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To describe the self-induced separation of the laminar boundary, earlier mathematical models were 

created based on the use of asymptotic methods for the description of supersonic and subsonic 

regimes [1-2]. At the same time, the description of transonic modes remained unexplored, despite 

a number of papers in which individual regimes were considered.   

Some progress could be made on the basis of results using the modified Khokhlov method, 

previously used to solve problems of nonlinear acoustics [3], including the description of 

nonlinear wave beams. The authors of [4] applied this method to solve non-linear non-stationary 

problems of gas dynamics at transonic velocities of flow around thin bodies. 

The works noted above allow one to describe a self-induced separation of the laminar boundary 

layer at transonic flow rates. Earlier, the Karman – Guderley equation [5–6] was used to describe 

a perturbed transonic flow. The approach developed in [4] made it possible to obtain solutions of 

the Lin-Reisner-Tzyan equation, which expands the possibilities of describing viscous-inviscid 

interaction processes at transonic speeds over a certain range of variation of the Mach number.      

One of the important properties in the description of the self-induced separation is the separation 

of a three-layer structure of a perturbed flow, previously predicted in the work of V. Heisenberg 

[7], devoted to the analysis of the characteristics of linear hydrodynamic stability at high Reynolds 

numbers. This structure involves the selection of three characteristic regions containing streams of 

external inviscid flow, the main part of the flow in the boundary layer and the near-wall thin region 

in the boundary layer, in which the influence of viscosity and nonlinearity is significant. The 

following notation is used to denote the components of the velocity vector, pressure, density, 

dynamic viscosity coefficient, Cartesian coordinates, .- 2, , , , , ,u u u v u p lx ly           

respectively. The index refers to the functions in the unperturbed oncoming flow, l is the distance 

on the plate from the leading edge to the area of interaction and separation. It is assumed that the 

separation of the boundary layer may be caused by a fall of the shock on a laminar boundary layer, 

a break in the contour, or other reasons  

      After a series of transformations, the formula for determining the dimensionless pressure in 

the flow around a thin two-dimensional profile [4] can be represented as 

2/3
0 3/2

2( 1)[1 (1 ) ]
A

p M
K

= − − +                                                            (1) 

where 2/3
0 12( 1) / (3 )    K M = −  transonic similarity parameter, -nondimensional body 

thickness, 1 ( 1) / 2 = +  

In this case, the boundary layer or, more precisely, the change in the thickness of the extrusion of 

the boundary layer acts as such a profile. Below it is assumed that the Mach number exceeds unity, 

so 0K  . It can be shown that for small values of perturbations, the formula transforms into the 

Akeret formula. 
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Let us estimate the scales of perturbed functions in the near-wall region of the flow (region 3). 

Regions 1 and 2 refer to the external non-viscous flow and to the main part of the flow in the 

boundary layer. The magnitude of the longitudinal velocity is related to the scale of region 3 as 

follows. 

 
~ /u y   

where 1/2Re −=  

Further, we denote 0 1M = − where the 0M  Mach number of the unperturbed flow, then from (1) 

follows the estimate    

~p   

From the longitudinal momentum equation, one can obtain an estimate for the magnitude and 

perturbation of the longitudinal velocity 

1/2~u   

The scale of the transverse size of region 3, as well as the scale of variation of the extrusion 

thickness, is determined as follows 

1/2~ ~y A   

From the formula for determining the pressure (1) it follows that 
1/2~ ~x A   

Another condition is related to the uniformity of orders of viscous and inertial terms in region 3 

2
2 2

2 2
~ ,    ~ ,   ~

p u p A

x Ay
   

 

 

 
 

The last relation follows from the limit 

~ 1K  

Where  the ratio between the Mach number and the thickness of the boundary layer is valid 

 

~   

Make the following transformations 

1/2 1/2 1/2 1 1/2 1/2 1 1/2
1 1,   ,   w w wu u y a A a A     − − − − −= = =  

1/2 1 1/2 3/2
1 1,   wp p x a K x  − − −= =  

Then the equations in the region  3 take the following form 
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where 

3/2 2 1/2 2/3 2/3 1/3
0

13 2 2/3 2/3 2/3 2/3
1 1 1

2 2( 1) 21
,   ,   = ,   

23 (3 ) 3
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   
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− +
 = = =  

With boundary conditions  

1 1 1 1  ,   0x u y p→ − = =  

1 1 1 1  y u y A→ = +  

For further analysis, we turn to the variable, assuming the monotonicity of the dependence of the 

induced pressure on the longitudinal coordinate. We introduce the flow function   

2
1 / 2y f = +  

Then the equation of motion takes the form 

 

1 1

1 1 1 1
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p f f p

f y f f
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Consider the linear mode  

 

 

1 1
1

1 1 1 1
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p f f p
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Then the solution can be found in the form 

2
1 1 1 1

1 1 2
1 1 1 1

u u p u
u v

x y x y

   
+ + = 
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1 1f p f=  

1 1
1 1 1 1

1 1 1 1

1 1
( )

p p
y f f f

p x p x

  − + = 
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1

1 1 1

1 3

4 ( )

p

p x f


= −
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1 1 1 1
1

3
exp( ),   

4 ( )
p c x

f
 = = −

 
 

1 1 1 1 1 1( )y f f f  − + =   

It is significant that the solution of the linear problem is defined up to a constant c. Depending on 

the sign of the constant, description or compression flow (with positive values of the constant) or 

expansiom flow (with negative values of the constant) is possible. The results of solving a linear 

problem are further used to numerically solve a nonlinear problem. A description of the numerical 

scheme and solution method is presented in the monograph [8].  

Figure 1 shows the distribution of the induced pressure perturbation upstream from the separation 

point as a function of the longitudinal coordinate for the parameter value 1 = . The solution was 

obtained in the region of positive values of surface friction up to the separation point. 

 

 

 

Figure 1 The dependence of the pressure perturbation from the longitudinal coordinate 1x =   

 

The figure 2 shows the distribution of surface friction upstream from  the separation point.  
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Figure 2 The dependence of surface skin friction 1

1

( )w
u

y



=


on the longitudinal coordinates  

1x =  for the parameter 1 =  

Finally, fig. 3 shows the dependence of the pressure perturbation ps  at the separation point on the 

parameter value  . It should be noted that when this parameter tends to zero, the pressure 

perturbation also tends to zero. Using the above equations, one can obtain the asymptotic behavior 

of pressure at the separation point for small and large values of the parameter  .       Small values 

of this parameter correspond to the transition to the description of separation on the basis of the 

theory of free interaction. 

1/2~ps   

Larger parameter values  correspond to the transonic limit when  0K →  

 
1/5~ps   
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Fig 3. The dependence of pressure  ps at separation point on the parameter  .  

Thus, the constructed model of the flow provided a description of the processes of viscous-non-

viscous interaction and separation at transonic speeds in the conditions of the Mach number 

approaching unity. It is significant that for finite Mach numbers for supersonic flows, the model 

goes over to the previously constructed model of free interaction. 
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