
gitudinal mode witch is between 50 Hz and 60 Hz. There is even less chances of a coupling between acoustic and
hydrodynamic instability.
Finally, the maximum of the amplification factor for the four cases do not follow the evolution of pressure oscillations
measured. Indeed, the linear stability predict that OT1 would be the most unstable followed by OT2, then by OT3 and
finally by OT4. If the shear layer instability would be the source of the bursts (cf. Figure 2), OT3 would be the second
most unstable.
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Figure 8: Linear stability analysis of the P80 at each operating times (OT1 to OT4). Evolution of en with the frequency
F of the perturbation.

In other words, in this part of this firing, there is no risk to trigger corner vortex shedding instability and bursts B2 and
B3 identified in Figure 2 can not be due to this hydrodynamic instability.

4.2 Stability of the P120C profiles

Finally the same analysis is performed on the P120C motor for the four cases defined in Figure 1 and in Figure 3.
Mean velocity profiles are extracted from steady state simulations at several axial position in the shear layer located in
Figure 9.

Figure 9: Position on a mean vorticity field of the OT1 case of the analysed cuts in the P120C shear layer, from x0 to
x28.
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The particularity of P120C geometry is that two distinct shear layers are generated in the flow due to two abrupt section
changes. As shown in Figure 9, the first one is located around the position x0 and the second one is located around the
position x14. The P80 do not exhibit the second shear layer since the geometry has a round shape at this position.

Only some of the dispersions curves are plotted in Figure 10 to keep a readable figure but all the positions are used to
compute the en term defined in Eq. (11) and plotted in Figure 11.
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Figure 10: Linear stability analysis of the P120C at each operating times (OT1 to OT4). Evolution of the spatial
amplification −αi for each axial position from x2 to x18 with the frequency F of the perturbation.
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Figure 11: Linear stability analysis of the P120C at each operating times (OT1 to OT4). Evolution of en with the
frequency F of the perturbation.
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First of all, the two different shear layers are clearly visualized on the dispersion curves. A clear increase of spatial
amplification is notice around the the position x14 or x16, depending on the cases. As visualized, the second shear layer
is most unstable than the first one.
However, the amplification levels are similar to the ones found for the P80 cases (cf. Figure 7) and the en term, plotted
in Figure 11, even is the slightly higher than for the P80, are still of the same order of magnitude.

Then, with the same reason than for the P80, this stability analysis enables to say that there is no risk, at least in this
part of the firing, to trigger vortex shedding angle in the P120C.

5. Conclusions

Linear stability analysis enables to clarify a little bit more the scenario leading to the pressure oscillations phenomena
present on the last part of the first half of the firing of the P80 and by analogy of the P120C.
The tool developed by Lacassagne19 is then used with P80 and P120C velocity profiles, extracted from the CFD
simulations at several operating times. The comparison with the academic results obtained in Lacassagne19 shows
that the amplification levels of the instability are very small compared to the one of an academic stable shear layer.
Moreover the most unstable frequencies are far from longitudinal frequency mode, which do not promote the acoustic
coupling needed to trigger pressure oscillations.
Therefore, during theses pressure oscillation occurrences the VSA is not present and can be discarded. This result is
in agreement with another AGS works, not described here, in which theses pressures oscillations are explained by the
aluminium combustion instability called ITHAC12 .
This work also shows the efficiency of the local linear stability method to analyse without costly simulations the
hydrodynamics instabilities even in real motors configurations.
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