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Abstract
Team Anant is building a nanosatellite whose objective is to perform hyperspectral imaging of the Indian
Ocean. Due to low bandwidth availability and large image size, the image must be compressed by the
On-Board Computer. The CCSDS 123.0-B-1 algorithm can be broken down into a predictor and an en-
coder. This paper demonstrates a pipelined implementation of the algorithm on a Xilinx 7-Series Field
Programmable Gate Array. This paper also discusses the ways the compression hardware can be inter-
faced to the Processor for control by Software and elaborates the different entropy encoders following the
prediction stage.

1. Introduction

Team Anant is a group of passionate undergraduate students from BITS Pilani, whose objective is to build a 3U CubeSat
using commercially available off-the-shelf components. Founded in 2013 by three undergraduate students, the team
now consists of forty students from various disciplines. The CubeSat houses a hyperspectral imager as its primary
payload, for the categorization of various phytoplankton in the ocean. The bandwidth provided for such satellites for
communication is very low. Hyperspectral cameras pose two challenges, the first being large image cube size and the
second being the power consumed by it. The former is a big concern because of the limited downlinking capabilities
possessed by a nanosatellite, and to counter this, we implement a compression algorithm on board. To speed up the
compression process and minimize the energy spent (higher power but smaller duration), computationally intensive
compression algorithm are implemented using FPGAs. To effectively downlink the image, the recommended standard
was chosen, called the CCSDS 123.0.B.1. A Xilinx 7 Series Field Programmable Gate Array (FPGA) is being used to
implement the compression algorithm.2

1.1 System Description

The team is divided into six subsystems: 1. On-Board Computer, 2. Electrical Power, 3. Attitude Determination and
Control, 4. Structural and Thermal, 5. Telemetry, Tracking and Command and 6. Payload. Such a division of labour
was created to ensure efficiency and accuracy while developing the components for the satellite.

The On-Board Computer of the satellite acts as the primary source of all the commands and monitors the status
of the various subsystems. The OBC architecture also performs compression of the hyperspectral image before the data
get downlinked. Our satellite follows an amalgamation of centralized and distributed architecture. On-Board computer
subsystem makes use of a Zynq-7000 SoC which comprises of an ARM-cortex A9 based processing system (PS) and
Kintex-7 based programmable logic (PL).

1.2 Functions of the On-Board Computer

The primary functions of the OBC are as follows:
1.Acquiring housekeeping data.
2.Storage and downlinking of payload and housekeeping data.
3.Executing attitude determination and control algorithms.
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4.Determination of the mode of operation and flow of control.
5.Processing of the Telecommand Data.
6.Acquisition of the image and execution of the compression algorithm.

1.3 Software and Hardware Specifications

Petalinux, a Linux based operating system has been chosen for this satellite because of ease of development coupled
with the availability of many client drivers, bus controller drivers and fairly good documentation even for kernel level
programming. One of the most important reasons for using Petalinux was the availability of documentation and its
popularity with the Xilinx community. For software development, C is chosen as it is by far the most powerful and
versatile language that provides just the right amount of abstraction for development of highly specific applications
with constraints on running time and determinism. The implementation of the compression algorithm on the FPGA is
done using the hardware description language, Verilog. The simulations and packaging of the IPs are done with the help
of the software, Vivado. The development and synthesis of the algorithm were done on the ZedBoard, a development
board by Digilent.

2. Overview

In order to increase the downlink data rate, computationally intensive compression algorithms need to be implemented
on-board in a power efficient manner. Since the hyperspectral image is needed in its truest form for in-depth anal-
ysis, the compression algorithm cannot be lossy. Hence, there were three challenges- heavy processing and com-
putation requirements, power constraints and image quality retention. In order to counter the first two, the use of
field-programmable gate arrays (FPGAs) to perform image processing is suggested, to enable hardware based paral-
lel processing. FPGAs are a matrix of many configurable logic blocks (CLBs) that allow parallel algorithms to be
implemented on them efficiently.

Optimized datapaths in FPGAs allow improved performance of computationally intensive tasks and reduced
power and energy consumption as compared to general purpose processors (GPPs). In comparison with GPPs, FPGAs
have been observed to improve performance by more than 15 times at 50% of the energy consumption. FPGAs are
more versatile and configurable when compared to Application Specific Integrated Circuits (ASIC).

Typically, hyperspectral sensors image data over a few 100 spectral ranges. This results in each image actually
being closely spaced layers of individual images, best imagined as a cube as shown in the picture below. In fact
hyperspectral images are often called hypercubes.

Figure 1: Graphic Representation of Hyperspectral Data3

In modern day imagers, resolutions are quite high4 and hence many pixels cover smaller areas, leading them to
have largely similar coloring. Image compression often tries to take advantage of this correlation. In fact, a higher
spatial resolution often implies better compression ratios.

The problem of compressing hyperspectral images is usually solved by two methods- by applying 2-D com-
pression algorithms taking advantage of spatial redundancy between neighboring pixels, or by taking advantage of
the spectral redundancy of the same pixel across a certain number of spectra as well as spatial redundancy within the
spectrum.
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The recent standard recommended by the CCSDS (Consultative Committee for Space Data Systems) for mul-
tispectral and hyperspectral image compression i.e. CCSDS 123.0-B-1 has been chosen for implementation. This
standard was built keeping in mind the power and memory constraints of small satellites and providing lossless com-
pression.

It has two primary components - a predictor and an entropy encoder. The predictor uses linear prediction tech-
niques, and using values from previous spectra and neighboring pixels predicts the value of the current pixel. The
standard advises the use of static codes like Golomb and Rice for entropy encoding.

3. Implementation of the algorithm

The implementation of the algorithm is divided into two parts:

1. Datapath

2. Control Path

3. Interfacing

The following sections describe how each component is oraganised.

4. Datapath

The datapath consists of various hardware IPs fabricated on the FPGA. The schematic of the datapath is shown below.

Figure 2: CCSDS Datapath

4.1 Concat

The payload of the satellite is the Ximea hyperspectral imager. The size of each pixel of the output image is 10 bits.
But the memory is byte-organized (8 bits). The camera is interfaced to the Processing System via a USB 3.0 interface.

This IP concatenates the bits from two different memory locations to complete the 10 bits of a pixel. The 10-bit
output of this IP is sent to the next IP, FIFO.

4.2 First In First Out (FIFO) IP

To process the compression of any pixel, the pixels near the current pixel are required (See 4.3). As the name suggests,
this IP makes a queue of the output data from the previous IP. At a particular instant, the FIFO contains the data of all
the pixels from the current band as well as P previous bands. Existing research shows that the values of P > 3 do not
affect the compression ratio considerably. Therefore, we have chosen P = 3 in our system.

Assume that pixels are read-in in a Band Sequential Order, if the pixels till P previous bands are stored, each
consecutive pixel just needs that pixel to be read in and the Last pixel in the Pipeline can be removed as that would no
longer be required. That is why memory on the Fabric has been organised as a First In - First Out Queue.
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The size of this FIFO would have to be equal to Nx ∗ Ny ∗ P + 1 to be able to store all the required data. For
any reasonable system4 this FIFO would be too large to be implemented as a completely Distributed RAM resource on
an FPGA. The resources required for routing, address decoding, and multiplexing are too high for most commercially
available FPGAs. This necessitates the need to use the Block RAM resources available. Our test system is a Xilinx
Zynq 7000 series SOC that has 140 36Kb Block RAMs.115 But Block RAM resources have the constraint of having
not more than 2 read ports. As such the FIFO design can be done in two ways-

1. The FIFO can be made multi-cycle. All the read/write operations can be performed in such a case. The obvious
drawback is the delay caused by such a multi-cycle approach. For every pixel to be compressed, 5 ∗ P reads
would have to be done from the FIFO. In this case the whole advantage of using a FIFO is lost and we are
simply left with an On-Chip Cache for the image rather than having to read from a peripheral memory. The
power constraints in nano-satellites allow only a small window for image compression when the power available
is optimum. The delay leads to higher compression times, which in turn lead to higher power consumption.

2. The FIFO can be divided into multiple smaller FIFOs. For example, one FIFO could be used for each direction
(NW, N, NE, W, Center). This could reduce latency to P reads per cycle. However the cost would be in terms of
FPGA area used. In case of Full prediction, this would require 5 times more resources on the chip as compared
to the optimum.

This is a big challenge in implementing the algorithm for a nano-satellite environment. This paper proposes a
Mixed RAM approach to build the On-Chip Memory.

By observation, the pixels that are actually required for compression are only the ones directly below and sur-
rounding the current pixel. The rest are stored simply to reduce the number of peripheral accesses required. As such
the pixels that are required can be stored in really small pieces of Distributed RAM (Not more than 3 Pixel wide).
These small slices can be interleaved with Large BRAM based FIFOs to create a FIFO of any required size. Such a
FIFO would not have any read latency and would have very low overhead in terms of resources required for imple-
mentation. As a trade-off, such FIFO would be difficult to implement if BRAM based FIFOs are not already available
and the design scales poorly. Additionally, to change the resolution of images, the designer would have to modify the
configuration completely and this process would be very inefficient. But most missions have a fixed spatial and spectral
resolution of images and can thus do with a fixed implementation.

The output of this IP is a pixel vector containing the pixels that surround the current pixel of compression in both
spatial and spectral dimension. This pixel vector would be continuously updated as the algorithm progresses through
the image. In boundary cases, some of the elements in this vector would be undefined.

4.3 Sum and Difference IP

This IP calculates the local sum and differences for the current pixel. The FIFO outputs a pixel vector containing the
pixels shown in the figure below. The logic to compute the local sums and differences can be purely combinational.
The symbols carry the usual meaning.2

Figure 3: Prediction Neighbourhood2

The local sum for a pixel is given by:

4

DOI: 10.13009/EUCASS2019-382



FPGA IMPLEMENTATION OF CCSDS

σz,y,x =


sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, if y > 0, 0 < x < Nx − 1
4sz,y,x−1, if y = 0, x > 0
2
(
sz,y−1,x + sz,y−1,x+1

)
, if y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x, if y > 0, x = Nx − 1

(1)

The central local difference of a band is given by:

dz,y,x = 4sz,y,x − σz,y,x (2)

The directional local differences are given by:

dN
z,y,x =

4sz,y−1,x − σz,y,x, if y > 0
0, if y = 0

(3)

dW
z,y,x =


4sz,y,x−1 − σz,y,x, if x > 0, y > 0
4sz,y−1,x − σz,y,x, if x = 0, y > 0
0, if y = 0

(4)

dNW
z,y,x =


4sz,y−1,x−1 − σz,y,x, if x > 0, y > 0
4sz,y−1,x − σz,y,x, , if x = 0, y > 0
0, if y = 0

(5)

The output of this IP is the local sum and a difference vector containing the directional local differences and
central local differences from P previous bands.

4.4 Weights

The result of prediction is a function of a weighted sum of all local differences, directional as well as central (central
only in case of reduced prediction mode). These weights are updated for every pixel. All the symbols carry usual
meaning.

Wz(t + 1) = clip(Wz(t) ∗ b
1
2

(sgn+(ez(t))2̇−ρ(t)U̇z(t) + 1)c, (ωmin, ωmax) (6)

ρ(t) is the weight update scaling exponent. Larger values of ρ(t) produce smaller increments resulting in slower
adaptation to image data statistics but better steady state performance.

The weights are stored as in a slice of Distributed RAM. The weight update scaling exponent is implemented as
a counter that increments at fixed intervals.

4.5 Predictor IP

The scaled predicted sample value of the pixel is given by:8

s̃z(t) =


clip

(⌊[
ˆdz(t) + 2Ω + 2smid + 1

]⌋)
if t > 0

2sz−1(t) if t = 0, P > 0, z > 0
2smid(t) if t = 0 and (P = 0 or z = 0)

(7)

In the above calculation:
For t > 0, the predicted central local difference ˆdz(t) is the inner product of the difference vector and the weight vector.
Thus the predicted sample value is

ŝz(t) =

⌊
s̃z(t)

2

⌋
(8)

Most multiplications throughout the algorithm are with powers of 2. As such, they can be implemented using
simple shifting hardware. However the vector multiplication here, between weight vector and difference vector neces-
sitates the use of dedicated multiplication hardware. Combinational multipliers would be too hardware intensive while

5
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Booth Multipliers introduce undesirable delay. To tackle this, DSP slices available in the FPGA were used to generate
the scalar product. The available DSP resources on the Zedboard support 18x25 bit multiplication.5 Thus these can
be used to compute the scalar products. Local differences would be 13 bits wide for 10 bit unsigned samples and the
weight resolution can be adjusted to be the 7 to 22 bits wide signed samples.2

4.6 Mapped Prediction Residual IP

This IP calculates the mapped prediction residuals based on the scaled predicted sample values. Since the entropy
encoder requires non-negative values, we need to define another quantity.

δz(t) =


|∆z(t)| + θz(t) |∆z(t)| > θz(t)
2|∆z(t)| 0 ≤ (−1)s̃z(t)|∆z(t)| ≤ θz(t)
2|∆z(t)| − 1 otherwise

(9)

where

δz(t): Mapped prediction residual. This value is now encoded to form the compressed image.

∆z(t): Difference between predicted and actual sample values.

θz(t): Minimum of ŝz(t) − smin and smax − ŝz(t)

The prediction process ensures that the number of times a value occurs is decreased as most of the residuals are
clumped at the centre of the double-sided Gaussian curve.

4.7 Encoder IP

Entropy encoding or simply encoding encompasses various methods, preferably in various situations, all of which are
used in an attempt to try to minimize the average length of the overall source This section specifies the encoding stage
of the compressor and the format of a compressed image. A compressed image consists of a header followed by a
body. The variable-length header, encodes image and compression parameters. The body, consists of encoded mapped
prediction residuals from the predictor. The mapped prediction residuals are sequentially encoded in the order selected
by the user and indicated in the header. This encoding order need not correspond to the order in which samples are
output from the imaging instrument or processed by the predictor. To encode the mapped prediction residuals for an
image, a user may choose to use the sample adaptive entropy coding approach or the block-adaptive approach. Our
system uses the sample adaptive approach for accuracy and better compression ratio. The sample-adaptive entropy
coder typically yields smaller compressed images than the block adaptive entropy coder.10

Various encoding schemes can be used. Given below are some encoding schemes that can be used for the
algorithm:

4.7.1 Unary Encoding

This is a very simple technique and results in a prefix and self-synchronizing code which provides ease of decodability
and error protection. The following are the codes for say, 10 symbols:

Table 1: Unary Code Example

Digit Unary Code
0 0
1 01
2 001
3 0001
4 00001
5 000001
6 0000001
7 00000001
8 000000001
9 0000000001

6

DOI: 10.13009/EUCASS2019-382



FPGA IMPLEMENTATION OF CCSDS

4.7.2 Truncated Binary Encoding

This encoding technique also results in prefix codes. Let us assume that n symbols need to be encoded and 2k ≤ n <
2k + 1, let u = 2k + 1 − n. Let, the codes written using i bits be written in ascending order be called the listi. Now,
the first u symbols are written using the first u symbols of the listk and the last n − u symbols are written using the last
n − u symbols of list − k + 1. This explanation will become clearer, with the example below:
Let the symbols be 0, 1, 2, 3, 4, 5. Hence, n = 6, 2.2 ≤ 6 < 2.3 + 1⇒ k = 2 and u = 2 .

Table 2: Lists for Truncated Binary Code

List 2 List 3
00 000
01 001
10 010
11 011

100
101
110
111

Hence, we encode as:

Table 3: Truncated Binary Code Example

List 2 List 3
0 00
1 01
2 100
3 101
4 110

4.7.3 Golomb Rice Encoding

Mapped prediction residuals are encoded using either the sample-adaptive entropy coding approach. Under the sample-
adaptive entropy coding option, each mapped prediction residual δz(t) shall be encoded using a variable-length binary
codeword. The selection of the code used to encode δz(t) is based on the values of the adaptive code selection statistics
specified below.

Adaptive Code selection statistics: The adaptive code selection statistics consist of an accumulator Σz(t) and a
counter Γ(t) that are adaptively updated during the encoding process. The initial values for Γ(t) and Σz(t) are as follows:

Γ(1) = 2γ0 (10)

where γ0 is the initial count exponent (1 ≤ γ0 ≤ 8) and

Σz(1) =

⌊
1
27 (3.2K+6 − 49)Γ(1)

⌋
(11)

where K is the Accumulator Initialization constant (0 ≤ K ≤ D − 2, where D is the fixed-size dynamic range of the
data samples) For t > 1, the value for accumulator and counter are:

Σz(t) =


Σz(t − 1) + δz(t − 1) , Γ(t − 1) < 2γ

∗

− 1⌊
Σz(t−1)+δz(t−1)

2

⌋
, Γ(t − 1) = 2γ

∗

− 1
(12)

Γ(t) =


Γ(t − 1) + 1 , Γ(t − 1) < 2γ

∗

− 1⌊
Γ(t−1)+1

2

⌋
, Γ(t − 1) = 2γ

∗

− 1
(13)

7
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where γ∗ is the rescaling counter size parameter.
Encoding: For t > 0, the codeword for the mapped prediction residual δz(t) depends on the values of kz(t) and

uz(t), where kz(t) = 0 if 2Γ(t) > Σz(t) + b 49
27 Γ(t)c otherwise kz(t) is the largest positive integer kz(t) ≤ D − 2 such that

Γ(t).2kz(t) ≤ Σz(t) +

⌊
49
27 Γ(t)

⌋
(14)

and uz(t) is calculated as

uz(t) =

⌊
δz(t)/2kz(t)

⌋
(15)

For t > 0, the codeword for δz(t) shall be determined as follows:
a) If uz(t) < Umax then the codeword for δz(t) shall consist of uz(t) zeros, followed by a one, followed by the kz(t) least
significant bits of the binary representation of δz(t).
b) Otherwise, the codeword for δz(t) shall consist of Umax zeros, followed by the D-bit binary representation of δz(t).

4.7.4 Conclusion on Encoders

Golomb encoding gives best results for sources which have a probability distribution similar to a Gaussian distribution.
While the body consists of the entropy encoded codewords, the header consists of the image metadata (12 bytes),
predictor and encoder metadata, in formats as defined in the recommended standard. The image metadata consists
of fields giving information about things like the dimensions of the image, the sample type (signed or unsigned),
the encoding order, etc. The predictor metadata gives information about the predictor parameters like the number of
previous bands taken for prediction, the type of prediction, weight initialization method, etc. Finally, the encoder
metadata has parameters like the unary length parameter (Umax), initial count exponent (γ0), accumulator initialization
constant, etc.

4.8 Serial to Parallel IP

This IP, as the name suggests, divides the encoded value into packets of eight bits each. Since the memory is byte
organised, it is easier for packets of one byte each to be stored into memory. Such organisation also allows easy
retrieval of data from memory.

5. Interfacing

Interfacing the Compression Hardware with the rest of the system has three major components:

1. Getting Image data to and from the hardware.

2. Control of Hardware by the main Processor and User processes.

3. Recovery Mechanisms in case of any Emergency.

One of the major concerns in designing an efficient interface is to maintain a high CPU utilization. At the time of
compression, CPU may be needed to perform other intensive tasks such as attitude control, telemetry, housekeeping etc.
So there should be a way that the image compression hardware can access the image data without CPU intervention.

5.1 Getting Image data to and from the hardware

Here we assume that the Image data is initially stored on a peripheral memory since Hyperspectral Images are too large
to be completely stored on the On-Chip Memory. So, this image must be provided to the compression hardware in
parts. For storing the image, SD and SPI based flash memories are proposed due to high data transfer rates (compared
to other peripheral buses such as I2C and CAN).6 Additionally, flash memories guarantee both the nonvolatility in case
of power loss and a highest storage density as well as they are shock-resistant and power economic.1

In systems where there is no contention for use of the peripheral bus that connects the memory, the FPGA fabric
can be used to generate a purely Hardware based peripheral controller. However, in most systems, these peripheral
buses would be used by other components such as sensors and actuators. Therefore, the CPU must perform arbitration
of the peripheral bus. Additionally, if the peripheral memory is used as a block device, block management would be
hidden from the hardware.

8
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To achieve communication between the compression hardware and peripheral memory, BRAM modules on
the FPGA should be used as buffer holding spaces for both uncompressed and compressed image. Software can
periodically load image data from the peripheral memory and store it into these buffers. When state of these buffers are
low, interrupts can be sent to the Processing system to transfer more data.

5.2 Control of Hardware by main processor and User Processes

The flight plan of the satellite would be implemented as a user level process.9 This flight-plan should be able to control
the compression hardware and also receive feedback as asynchronous interrupts. For this GPIO based device drivers
need to be created. The driver creates an abstraction of the hardware features in the form of device files and IOCTL
calls.

5.3 Recovery in case of emergencies

Due to various external factors such as critically low power, sudden temperature changes, etc, the On-Board Computer
might need to temporarily shut down the compression hardware. In such a case the data compressed till now would
have to be compressed again because the statistics are adaptive. The satellite would loose a lot of time and energy in
compressing it again. Due to this, there needs to be some recovery mechanism to recover from such crashes. This can
be implemented in software for better control. One possible solution could be to save the "state" at regular intervals.
For eg, whenever the input and output buffers are flushed to the peripheral memory, Software could save statistics such
as current weights etc, to a non-volatile memory and effectively create a restore point from which compression can be
resumed by simply refilling the FIFO queue and setting the values of the statistics to saved ones.

6. Control Path

The Datapath creates a few pipelining hazards when implemented. To overcome this, the controller of the Datapath
is connected to each IP and sends control signals to them. The IPs are enabled by the controller at specific instants to
overcome the bottlenecks that creep in due to multiple feedback loops in the algorithm and also due to the fact that a
some IPs are sequential and some are combinational.

Let us denote the current time by t. The following table shows the appropriate instances when the IPs are enabled
to avoid hazards and efficiently compress the image.

Table 4: Enable Signals to IPs

Sum and Diff Weight Update Weights Dot Product Predictor
t − 2 * t − 2

* t − 1 * t − 2 t − 2
t − 1 * t − 1 * *
↪→ t * t − 1 t − 1

t

7. Future Work

Future work includes:

1. Development of a co-processor implementing the CCSDS algorithm alongside a RISC processor.

2. A testbench will be created to test the synthesised algorithm. This testbench will monitor the power constraints
when particular parameters are changed in the algorithm.

3. The Image Compression mode of the satellite will be tested alongside all the other modes in which the satellite
will operate.7

4. Software control for the hardware has to be developed, so that the OBC can monitor the compression on board
the satellite.
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