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Abstract 
In designing flight control system or developing high-level flight simulator, the accurate and 

comprehensive representation of the aerodynamic characteristics of an aircraft is required. In case of 

high manoeuvrable unstable aircraft, the identification of the aerodynamic characteristics can be 

challenging because of the engaged control system. In this paper, it is aimed to estimate aerodynamics 

characteristics of highly manoeuvrable unstable aircraft with engaged control system for simulation data. 

For this purpose, F-16 nonlinear aircraft is modelled using aerodynamic database is derived from a low 

speed wind tunnel test. In analysis of simulated data, equation error and output error methods in time 

domain are used to estimate aerodynamic parameters defined in model postulate. The goal is to find a 

compact model structure which has adequate complexity to capture the nonlinearities. Using FAA 

specified guidelines in terms of tolerances on each variables for short-period and Dutch-roll manoeuvres, 

the identified model is validated.  

1. Introduction 

System identification yields a complete breakdown of the various components contributing to the observed response, 

and thereby provides an overall understanding of the flight vehicle’s dynamics. For many applications, an aircraft can 

be assumed to be a rigid body, whose motion is governed by the laws of Newtonian physics. System identification can 

be used to characterize applied forces and moments acting on the aircraft that arise from aerodynamics, inertial, 

gravitational and propulsion. Typically, thrust forces and moments are obtained from ground tests, so aircraft system 

identification is applied to model the functional dependence of aerodynamic forces and moments on aircraft motion 

and control variables. 

 

Aircraft system identification is primarily concerned with providing a mathematical description for the aerodynamic 

forces and moments in terms of relevant measurable quantities such as control surface deflection, aircraft angular 

velocity, airspeed or Mach number, and orientation of the aircraft to the relative wind [1]. Aerodynamic parameters 

quantify the functional dependence of the aerodynamic forces and moments on measurable quantities, when the 

mathematical model is parametric. The parameter estimation process consists of finding values of unknown model 

parameters in an assumed model structure.  

 

The field of system identification is so wide that it is impossible to cover it in all aspects in such a paper. Briefly, 

parameter estimation can be seen as defining a probability density function describing the difference between system 

model response and measured system response. Two estimation approach can be distinguished from each other. Non 

state parameters such as force and moment coefficients, which are not integrated during simulation are determined 

without the knowledge of their past history. This method is called equation-error method [2]. System outputs are taken 

such as angle of attack, angular rates etc. which are integrated during a simulation and thus estimation approach is 

called output-error method [2]. In this study, equation-error method is used firstly to identify aerodynamic parameters 

and the results are used as starting point in output-error method for fine-tuning. Model postulation is created according 

to prior knowledge about aircraft aerodynamics. 

 

The flight test data used in this study is collected from a nonlinear F-16 simulation. F-16 nonlinear aircraft is modelled 

with controls for leading edge flap, flaperon, elevator, rudder and throttle. Stability augmentation system and control 
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augmentation system have been developed using this nonlinear model to carry out the manoeuvres with safety. 

Simulation data is collected in 12 different trim points with combination of two different altitude and 6 different speed 

settings that differs from 0.3 Mach to 0.6 Mach speed. To excite the different modes of vehicle dynamic motion, control 

inputs of pilot are designed for short-period, Dutch-roll and bank-to-bank manoeuvres.  

 

This study aims to address the challenges in system identification process and how to overcome them in a practical 

way. In this content, parameter estimation technique and analysis of parameter estimation for equation error and output 

error methods are described in detailed. Results are validated using FAA specified guidelines in terms of tolerances on 

each variable for short-period and Dutch-roll manoeuvres. 

2. Aircraft Modelling 

The aircraft simulation model includes the main model and subsystem models (bare-airframe, actuator, engine, 

environment, sensor and flight control). Bare-airframe model consists of aerodynamics and equation of motion models 

(EQM). The aerodynamic data of the aircraft are obtained from the study published in the 1979 NASA technical report 

prepared from wind tunnel tests [3]. In EQM model, all forces and moments acting on body axes is summed and 

equations of motion is solved. Actuators are modelled as a first order system [4]. Flight control model includes stability 

augmentation system (SAS) and control augmentation system (CAS). In highly manoeuvrable aircraft, CAS and SAS 

systems are needed to perform tasks such as precision tracking of targets [4]. Pitch rate command and roll rate 

command system is used to control the aircraft. 

3. Simulation & Data Gathering 

Estimation of stability and control derivatives are carried out primarily from the dynamic response of an aircraft to 

specific control inputs. A variety of manoeuvres is usually necessary to excite dynamic motion about different axes 

using independent inputs on every control. In general, it is recommended to start each manoeuvre from a trimmed level 

flight and allow about 5-10 seconds of steady flight before applying specific control inputs and depending upon the 

mode of motion, to allow sufficient time after the input to allow the aircraft oscillate [1]. 

3.1 Input design 

The main idea behind system identification manoeuvres which will be described is to excite related modes of aircraft 

motion independently and sufficiently. In general, while exciting a particular mode, excitation of other modes should 

be minimized. Input design for short period mode, Dutch roll and bank to bank manoeuvres are explained in below. 

 

Short Period Mode (SP); 

It is a multi-step 3-2-1-1 elevator input exciting the short period motion with variations in the angle of attack of about 

4 degrees and 0.5 g in the vertical acceleration. It provides the most information to enable the estimation of 

derivatives pertaining to the vertical and pitching motion [1]. 

 

Dutch Roll (DR); 

The Dutch Roll manoeuvre provides information to enable the estimation of derivatives pertaining to the lateral 

motion[1]. The Dutch roll manoeuvre provides maximum information on the frequency and damping of this oscillatory 

mode. It is excited by applying rudder inputs. Usually several cycles of oscillations are recorded. The resulting 

maximum peak-to-peak variation in the angle of sideslip is typically of the order of ±4 deg., or 0.1g lateral acceleration. 

Dutch roll and bank-to-bank manoeuvres are performed at different trim speeds, because most of the lateral –directional 

derivatives depend on the angle of attack. 

 

Bank to Bank (BTB); 

Bank to Bank manoeuvre provides more additional information on lateral-direction derivatives related to roll rate and 

aileron deflection [1]. Aileron input is applied, which roll the aircraft from wings-level to 30 deg. bank on one side; 

this is followed by changing input and going smoothly to wings-level and to opposite bank angle; and again to wings-

level condition. The changes in aileron result in rapid variation in roll rate and acceleration. 
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Figure 1: Manoeuvre Excitation for Short Period, Dutch-Roll, Bank to bank [1] 

3.2 Simulations 

Simulation data is collected in 12 different trim points with combination of two different altitude and 6 different speed 

settings that differs from 0.3 Mach to 0.6 Mach speed. To excite the different modes of vehicle dynamic motion, control 

inputs of pilot are applied for short-period, Dutch-roll and bank-to-bank manoeuvres. All test steps were started at trim 

condition and after the manoeuvre the autopilot was activated to trim the aircraft. 

 

For aerodynamic model extraction from test data, a typical set of measurements required consists of 1) control surface 

deflections, 2) linear accelerations, 3) angular rates, 4) attitude angles, 5) air data, 6) static pressure, 7) engine 

parameters, and 8) pilot forces are recorded [1, 2]. A sampling frequency of 20-25 Hz is usually sufficient for rigid-

body aerodynamic model estimation [2]. Therefore, simulation results are recorded at 20 Hz sampling rate. 

 

4. Flight Path Reconstruction 

 
Flight path reconstruction (FPR) is needed to improve flight test data (measured data) because LS methods are so 

sensitive to such systematic errors (Scale factor, Zero shift biases) [1]. Flight path reconstruction is also called as data 

compatibility check. The aim of data compatibility check is to ensure that measurements used for aerodynamic model 

identification are consistent and error free. The basis for verifying the compatibility of measured data is the use of 

kinematic relationships. 

 

In simulations, systematic errors such as scale factor and zero shift biases not included. Therefore, FPR process is not 

needed. If there is a systematic error in data, flight path reconstruction process of flight data can be handled in two 

steps described in below [1]. 

- Scale factor and zero shift bias values are determined using output error method. 

- After scale factor and bias values are cleared from data, aircraft state estimation is done to check the 

compatibility of measured values. 

 

5. Model Postulation 

 
Modelling the aircraft aerodynamics raises the fundamental question of what the mathematical structure of the model 

should be. Aerodynamic modelling, which provides a means of obtaining relationships between the three forces X, Y, 

Z along the three Cartesian coordinates and the moments L, M, N about these axes as functions of the linear 

translational motion variables u, v, w, rotational rates p, q, r and control surface deflections [2]. For system 

identification applied to aircraft, it is more convenient to use non-dimensional derivatives of the non-dimensional 

aerodynamic force and moment coefficients CX, CY, CZ, Cl, Cm, and Cn. These derivatives are obtained from the 

following relationships 

 

Longitudinal aerodynamic coefficients: 

𝐶𝑎 = 𝐶𝑎(𝛼, 𝛽, 𝑞, 𝛿𝑒 , 𝐶𝑇) for 𝑎 = 𝐷, 𝐿 𝑎𝑛𝑑 𝑚  

 

Lateral aerodynamic coefficients: 

𝐶𝑎 = 𝐶𝑎(𝛼, 𝛽, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟 , 𝐶𝑇) for 𝑎 = 𝑌, 𝑙 𝑎𝑛𝑑 𝑛  

 

When the broad range of aircraft flight envelope is considered, these aerodynamics coefficients have nonlinear 

relationships with their dependent variables. The nonlinearity in model postulation can be expressed with using 

polynomial function or using breakpoints. Parameters dependent on angle of attack in longitudinal coefficients are 

expressed with breakpoints. 
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𝐶𝑋 = 𝐶X0 + 𝐶𝑋𝛼(𝛼) + 𝐶𝑋𝛿𝑒
(𝛿𝑒, α) + 𝐶𝑋𝑞q + 𝐶𝑋𝛿𝐿𝐸𝐹

(𝛿𝐿𝐸𝐹 , α) 

𝐶𝑍 =  𝐶Z0 + 𝐶𝑍𝛼(𝛼) + +𝐶𝑍𝛿𝑒
(𝛿𝑒, α) + 𝐶𝑍𝑞q + 𝐶𝑍𝛿𝐿𝐸𝐹

(𝛿𝐿𝐸𝐹 , α) 

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼(𝛼) + 𝐶𝑚𝑞𝑞∗ + 𝐶𝑚𝛿𝑒
(𝛿𝑒 , α) + 𝐶𝑚𝛿𝐿𝐸𝐹

(𝛿𝐿𝐸𝐹 , α)  

𝐶𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛽(𝛼, 𝛽, 𝛽3) + 𝐶𝑌𝛿𝑎
(𝛿𝑎, β) + 𝐶𝑌𝛿𝑟

(𝛿𝑟 , β) + 𝐶𝑌𝑝𝑝∗ + 𝐶𝑌𝑟𝑟∗ + 𝐶𝑌𝛿𝐿𝐸𝐹
𝛿𝐿𝐸𝐹  

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛽(𝛼, 𝛽, 𝛽3) + 𝐶𝑙𝛿𝑟
(𝛿𝑟 , β) + 𝐶𝑙𝛿𝑎

(𝛿𝑎, β) + 𝐶𝑙𝑝𝑝∗ + 𝐶𝑙𝑟𝑟∗ + 𝐶𝑙𝛿𝐿𝐸𝐹
𝛿𝐿𝐸𝐹 

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽(𝛼, 𝛽, 𝛽3) + 𝐶𝑛𝛿𝑟
(𝛿𝑟 , β) + 𝐶𝑛𝛿𝑎

(𝛿𝑎, β) + 𝐶𝑛𝑝𝑝∗ + 𝐶𝑛𝑟𝑟∗ + 𝐶𝑛𝛿𝐿𝐸𝐹
𝛿𝐿𝐸𝐹 

 

Where normalized angular velocities are; 

𝑝∗ =
𝑝𝑏

𝑉
; 𝑞∗ =

𝑞𝑙

𝑉
; 𝑟∗ =

𝑟𝑏

𝑉
 

 

6. Parameter Identification Methodology 
 

To estimate aerodynamic parameters defined in model postulate, equation error and output error methods in time 

domain are used in analysis of simulated data. Equation-error method is used firstly to identify aerodynamic parameters 

and the results are used as starting point in output-error method for fine-tuning. For both methods, FVSysID software 

developed by Jategaonkar Ravindra is used [8]. 

6.1 Equation error method 

The equation-error method was one of the first analytical techniques used to estimate aircraft dynamic model 

parameters from flight data. The equation-error method can be considered a method wherein the model matches state 

time-derivative information from the dynamic system, rather than matching the states or outputs. There is no need to 

integrate equations of motion to get model outputs when using the equation-error method, because the matching is 

done in the equations of motion themselves (hence the name “equation-error”). One important practical consequence 

is that the equation-error method can be applied equally well to data from inherently unstable aircraft flying under 

closed-loop feedback control [1, 5]. 

 

In its most common form, the equation-error method calculates aerodynamic parameter estimates that minimize the 

sum of squared differences between values of non-dimensional force and moment coefficients determined from 

measured flight data and corresponding model values. The non-dimensional force and moment coefficients are 

computed by substituting measured and known quantities. 

 

 
Figure 2: Flowchart of equation error method  
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The general form of model equation and least equation can be written using vector and matrix notation as 

 

𝑦 = 𝑋𝜃 

And; 

𝑧 = 𝑋𝜃 + 𝑣 
Where; 

 

𝑧 = [𝑧(1) 𝑧(2) …   𝑧(𝑁)]𝑇 = 𝑁𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 

 

𝜃 = [𝜃0 𝜃1 … 𝜃𝑛]𝑇 = 𝑛𝑝𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑛𝑝 = 𝑛 + 1 

 

𝑋 = [1 𝜉1 … 𝜉𝑛]𝑇 = 𝑁𝑥𝑛𝑝𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑜𝑛𝑒𝑠 𝑎𝑛𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 

 

𝑣 = [𝑣(1) 𝑣(2) …   𝑣(𝑁)]𝑇 = 𝑁𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 

 

The regressors vectors 𝜉𝑗 , 𝑗 = 1,2, … , 𝑛 are known postulated functions of the vectors of indepedendent variables.  The 

best estimator of  𝜃 in a least square sense comes from minimizing the sum of squared differences between the 

measurement and the model, 

𝑣 = 𝑧 −  𝑋𝜃 

𝐽(𝜃) =
1

2
(𝑧 −  𝑋𝜃)𝑇(𝑧 −  𝑋𝜃) 

The parameter estimate 𝜃̂ that minimizes the cost function 𝐽(𝜃) must satisfy 
𝜕𝐽

𝜕𝜃
= −𝑋𝑇𝑧 + 𝑋𝑇𝑋𝜃̂ = 0 

Or  

𝑋𝑇𝑋𝜃̂ = 𝑋𝑇𝑧 

The 𝑛𝑝 = 𝑛 + 1 equations represented in equations above are called the normal equations. The solution of these 

equations for the unknown parameter vector 𝜃 gives the formula for the least square estimator, alsa called the ordinary 

least squares estimator,  

𝜃̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑧 

The equations above show that the equation-error method for parameter estimation has a relatively simple, non-iterative 

solution, based on linear algebra. The equation-error method can be used very efficiently for very large data sets, e.g., 

from wind tunnel tests or multiple flight test manoeuvres. 

 

Some properties of equation error method can be summarized as: 

• EEM minimizes the equation error between measured and estimated dependent variables 

• Presents a single shot solution, no iterations required 

• Easy to implement, involves simple matrix operations 

• Preferred for linear and unstable system 

6.2 Output error method 

The output-error method can be considered a method wherein the model matches the states or outputs from the dynamic 

system. A model that uses equation error parameter estimates will not produce the best match to the measured outputs 

of the dynamic system, since that is not what is being optimized.  Any mismatch of the equation-error model to the 

(derivative) data will be integrated over time and numerical integration of inherently unstable and highly sensitive 

systems may lead to numerical divergence in the simulation and optimization. Unless the modelling errors from the 

equation-error parameter estimation are low-amplitude and zero-mean, the result can be a significant mismatch 

between measured aircraft outputs and the model outputs computed from the equations of motion using equation-error 

parameters. In the output-error case, the mismatch between measured outputs and model outputs is intentionally 

minimized by adjusting the parameter estimates. Since its introduction in the 1960s, the output error method is the 

most widely applied time-domain method to estimate aircraft parameters from flight data [1]. 

 

𝑥̇(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡), 𝜃] , 𝑥(𝑡0) = 𝑥0 

𝑦(𝑡) = 𝑔[𝑥(𝑡), 𝑢(𝑡), 𝜃] 
𝑧(𝑡𝑘) = 𝑦(𝑡𝑘) + 𝐺𝑣(𝑡𝑘) 
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𝑓 𝑎𝑚𝑑 𝑔 𝑎𝑟𝑒 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑎𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑑 

𝑥 ∶ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑢 ∶ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑦 ∶ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑧 ∶ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑣(𝑡𝑘): 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 

𝜃: 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 

 

Figure 3: Flowchart of output error method [1] 

Estimates of parameter vector 𝜃̂ is obtained on minimizing the cost function  

𝐽(𝜃, 𝑅) =
1

2
∑[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇 𝑅−1[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]

𝑁

𝑘=1

 

Where R is the measurement noise covariance matrix, given by 

𝑅 =
1

𝑁
∑[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)][𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇

𝑁

𝑘=1

 

Updating of parameters is given by Gauss Newton formulation 

 

𝜃̂𝑘+1 = 𝜃̂𝑘 + ∆𝜃 

𝐹 ∆𝜃 =  −𝐺 

Where 

𝐹 = ∑ [
𝜕𝑦(𝑡𝑘)

𝜕𝜃
]

𝑇

𝑅−1

𝑁

𝑘=1

[
𝜕𝑦(𝑡𝑘)

𝜕𝜃
] 

𝐺 = − ∑ [
𝜕𝑦(𝑡𝑘)

𝜕𝜃
]

𝑇

𝑅−1

𝑁

𝑘=1

[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)] 

F is the information matrix (also called Hessian), G is the gradient vector and ∆𝜃 the parameter change vector. 

6.3 Parameter estimation techniques 

In parameter estimation, we use different sequence of manoeuvres to estimate each aerodynamic coefficients. These 

techniques are similar in itself for both longitudinal and lateral coefficients. Therefore, this procedure will be explained 

only for CZ force coefficient and CN moment coefficient as an example. Often there is a desire to estimate aerodynamic 

model parameters using data from more than one flight test manoeuvre. This is useful when individual manoeuvres 

have good information content for estimating some parameters but not others. Sometimes multiple manoeuvres taken 

together can provide more complete information for parameter estimation. Equation-error allows concatenation of the 

data from various manoeuvres [7, 8]. 
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Estimation of CZ coefficient (Longitudinal coefficient); 

1) Use SP manoeuvres and estimate longitudinal parameters  (𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟1)  

2) Try to find model-update to improve SP observing the time history plots, cross plots and cross plots of residuals, 

(𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟2) 

3) Free all parameters in 𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟2 and reestimate parameters running SP+DR manoeuvres  

4) Try to find model-update to improve DR observing the time history plots, cross plots and cross plots of residuals  

(𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟3) 

5) Free all parameters in 𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟3 and reestimate parameters running SP+DR+BTB manoeuvres  

6) Try to find model-update to improve BTB observing the time history plots, cross plots and cross plots of residuals  

(𝐶𝐿 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟4) 

7) Check cost function in all steps until change of cost function is small 

Estimation of CN coefficient (Lateral coefficient); 

1) Use DR+BTB manoeuvres and estimate parameters with (𝐶𝑁 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟1)  

2) Try to find model-update to improve DR+BTB observing the time history plots, cross plots and cross plots of 

residuals, (𝐶𝑁 𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒 𝑣𝑒𝑟2) 

3) Check cost function in all steps until change of cost function is small 

6.4 Analysis of parameter estimation 

Estimates are not the same as the facts. Model validation is necessary to gain confidence in, or reject, a particular 

model. This basic fundamental principle applies to all engineering decisions. In this section, we deal with the issues 

related to the process of determining correctness, accuracy and applicability of the identified model. The various 

different aspects of model validation can be broadly classified for equation-error and output-error methods.  
 
Some of the criteria used in the equation-error method are as follows. 

 

Statistical Accuracy; we firstly check if the expected value is reasonable. The magnitude of order must be close to 

real value. Otherwise, we are doing something wrong. And then we check the standard deviation, relative standard 

deviation and correlation matrix results. If relative standard deviation should not exceed 50 and none of correlation 

should exceed 0.9.  

 

Time History Plots; comparing the time histories of flight measured and model estimated responses is a standard 

procedure to qualitatively evaluate the model fidelity. Any discrepancies in the match between the two responses 

often provide important clues to improve upon the model fidelity. 

 

Cross Plots; besides plotting time histories of flight measured and estimated responses, it is sometimes necessary to 

make cross plots of arbitrary two variables, for example lift coefficient versus angle of attack, Rolling and yawing 

moment coefficients versus angle of sideslip, coefficient of drag versus lift coefficient. Such cross plots are useful to 

gain further insight into the modelling aspects. 

 

Cross Plots of Residuals; the test of the residuals (error between the predicted and measured response) is a good 

indicator of the assumptions made. Flat spread of residual cantered around zero is the ideal case whereas non-flat 

spread indicates that the model needs improvement with the variable observed. 

 

Proof-of-match process is used in the output-error method. 

 

Proof-of-Match (POM); 

The capability of identified model is determined by comparing the flight measured system responses with those 

predicted by the model for the same (‘identical’) control inputs. In flight vehicle applications terminology, this process 
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is called proof-of-match; it is an important part of flight simulator certification and acceptance. In this proof-of-match 

process, the identified aerodynamic model is kept fixed[1]. 

A fundamental principle of empirical sciences suggests that complementary flight data , flight manoeuvres not used in 

the estimation of the aerodynamic database in equation error method, to check the model capability.  

The FAA has also set out guidelines in their CFR (Code of Federal Regulations) FAR (Federal Aviation Regulation) 

Part 60 (FAA, 2008), which defines the requirements for the evaluation, qualification and also maintenance of FSTDs. 

The document includes six appendices covering requirements, objective tests for full flight simulators, subjective 

evaluation, sample documents, wind shear training and FSTD directives. [9] 

 
The simulation is to be started from the same initial conditions as in the flight. The initial conditions have to be suitably 

adjusted to match the flight conditions to be adjusted. In real flight test, measurements of the control inputs and outputs 

are subjected to measurement errors and noise. They also have to be adjusted. Likewise, the identified models are not 

precise. That is why, aerodynamic coefficients also should be adjusted. A pragmatic approach is to allow small biases 

on the selected initial conditions, on the measured control deflections and on the aerodynamic coefficients. The 

effective aerodynamic parameters in system identification manoeuvres are listed below. 

Table 1: The effective aerodynamic parameters in system identification manoeuvres 

 
 
To eliminate subjective evaluation of the match between measured system responses and model predicted outputs, 

FAA has specified guidelines in terms of tolerances for each variable, depending upon the nature of the validation 

test. As an example, Table 2 provides the definition of three tests, giving tolerances, flight conditions to be tested for 

each. For complete list of validation test, the reader is referred to [9, 10]. 

 

Table 2: FAA validation tests and tolerance values 

 
 

7. Parameter Identification Results 
Firstly, equation error method is used to estimate parameters defined in model postulation. Parameter estimation 

technique given in previous section is applied in equation error method. After parameters are found, the results are 

used as starting point in output error method. Details for both results are explained here. 

7.1 Equation error method 

In equation error method, parameter estimation is done for all aerodynamic coefficient given in model postulate. 

However, results are given for only CZ force coefficient and CN moment coefficient. 
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7.1.1 CZ coefficient results 

Simulation data of short period manoeuvres is used to estimate the parameters of CZ coefficient. The variables to 

which the CZ coefficient depends are determined in the model postulation study. Considering the nonlinear behaviour 

of the CZ coefficient depending on the angle of attack, the parameters depending on the angle of attack are represented 

with breakpoints. 

 
Figure 4: Time-dependent change of the measured and estimated CZ coefficient for clean data 

 

 
Figure 5 Time-dependent change of the measured and estimated CZ coefficient for clean data 

 

 

 
Figure 6: Time-dependent change of the measured and estimated CZ coefficient for clean data 

 

When the changes in CZ coefficient 𝛿𝐿𝐸𝐹 − 𝛼, 𝛿𝑒 − 𝛼, 𝑞 − 𝛼 variables are considered, it is seen that the estimated 

values in the flight regime where the data are collected are similar to the actual values. 
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7.1.2 CN coefficient results 

Simulation data of bank to bank and Dutch roll manoeuvres is used to estimate the parameters of CN coefficient. The 

variables to which the CN coefficient depends are determined in the model postulation study. The variables 

𝛽, 𝛼, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟 ve 𝛿𝐿𝐸𝐹 appear to be effective in the CN coefficient. Considering the sideslip angle dependent behavior 

of the CN coefficient, a third-degree polynomial approach was performed for the sideslip angle dependent parameters. 

 
Figure 7: Time-dependent change of the measured and estimated CN coefficient for clean data 

 

Figure 8: Variation of estimation errors according to dependent variables of CN coefficient for clean data 

When the changes in CN coefficient 𝛿𝑎 − 𝛽, 𝛽 − 𝛼, 𝑟 − 𝛼, 𝛿𝑟 − 𝛼, 𝛿𝑟 − 𝛽, 𝛿𝐿𝐸𝐹 − 𝛼 and 𝑝 − 𝛼 variables are 

considered, it is seen that the estimated values in the flight regime where the data are collected are similar to the actual 

values. Only the variation of the dynamic stability coefficients at high attack angles and the LEF effects are not fully 

obtained by this postulate. The reason for this is that as the angle of attack increases, the nonlinear effects of the 

variables dependent on CN increase. Nonlinear behaviour depending on the angle of attack can be better expressed 

using breakpoints. 
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7.2 Output error method 

Using the result obtained in equation error method as a starting point in the output method and keeping the aerodynamic 

model fixed in a complementary flight data and without any biases in the control deflections and in the initial 

conditions, we get the following results for a short period manoeuvre at 0.35 Mach and 10000 ft. 

 

 
Figure 9: Time histories of output variables (measured and estimated) 

 
Figure 10: Short period manoeuvre tolerances 

 

The flight measurements with these tolerances define a band within which the model predicted response must lie. For 

the other variables, particularly those of the cross axis, a qualitative match which means showing correct trends, is 

usually considered adequate. The model adequacy is quite apparent from the figure. The result is fairly good. There is 

just a small duration violation at pitch angle value for FAA requirements at figure (10).  

 

Just recall that a pragmatic approach is to allow small biases on the selected initial conditions, on the measured control 

deflections and on the aerodynamic coefficients. 

It is apparent that the specified initial conditions are reasonably accurate, but the simulation shows drifts in all of the 

variables that are attributed to biases in the control deflections and small errors in the starting values of the initial 
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conditions. Here, biases in the control deflections need to always be considered to avoid drifts in the integrated 

variables, even when such biases may be very small. After considering biases in the aileron deflection, there is a good 

match between measured data and simulated data at figure (11, 12) and we did not need to tune aerodynamic 

coefficients. 

 

In case we need to tune aerodynamic coefficients, we do it from multiple short period manoeuvres by keeping 𝐶𝑚0
, 

𝐶𝑚𝑎𝑙
 and 𝐶𝑚𝑞

 parameters free (Table 1). 

 
Figure 11: Time histories of output variables (measured and estimated) 

 
Figure 12: Short period manoeuvre tolerances 

 

The dashed lines are obtained from measured data plus/minus the tolerances specified in table 1, and the continuous 

lines show the model predicted output, which is well within the allowed band for Level-D model fidelity. 
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And we get the following results for a Dutch-roll manoeuvre at 0.35 Mach and 10000 ft. 

 

 
Figure 13: Time histories of output variables (measured and estimated) 

 
Figure 14: Dutch roll manoeuvre tolerances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOI: 10.13009/EUCASS2019-742



Murat MILLIDERE, Uğur CAKIN, Tolga YIGIT 

     

 14 

Model predicted output is within the allowed band for Level-D model fidelity. But there are some drifts in the off axis 

variables such as velocity, altitude and bank angle etc. To avoid these drifts, we just add biases on aileron and elevator 

control surfaces and we get the following results. 

 
Figure 15: Time histories of output variables (measured and estimated) 

 
Figure 16: Dutch roll manoeuvre tolerances 

 

8. Conclusion 
The results showed that model predicted output is within the allowed band for FAA tolerances when keeping the 

aerodynamic model fixed and just adding some small biases on control surfaces. It means that the aerodynamic model 

which is generated by Equation Error Method is quite well. 
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