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1. Introduction

The prediction of boundary-layer transition region plays a key role in the simulation of aerodynamic flows in order to
correctly predict lift and drag forces and, thus, the overall performance. The design of airfoils and wings is strongly
affected by the accuracy in transition prediction. This requirement is further stressed for all the cases where the laminar-
turbulent transition process highly influences the flow field, such as natural laminar-flow, laminar flow control, rotor
helicopter and wind turbine blade design.

Reynolds Averaged Navier Stokes (RANS) equations are widely used by the aeronautical industry for the sim-
ulation of viscous flows, and CFD codes’ capabilities in simulating fully turbulent flows have been widely assessed.
Several attempts to improve the reliability of numerical results were performed in order to reproduce free transitional
flows. An usual way is to impose a transition point in 2D and a line in 3D environment. This technique requires a priori
knowledge of the transition location from experimental data or the use of other transition prediction approaches like
engineering correlations or eN method.1, 2 Nevertheless, transition region is not computed in CFD codes and a sudden
shift between laminar and turbulent region is observed. Hence, in the last decades, several methods to model the tran-
sition region have been investigated. Some of these models are based on a physics-based RANS formulation and the
most prominent is the Laminar Kinetic Energy proposed by Walters and Leylek.3, 4 Recently, a new correction was also
proposed by Lopez and Walters.5 An alternative to physics-based formulation is the so-called Local-Correlation based
Transition Modeling (LCTM) concept, where the different transition processes are not modeled, but a set of transport
equations are formulated to combine experimental correlations via triggering functions. A widely known model is the
one proposed by Langtry and Menter,6 namely the γ − Reθ model. In 2015, Menter et al.7 proposed a new transition
model, namely the γ model, that is based on the previous one, but only the transport equation for the intermittency is
present while the momentum-thickness Reynolds number is algebraically computed using local variables. In addition
to a simplified formulation for the momentum-thickness Reynolds number, this model is also Galilean invariant, unlike
the previous one. This paper deals with the implementation of the γ model7 coupled with the κ − ω SST turbulence
model, into the in-house RANS flow solver UZEN8 and its validation for 2D and 3D flows.

For bi-dimensional analyses the Eppler 387 airfoil9 is used. Results from RANS code are compared with ex-
perimental data and Large Eddy Simulation (LES) results. A low Reynolds number airfoil, namely SD 7003, is also
simulated and compared with LES results.10, 11 The 6 : 1 prolate spheroid12 is used as three-dimensional test case,
where transition process is induced by both Tollmien-Schilchting and cross-flow instabilities.

2. Theoretical formulation

The transition model7 is composed of the intermittency transport equation which is defined as follows:

∂ργ

∂t
+
∂ρU jγ

∂x j
= Pγ − Dγ +

∂

∂x j

[(
µ +

µt

σγ

)
∂γ

∂x j

]
(1)

where γ, ρ and µ are the intermittency function, the density and the dynamic viscosity, respectively. x j and U j are the
coordinates and velocity components for j = 1 . . . 3. The transition source term Pγ and the destruction/relaminarization
term Dγ are defined as:

Pγ = FlengthρS γ(1 − γ)Fonset (2)
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Dγ = ca2ρΩγFturb(ce2γ − 1) (3)

where S is the strain rate magnitude and Ω is the magnitude of the absolute vorticity rate. The constants in equations 1
2 and 3 are reported in table 1.

Flength ce2 ca2 σγ
100 50 0.06 1.0

Table 1: γ model constants

Transition onset is controlled by the triggering functions Fonset and Fturb, not reported for sake of simplicity. In
the current model, conversely to the γ−Reθ6, 13 there is no transport equation for the transitional Reynolds number Reθt ,
used to compute the critical Reynolds number Reθc , but an algebraic formula was developed:

Reθc (TuL, λθL) = CTU1 + CTU2 exp [−CTU3TuLFPG(λθL)] (4)

2.1 Turbulence Model Coupling

Transition model is coupled with the standard κ −ω SST turbulence model.14 The formulation considers to modify the
transport equation for turbulent kinetic energy κ:

∂

∂t
(ρk) +

∂

∂x j
(ρu jk) = P̃k + Plim

k − D̃k +
∂

∂x j

(
(µ + σkµt)

∂k
∂x j

)
(5)

P̃k = γPk (6)
D̃k = max(γ, 0.1)Dk (7)

µt = ρ
a1k

max(a1ω, F2S )
(8)

where Pk and Dk are the production and destruction terms from the turbulent kinetic energy equation in the original
SST turbulence model and Plim

k is an additional production term:

Plim
k = 5Ckmax(γ − 0.2, 0)(1 − γ)F lim

on max(3CS EPµ − µt, 0)S Ω (9)

F lim
on = min(max(

ReV

2.2Relim
θc

− 1, 0), 3) (10)

Relim
θc

= 1100 Ck = 1.0 CS EP = 1.0 (11)

The transport equation for turbulent dissipation ω is kept as in the original formulation, instead.

2.2 Cross-flow correction

Original version of the γ transition model did not take into account for the cross-flow induced transition. Recently, a
correction has been proposed.15 This introduces a local formulation in the functional form:

TC1 local =
CRS F

150
(GΨRev) > 1 (12)

The function G accounts for the influence of pressure gradient, the function Ψ accounts for the ratio of the
cross-flow strength relative to the streamwise strength and the Reynolds number effect is included through Rev. The
correlation can be adjusted by the constant CRS F . The cross-flow indicator function Ψ is defined as follows:

Ψ =
∣∣∣~φ∣∣∣ dw (13)

where φ is the dot product of the wall normal versor with the gradient of vorticity versor

~φ = ~n · ∇~eω ~eω =
~Ω

|Ω|
(14)

and dw is the distance from the wall.
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The triggering function that accounts for the cross-flow effects is defined as follows:

Fonset,CF = min[max [100(TC1 local − 1), 0] , 1] (15)

The source term in the equation 5 is then triggered, either by the primary triggering function Fonset, or by Fonset,CF .

Fonset = max(Fonset, Fonset,CF) (16)

This upgraded formulation, above summarized, has been implemented in the in-house developed solver.

3. Numerical algorithm

The transport eq. 1 can be written in integral form, by applying the Gauss theorem, as:

d
dt

∫
Ω

ργdΩ +

∫
∂Ω

[
ρ~vγ −

(
µ +

µt

σγ

)
∇γ

]
· ~ndS =

∫
Ω

(
Pγ − Dγ

)
dΩ (17)

where Ω is the computational domain and ∂Ω is its boundary surface.
For each computational cell (i, j, k), the previous equation becomes:

d
dt

∫
Ωi jk

Ui jkdΩi jk +

∫
∂Ωi jk

(Fc − Fv) dS i jk =

∫
Ωi jk

QdΩi jk (18)

where U is the vector of unknown ργ, Fc and Fv are the convective and dissipative fluxes, respectively, and Q is the
source term.

By means of cell centered finite volume approach, the eq. 18 reduces to:

Ωi jk
dUi jk

dt
+ Rc

i jk − Rv
i jk −Ωi jkQi jk = 0 (19)

with Rc
i jk and Rv

i jk the total net convective and dissipative fluxes positive if outgoing from the total volume Ωi jk.

3.1 Convective fluxes

The residual Rc
i jk is obtained as the sum of the fluxes across the six faces of the cell (i, j, k). The flux fi+1/2 at the

interface i + 1/2 of the cell (i, j, k) is evaluated, by using a first order upwind scheme, as:

fi+1/2 =
1
2

[Vn (Ui+1 − Ui) − |Vn| (Ui+1 − Ui)] (20)

with Vn the mean velocity normal to the interface.

3.2 Dissipative fluxes

The residual Rv
i jk is obtained as the sum of the fluxes across the six faces of the cell (i, j, k).The flux gi+1/2 at the interface

i + 1/2 of the cell (i, j, k) is evaluated as:

gi+1/2 = (µtot)i+1/2 (∇iU)i+1/2 (21)

The total viscosity coefficient is computed performing an average of the values µ and µt at the cells sharing the
considered interface, while the i component of the gradient of the unknown vector U is evaluated as:

(∇iU)i+1/2 =
Ui+1 − Ui

∆ni+1/2
∆ni+1/2 =

Ωi+1 + Ωi

2Ai+1/2
(22)

with Ai+1/2 the area vector of the face (i + 1/2, j, k), and Ωi the volume of the cell (i, j, k).
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3.3 Source terms

The production of γ is computed as:

Pγ = Flengthγ

(
1 −

γ

ρ

)
Fonset

√
2A1 + A2 + A3 + A4 (23)

where

A1 =

(
∂u
∂x

)2

+

(
∂v
∂y

)2

+

(
∂w
∂z

)2

; A2 =

(
∂u
∂y

+
∂v
∂x

)2

A3 =

(
∂u
∂z

+
∂w
∂x

)2

A4 =

(
∂w
∂y

+
∂v
∂z

)2

The destruction term is computed as:

Dγ = ca2Fturbγ

(
ce2

γ

ρ
− 1

) √
B1 + B2 + B3 (24)

where

B1 =

(
∂w
∂y
−
∂v
∂z

)2

B2 =

(
∂u
∂z
−
∂w
∂x

)2

B3 =

(
∂v
∂x
−
∂u
∂y

)2

4. Eppler 387 airfoil

Low-Reynolds number airfoils are used in applications such as remotely-piloted vehicles, wind turbines, ultra-light
aircraft and propellers. One of the difficulties associated with such airfoils is the presence of separated flow regions on
the upper surface, which are inadequately modeled in the commonly used airfoil design and analysis codes.

The Eppler 387 (E387) is a low-Reynolds number airfoil which harbors a separation bubble at various angles of
attack as fully documented by McGhee.9 Current analyses were performed at a Reynolds number of Re = 3 × 105 in
incompressible regime, with a range of angles of attack of α = [0◦ : 7◦]. Freestream turbulence is set at Tu = 1%
and eddy viscosity ratio at

µt

µ
= 0.03. Large Eddy Simulation (LES) was also carried out for the two angles of attack

α = 1◦ and 7◦. Firstly, RANS simulations were performed using five different grid sizes at α = 1◦ and α = 7◦. Table 2
reports the number of cells and points for each grid, as well as the number of points on the airfoil surface.

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
Number of cells 64000 100000 144000 196000 256000
Number of points 131788 204728 293668 398608 519548
Number of points on airfoil 481 601 721 841 961

Table 2: RANS grid dimensions

Figure 1 shows the distribution of y+. The value is lower than 0.2 for the “coarse” grid already, below the
suggested value.7
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Figure 1: E387 - Dimensionless wall distance y+

Figure 2 shows the comparison of experimental pressure coefficient distribution with the solution of RANS
simulations on the five grids. The increase of the number of points on the airfoil surface leads to an improvement of
the solution, in particular, in the bubble region. The match with experimental data at α = 1◦ is satisfactory as shown
in figure 2(a), and the bubble location is well predicted. At α = 7◦, shown in figure 2(b), a bubble not visible in
experimental data is numerically predicted on the upper side for all the grids.
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Figure 2: E387 - Pressure coefficient, RANS

The effect of grid refining is most appreciable in terms of skin friction coefficient, shown in figure 3. Laminar
region is mostly unaffected, while the recovery in turbulent region is steeper increasing the number of points with
higher skin friction coefficient values.

Lift and drag coefficients computed on the five grids are reported in tables 3 and 4 at α = 1◦ and 7◦, respectively.
The comparison with experimental data shows an improvement of the solution with grid refinement.

Experimental Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
Cl 0.465 0.492 0.491 0.490 0.489 0.488
Cd 0.0093 0.00897 0.00890 0.00886 0.00879 0.00878

Table 3: E387 - Lift and drag coefficients at α = 1◦
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Figure 3: E387 - Skin friction coefficient, RANS

Experimental Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
Cl 1.106 1.143 1.140 1.139 1.137 1.134
Cd 0.0129 0.0146 0.0144 0.0142 0.0141 0.0137

Table 4: E387 - Lift and drag coefficients at α = 7◦

Simulations at other angles of attack were also performed using the finest grid, and results in terms of global
coefficients are presented in figure 4(a) for lift and figure 4(b) for polar curve. A shift in terms of lift coefficient is
present, but a good agreement with experimental data is achieved. The drag coefficient is in accordance with exper-
imental values for low angles of attack, while at high angles of attack a difference up to 20 drag counts is observed.
Nevertheless, this discrepancy is likely due to the numerically predicted bubble, and a tuning of the model could further
improve the results.
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Figure 4: Experimental - numerical comparison global coefficients

For the Large Eddy Simulations an appropriate C-Grid mesh of 1328 cells along wake and airfoil surface was
built. In normal direction, the number of cells is 192, while in spanwise direction 96 cells were used. The spanwise
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length was 10% of airfoil chord. The plus coordinates on the airfoil are shown in figure 5.
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Figure 5: LES coordinates in plus unit

Pressure coefficient distribution obtained by LES is, then, compared with experimental data and RANS simula-
tions on the finest grid. The results obtained with LES match better the experimental data at both angles of attack as
shown in figure 6. In addition, a comparison in terms of skin friction is also performed. Figure 7(a) refers to α = 1◦

and it can be seen that laminar regions computed by RANS and LES are in good agreement, while the modeling of
the bubble differs. In detail, LES recovers steeply in the turbulent region of the bubble with higher turbulent skin
friction values. A transition to turbulent flow is observed at x/c ≈ 10% on the upper side of the airfoil at α = 7◦ in the
LES solution, as shown in figure 7(a). Transition prevents the bubble leading to a more accurate pressure coefficient
distribution.
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Figure 6: E387 - Pressure coefficient, LES
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Figure 7: E387 - Skin friction coefficient, LES. Solid line: upper side; dashed line: lower side

5. SD 7003 airfoil

The Selig-Donovan (SD) 7003 airfoil, as Eppler 387, exhibits a laminar separation bubble over a wide range of inci-
dences. Both RANS and LES11 analyses were performed at α = 4◦ and Re = 6 × 104 and a comparison is presented.
The grid size for LES is 768 cells for airfoil and wake, 176 cells in normal direction, and 48 cells in spanwise direction.
Pressure coefficient distribution is compared in figure 8, where LES exhibits a steeper recovery in the bubble reattach-
ment region as highlighted in the previous results. A higher expansion on the leading edge region is also observed with
reference to RANS solution.

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­1.5

­1

­0.5

0

0.5

1

RANS

LES

Figure 8: SD 7003 - Pressure coefficient

The different behaviour in the pressure recovery can be detailed by the comparison of skin friction distribution
in figure 9. It is observed that LES predicts the reattachment point at x/c ≈ 63% with a typical turbulent profile, while
bubble simulated with RANS reattaches far downstream at x/c ≈ 86%. For this simulation, the γ model foresees the
laminar separation bubble, but a low value of “turbulence” is produced, delaying the reattachment point and, hence,
affecting pressure coefficient distribution.
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Figure 9: SD 7003 - Skin friction coefficient. Solid line: upper side; dashed line: lower side

The transition model provides a delayed reattachment point with reference to LES, but represents an improve-
ment with respect to the standard SST model.16

6. 6:1 Prolate spheroid

Preliminary versions of transition models were validated for flows characterized by Tollmienn-Schlichting instability
(TS) and by-pass mechanism, neglecting Cross-Flow waves (CF). For bi-dimensional flow field, models act correctly as
CF instability is not present, but for three-dimensional configurations a non-negligible error can be observed. Several
extensions for cross-flow instabilities were proposed for the γ − Reθ model.17–20 These extensions are based on the
local helicity approach, adding a new set of correlations driven by helicity Reynolds number ReHe, yielding reasonable
results. The previous approach is not extended to the one-equation transition model, but a cross-flow indicator function
is introduced,15 as briefly described above.

A widely used test case for transition prediction in three-dimensional analyses is the 6:1 inclined prolate spheroid.
Experiments on this configuration were conducted in the low-speed tunnel at DLR by Kreplin et al.21 For such con-
figuration, transition occurs for CF instabilities. In order to assess the implemented modification, the simulations are
performed at α = 15◦ and Re = 6.50 × 106, with freestream turbulence and eddy viscosity ratio set at Tu = 0.15%
and µt/µ = 0.10, respectively. Simulations are carried out on a structured grid made of 16 blocks and approximately
8 × 106 cells.

Cut-section plot of skin friction coefficient is performed. The cut-section plane is perpendicular to the 6:1 prolate-
spheroid minor axis. Two sets of numerical results are presented, one relative to simulations without the cross-flow
modification and the other one with the modification.

The results are shown in figure 10 and expose the fact that transition model without the correction for cross-flow
predict transition downstream with reference to experimental data. The CF correction is able to predict transition onset
near the experimental values although upstream. As a consequence, the transition zone shape is not correctly modeled
and the predicted transition skin-friction coefficient peak value is lower than that of the experimental data.

Results are encouraging as the modification triggers the transition due to three-dimensional disturbances, never-
theless further investigations are demanded to better assess the model and to improve the solution.

7. Conclusions

The local correlation-based γ transition model for the prediction of laminar-turbulent transition, coupled with the κ−ω
SST turbulence model, was implemented in the in-house CFD structured code. Results from the E387 airfoil showed
a good agreement with the prediction of the bubble at α = 1◦, while a misleading result was obtained at α = 7◦. Lift
and drag coefficients are in good agreement with experimental data in the analyzed range of angles of attack. LES
results on the airfoil agrees with experimental data at both angles of attack. In detail, the pressure recovery is steeper
with reference to RANS at α = 1◦, improving the match. At α = 7◦ a transition at x/c ≈ 10% is predicted by LES,
preventing the bubble, conversely to RANS. The numerical comparison with LES on the SD7003 airfoil presents a

DOI: 10.13009/EUCASS2019-352



X/L

C
f

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Exp data

γ  ­ no C­F

γ  ­ w C­F

φ=90°

Figure 10: 6:1 prolate spheroid, skin friction coefficient

delayed reattachment point, but still an improvement with reference to more classical approaches. The rather low
Reynolds number could be an issue for the transition model to investigate. The 6:1 inclined prolate spheroid was used
to test the implementation of the C-F model. Preliminary results showed an improvement in the prediction of transition
onset, but further analyses are required.

A more complete set of test cases, both bi-dimensional and three-dimensional, has to be investigated, in order to
correct and assess the implementation. LES results should also be used to improve triggering correlation, especially.
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