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Abstract
This paper presents a novel quaternion filter from vector measurements in the realm of deterministic

constrained least-squares estimation. This work sheds a new light on the Wahba problem and Davenport’s
q-method. The optimal estimate achieves the least angular distance among a collection of planes in R4.
The associated single batch solution is mathematically equivalent to the q-method. A recursive algorithm is
also developed where both the measurement update and prediction stages are quaternion norm-preserving
multiplication operations. The measurement update stage is analytically designed as a planar rotation
in R4 with a fading memory gain. The time propagation stage assumes that the angular velocity vector
is measured. The proposed quaternion filter avoids an iterative search for eigenvalues and simulations
illustrate its convergence and accuracy properties.

1. Introduction

This paper is concerned with the problem of attitude quaternion filtering from vector observations. The quater-
nion of rotation is popular for the purpose of attitude representation because it is a minimal non-singular attitude
representation and the related rigid-body kinematics are described by a singularity-free linear ordinary differential
equation [1, p. 411]. Over the last fifty years numerous quaternion estimators from vector observations were developed
within the realm of deterministic constrained least-squares theory (see [2] for a review). That approach, known as
the Wahba approach,3 lends itself to Davenport’s q-method for quaternion single-frame estimation [1, p. 411], [4, Ap-
pendix A]. Early efforts focused on the development of single-frame batch algorithms, where only the measurements
acquired at a single time epoch are processed and the past estimates are discarded.5, 6 Later on, recursive quaternion
estimators were developed, extended to time-varying attitude, augmented in order to include parameters other than
attitude, and optimized with respect to their gain.7–10 A feature that is common to this class of estimators is that the
filtering part is performed on specific matrix quantities, namely the K-matrix or the B-matrix, and not on the quater-
nion per se. The drawbacks are that the filtered variables are matrices that do not lend themselves to a clear physical
interpretation and are of higher dimension than the quaternion. Furthermore the constraint of unit-norm is imposed on
the quaternion outside of the estimation process, with no physical insight, via iterative eigenvector-eigenvalue solving
steps.

This work offers two novel contributions: first it revisits the Wahba problem and provides an additional insight
into the q-method. The proposed approach exploits a measurement model equation introduced in [11] and further
investigated in [12]. The cornerstone of that model is that the sought quaternion lies in the Kernel of a skew-symmetric
matrix built from the vector observations. Based on that geometrical insight, a novel cost function is designed as the
sum of the squared angular distances between the sought quaternion and the collection of Kernel linear spaces. A least-
squares problem is formulated subject to the quaternion unit-norm constraint. The resulting batch quaternion estimator
is shown to be mathematically equivalent to the q-method. The optimal quaternion is interpreted as the unique direction
in R4 that achieves the least angular distance among the collection of two-dimensional Kernel spaces. The second
contribution consists in developing a novel recursive filter of the time varying quaternion where the measurement
update stage operates on the quaternion itself via a norm-preserving transformation in the Euclidean space R4. In the
case of a time-varying attitude, the angular velocity is measured via rate gyroscopes with additive white noises. The
performances of the proposed filter converge asymptotically to those of a sequential q-method.

The paper includes preliminary results in Section 2. Section 3 presents the formulation of the constrained least-
squares quaternion estimation problem, and its equivalence with the Wahba problem and the q-method. Section 4
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includes the development of the novel quaternion estimator for the single frame case. Section5 address the case of a
time varying attitude. Section 6 presents a numerical investigation of the novel filter’s performances. Section 7 presents
the conclusions.

2. Preliminary Results

2.1 Quaternion Measurement Model

This section follows [12]. Consider a Cartesian coordinate frame B attached to a rigid body spacecraft, which is rotated
with respect to a reference Cartesian coordinate frame R. Let b and r denote the projections of a unit physical vector
along the axes of B and R, respectively, then

b = D(q) r (1)

where D(q) is the rotation matrix from R to B, a.k.a. the attitude matrix of B with respect to R. In Eq. (1), the vector b
represents the true value of a normalized physical vector, like the Earth magnetic field or the line-of-sight to a celestial
object, as observed in the spacecraft. Let the 3 × 1 vectors s and d and the 4 × 4 matrix H be defined as follows:

s 4=
1
2

( b + r) (2)

d 4
=

1
2

( b − r) (3)

H 4
=

(
−[s×] d
−dT 0

)
(4)

then, the attitude quaternion q associated with the rotation matrix D(q) satisfies the following relationship

Hq = 0 (5)

Equation (5) is referred to as a (ideal) pseudo-measurement where the measurement is identically zero and the signal
term is linear in q. As a read-out of a noisy sensor, the quantity b is corrupted by an additive measurement noise, δb,
which thus becomes multiplicative in q, as follows:

Hq −
1
2

Ξ(q) δb = 0 (6)

where Ξ(q) is a 4×3 linear matrix function of q. It is possible to develop exact expressions for the first two moments of
this multiplicative noise (see details in12). However, the scope of the present work is limited to a deterministic setting.
Notice that Eq. (5) is different from the fundamental equation of the estimator ESOQ [Eq. (19),6], where the optimal
estimate is sought to be in the Null space of a symmetric matrix.,

2.2 Pseudo-measurement Matrix Properties

An eigenvalue analysis of the pseudo-measurement matrix H yields

det(λI − H) =

(
λ2 +

1
2

(
‖b‖2 + ‖ r‖2

)
+

1
16

(
‖b‖2 − ‖ r‖2

)
2
)
λ2 (7)

where ‖b‖ denotes the Euclidean norm of b in R3. Recalling that b and r are unit-norm vectors, the spectrum of H is
as follows:

SpH = {0, 0, j,− j} (8)

Since H is skew-symmetric, there exist an orthonormal matrix Q ∈ R4×4 and a block diagonal matrix Λ ∈ R4×4, such
that

H = QΛQT

=
[
q1 q2 q3 q4

]


0
0

0 1
−1 0





qT
1

qT
2

qT
3

qT
4


(9)

According to Eq. (5), the quaternion belongs to the Kernel of H, denoted by KerH, which, from Eq. (9), is a plane in
R4 with orthonormal basis {q1,q2}. Analytical expressions for the complete basis of eigenvectors {q1,q2,q3,q4} of the
matrix H are available as functions of the vectors s and d solely.12
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3. Single-Frame Batch Quaternion Estimation

3.1 Constrained Least-Squares Problem Formulation

Assume that a set of n vector measurements is acquired at a given epoch time, and that the associated matrices
{Hk}k=1,...,n are computed, according to Eqs. (2) to (4). Ideally, they all are related to the quaternion q via Eq. (5).
In practice, these measurements are corrupted by noises and the perturbations in the associated H-matrices induce per-
turbations in their Kernels. Henceforth, the quaternion does not necessarily belong to any of the “measured” Ker Hk .
For each noisy Hk , its matrix of eigenvectors, Q(k), will be partitioned as follows

Q(k) =
[
Q12(k) Q34(k)

]
(10)

such that Q12(k) and Q34(k) are defined as

Q12(k) 4=
[
q1 q2

]
(11)

Q34(k) 4=
[
q3 q4

]
(12)

where the eigenvectors qi, i = 1, 2, 3, 4 are computed from the noisy vectors sk and dk using Eqs. (??)-(??). Let q∗k
denote the normalized projection of the quaternion q on Ker Hk :

q∗k =
1

(qT Q12(k)QT
12(k)q)

1
2

Q12(k)QT
12(k)q (13)

Let θk denote the angle between q and Ker Hk , 0 ≤ θk ≤
π
2 (see Fig. 1), thus

Figure 1: q is the true quaternion and q∗ is its normalized projection onto the plane KerH. The angular distance θ
between the quaternion q and the plane KerH is interpreted as a quaternion measurement error.

cos θk = qT q∗k (14)

Using Eq. (13) in Eq. (14) yields
cos θk = (qT Q12(k)QT

12(k)q)
1
2 (15)

If the vector measurements are ideal, then q will belong to the intersection of all the kernels, and the angular distances,
as expressed by θk, would all be zero. In the case of noisy measurements, the angles θk provide meaningful interpreta-
tions of the measurement errors, and it seems adequate to seek for an estimate of q as the unique unit-norm vector that
is the closest, in some sense, to the collection of planes {Ker Hk }, k = 1, ..., n. Henceforth, the following estimation
problem is formulated:

3
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Given a set of n matrices {Hk}k=1,...,n, computed from n pairs of vector observations {bk, rk}k=1,...,n as defined in Eqs.
(2)-(4), find the unit-norm vector q ∈ R4 that solves

min
q,‖q‖=1

n∑

k=1

θ2
k (16)

where θk is defined from Eq. (15), and ‖q‖ denotes the Euclidean norm in R4.
The proposed loss function in Eq. (16) is interpreted as an angular distance between vector spaces. Thus the magnitude
of the sought optimization vector, q, does not change the cost value, so that scaling can be performed without loss
of optimality. In the present case, the proper scaling is a normalization, in agreement with the rotation quaternion
property. Notice that the freedom in choosing the sign of the solution does not yield any ambiguity since the two
quaternions q and −q represent the same attitude. By convention, practitioners often restrict themselves to quaternions
with positive scalar parts. Next, the constrained optimization problem (16) will be reformulated as follows. Since
cos θk is a decreasing function on [0, π2 ] the following equivalent problem is proposed

max
q,‖q‖=1


n∑

k=1

(cos θk)2

 (17)

Using Eq. (15) in Eq. (17) yields

max
q,‖q‖=1


n∑

k=1

qT Q12(k)QT
12(k)q

 (18)

Since q is not a function of k, Eq. (18) is equivalent to

max
q,‖q‖=1

qT


n∑

k=1

Q12(k)QT
12(k)

 q

 (19)

Let M be the 4 × 4 matrix defined as

M 4
=

n∑

k=1

Q12(k)QT
12(k) (20)

then Eq. (19) is equivalent to
max

q,‖q‖=1
qT Mq (21)

Equation (21) describes a well known optimization problem, which is an “extremal characterization” of the maximal
eigenvalue of the matrix M [14, p. 278]: the solution to Eq. (21) is the eigenvector that is associated with the maximal
eigenvalue of the matrix M.

3.2 Relation with the q-method

Problem (21) is similar to Wahba’s problem as formulated by Davenport using the quaternion [1, p. 411], [4, Ap-
pendix A]. The Wahba problem is formulated as follows:
Given a set of n single-frame vector measurements {bk }

n
k=1 and {rk }

n
k=1, and the following loss function

L(D) =

n∑

k=1

‖bk − Drk‖
2 (22)

where D denotes the attitude matrix, and ‖ · ‖ denotes the Euclidean norm in R3, solve the following constrained
least-squares problem

min
D


n∑

k=1

‖bk − Drk‖
2

 (23)

subject to D being a proper orthogonal matrix, i.e., DT D = I3 and det D = 1.

The original Wahba loss function included positive scalar weights in the residuals terms, which are omitted here
for the sake of simplicity, without loss of generality. Using the relation between the attitude matrix and the quaternion,
Eq. (23), Davenport showed the equivalence of Eq. (23) with the following problem

max
q,‖q‖=1

qT Kq (24)
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where

K =

n∑

k=1

Kk (25)

Kk =

(
S k − σI3 zk

zT
k

σk

)
(26)

S k = Bk + Bk
T (27)

Bk = bk r
T
k

(28)
zk = bk × rk (29)
σk = TrBk (30)

In Eq. (30), “Tr” denotes the Trace operator. The q-method, hence, consists in computing the optimal quaternion as
the eigenvector of the matrix K that is associated with the maximal eigenvalue. The following Proposition clarifies the
relationship between the matrix K from Davenport’s q-method and the matrix M introduced in Eq. (20).

Proposition: Given a set of n single-frame vector measurements and the associated matrices K and M, as defined
from Eqs. (25)-(30) and Eq. (20), respectively, then

M =
1
2

(
n I4 + K

)
(31)

The following conclusion can be drawn: the proposed constrained least-squares problem (16), or equivalently (21), and
its solution are equivalent to the Wahba problem and the q-method, since the matrices M and K differ by a constant.
This provides thus a novel insight on the q-method: the optimal quaternion is the unique direction in R4 which mini-
mizes the angular distance to the set of planes, {Ker Hk }k=1,...,n. The proof is omitted for the sake of brevity.

4. Single-Frame Recursive Quaternion Estimation

4.1 Filter of the M matrix

Given a new vector observation sample (k + 1), the cost function can be rewritten as follows:

J = qT


k+1∑

i=1

(I4 − HT
i Hi)

 q

= qT


k∑

i=1

(I4 − HT
i Hi) + (I4 − HT

k+1
Hk+1)

 q

This shows that the M matrix at sample (k + 1) is calculated as follows:

Mk+1 = Mk + δMk+1 (32)

Equation (32) is a measurement update equation in a filter of the matrix M, where the “new” observation δMk+1 and the
“previous” estimate Mk are weighted identically. The process is repeated as long as vector observations come in and
the quaternion estimate is extracted only if needed. The latter requires implementing an eigenvalue/eigenvector solver.

4.2 A Novel Quaternion Filter Using the H matrix: the HQF

Hinging on the geometrical properties highlighted in the previous section, a different path is followed next in order
to develop a quaternion recursive estimator, where the measurement update stage preserves by design the unit-norm
property of the estimate. Let q̂k denote the estimate of q at step k, which is computed from the k first measurements. Let
Hk+1 denote the pseudo-measurement matrix built from the k + 1st vector observation, and q∗k+1 denote the normalized
projection of q̂k on Ker Hk+1 (see Fig. 2). Thus, by construction,

q∗k+1 =
1

(̂qT
k Q12QT

12q̂k)
1
2

Q12QT
12q̂k (33)

5
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Figure 2: Illustration of the relative geometry in R4 between the prior estimate, q̂k , its normalized projection on
Ker Hk+1 , and the posterior estimate q̂k+1 .

where the 4 × 2 matrix Q12 stems from the spectral decomposition of Hk+1 . Let θk denote the angle between q̂k and q∗k
in R4, then

(cos θk)2 = q̂T
k Q12QT

12q̂k (34)

The measurement update stage of the proposed recursive algorithm consists in computing the updated estimate q̂k+1

via a rotation of q̂k in the plane generated by
(
q̂k,q∗k+1

)
and by an angle φk, where φk is parameterized as follows:

φk = αkθk (35)

where 0 ≤ αk ≤ 1 is a design parameter. The measurement update stage is thus expressed as follows

q̂k+1 = A(φk )̂qk (36)

where A(φk) is an orthogonal matrix in R4. It, thus, preserves the unit norm of the quaternion estimate along the
estimation process. The coefficient αk has the function of a gain. If αk = 0, the update stage maintains the estimated
quaternion at its current value, i.e. q̂k+1 = q̂k. If αk = 1, the update stage generates the projection q∗k. With αk = 1

k , for
instance, there will be a fading memory effect as k increases. The next developments describe the construction of the
matrix A(φk)

4.3 Basis of the Rotation

For notational simplicity, the index k will be dropped in the following. Let
(
ÎII, ĴJJ, K̂KK, L̂LL

)
denote the following orthonormal

basis vectors in R4 (see an illustration in Fig. 3).

K̂KK = q∗ (37)

ĴJJ ∈ {q∗, q̂} , ĴJJ⊥K̂KK (38)

ÎII ∈ {q1,q2} , ÎII⊥K̂KK (39)

L̂LL ∈ {q3,q4} , L̂LL⊥ĴJJ (40)

where {q∗, q̂} denotes the linear subspace generated by the set {q∗, q̂}, and ⊥ denotes orthogonality in the Euclidian
vector space R4; i.e u⊥v⇐⇒ uT v = 0. Thus, by definition,

K̂KK =
1

(̂qT Q12QT
12q̂)

1
2

Q12QT
12q̂ (41)

6
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Figure 3: The orthonormal basis
(
ÎII, ĴJJ, K̂KK, L̂LL

)
is used in order to perform a rotation in the trajectory plane generated by

ĴJJ and K̂KK.

The basis vector ĴJJ is constructed via a Gram-Schmidt orthogonalization step

J̄JJ = q̂ − (q∗
T
q̂)q∗ (42)

It is straightforward to show that

J̄JJ = Q34QT
34q̂ (43)

Let ĴJJ be the normalized J̄JJ, i.e.

ĴJJ =
1

(̂qT Q34QT
34q̂)

1
2

Q34QT
34q̂ (44)

There are two possible vectors that satisfy the properties of ÎII, which differ by their sign. One of the two is defined
below:

ĪII = q1 − (K̂KK
T q1)K̂KK (45)

Using Eq. (41) in Eq. (45) yields

ĪII = q1 − (̂qT Q12QT
12q̂)−1 (̂qT q1)Q12QT

12q̂ (46)

It stems from Eq. (46), using the orthogonality of q1 and q2, that

‖ĪII‖2 =
q̂T (q2qT

2 )̂q
q̂T Q12QT

12q̂

=
(̂qT q2)2

q̂T Q12QT
12q̂

(47)

The unit vector ÎII is then defined as follows.

ÎII =
1
‖ĪII‖

ĪII (48)

7
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Using Eqs. (48) and (47) in (46) yields

ÎII =
(̂qT Q12QT

12q̂)
1
2

(̂qT q2)


(̂qT Q12QT

12q̂)q1 − (̂qT q1)Q12QT
12q̂

q̂T Q12QT
12q̂



=
1

(̂qT Q12QT
12q̂)

1
2


((̂qT q1)2 + (̂qT q2)2)q1 − (̂qT q1)Q12QT

12q̂
q̂T q2



=
1

(̂qT Q12QT
12q̂)

1
2

(
(̂qT q2)q1 − (̂qT q1)q2

)

=
1

(̂qT Q12QT
12q̂)

1
2

Q12

[
0 1
−1 0

]
QT

12q̂

=
1

(̂qT Q12QT
12q̂)

1
2

Q12Λ1QT
12q̂

Finally, let L̂LL be defined as follows

L̄LL = q3 − (̂JJJ
T

q3 )̂JJJ (49)

Similar steps as those followed to define ÎII are followed for L̂LL, yielding

L̂LL =
1

(̂qT Q34QT
34q̂)

1
2

Q34Λ1Q34q̂ (50)

Let G denote the orthonormal basis
(
ÎII, ĴJJ, K̂KK, L̂LL

)
, and let G denote the following 4 × 4 matrix

G =
[̂
III ĴJJ K̂KK L̂LL

]
(51)

The matrix G is the transformation matrix from the orthonormal basis G to the canonical orthonormal basis in R4.

4.4 Rotation in the Trajectory Plane

In the ensuing, the plane generated by the basis vectors ĴJJ and K̂KK will be referred to as the “trajectory plane”. We wish
to rotate q̂k towards q∗k+1 by an angle φk . Let Ck denote the matrix of a rotation in R4 of angle φk that maintains the
rotated vector within the plane {ĴJJ, K̂KK}. In other words, this rotation keeps ÎII and L̂LL invariant and is thus expressed as
follows

Ck
4
=



1 . . .
. cos φk sin φk .
. − sin φk cos φk .
. . . 1


(52)

Notice that the matrix Ck maps the components of a vector in the G-basis to the the components of the rotated vector
in the same basis.

4.5 Summary of the Novel Recursive Estimator

In order to rotate the estimated quaternion q̂k in the trajectory plane, first a basis transformation is performed using the
G matrix, in order to express the prior estimate, q̂k , in the basis G. Then the resulting vector is rotated in the trajectory
plane using the Ck matrix, as defined in Eq. (52). This yields the a posteriori estimate, yet expressed in the basis G.
Finally an inverse basis transformation is performed on that vector in order to express it in the canonical basis. The
resulting algorithm is summarized as follows:
Given q̂k , when a new vector measurement ( bk+1 , rk+1 ) is acquired, the pseudo-measurement matrix Hk+1 and its eigen-
vectors system are computed using Eqs. (2)-(4). The angle θk is evaluated using

(cos θk)2 = q̂T
k Q12QT

12q̂k (53)

If θk = 0 then q̂k+1 = q̂k .
If θk , 0 then:

8
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i. The projection q∗
k+1

of q̂k on Ker(Hk+1) is computed as well as the other basis vectors of G, as follows

ÎII =
1

(̂qT Q12QT
12q̂)

1
2

Q12Λ1QT
12q̂ (54)

ĴJJ =
1

(̂qT Q34QT
34q̂)

1
2

Q34QT
34q̂ (55)

K̂KK =
1

(̂qT Q12QT
12q̂)

1
2

Q12QT
12q̂ = q∗ (56)

L̂LL =
1

(̂qT Q34QT
34q̂)

1
2

Q34Λ1QT
34q̂ (57)

where

Λ1 =

[
0 1
−1 0

]
(58)

and the basis transformation matrix, Gk, is computed as follows

Gk =
[̂
III ĴJJ K̂KK L̂LL

]
(59)

ii. The coefficient αk is chosen via numerical simulations, and the rotation angle and matrix are computed as follows:

0 ≤ αk ≤ 1 (60)
φk = αkθk (61)

Ck =



1 . . .
. cos φk sin φk .
. − sin φk cos φk .
. . . 1


(62)

iii. The measurement update matrix Ak is computed as

Ak = GkCkGT
k (63)

and the quaternion estimate is updated as
q̂k+1 = Ak q̂k (64)

Since the matrices Gk and Ck are, by design, orthonormal matrices, the update matrix Ak is also orthonormal. This
property ensures the preservation of the norm of the quaternion estimate along the estimation process.

5. Time Varying Quaternion Estimation

5.1 Filter of the M matrix

The quaternion kinematics equation is written as follows:

qk+1 = Φk qk (65)

where Φk is a matrix exponential function of the angular velocity vector of the body frame with respect to the inertial
frame, expressed in the body frame. The matrix Φk is a four dimensional orthogonal matrix, ie Φ−1

k
= ΦT

k
. The latter

property as follows in order to develop the propagation step of the filter for the M matrix. Let Mk/k denote the M matrix
related to the attitude at time k and calculated using all vector observations until time k. Similarly, let Mk+1/k denote the
M matrix related to the attitude at time k + 1 and calculated using all vector observations until time k. Consider the cost
function of the quaternion qk , that is

J = qk
T Mk/k qk (66)

and rewrite it as a function of the quaternion qk+1 thanks to the kinematics equation Eq. (65) and to the orthogonal
property of Φk , that is

J = qT
k+1

(
Φk Mk/k ΦT

k

)
qk+1 (67)
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As a result, the following time propagation stage for the M matrix can be identified:

Mk+1/k = Φk Mk/k ΦT
k

(68)

The quaternion qk+1/k can then extracted, if needed, from Mk+1/k . Notice that Eq. (68) is a similarity transformation on
the matrix M and thus induces a linear transformation on the eigenvectors of that matrix as follows:

q̂k+1/k = Φk q̂k/k (69)

5.2 Time Varying HQF

Borrowing from Eq. (69), and by analogy with the standard quaternion filters, the following step is added as the time
propagation step.

q̂k+1/k = Φk q̂k/k (70)

6. Numerical Simulation

The gain factor, αk , is chosen as 1/k, where k denotes the current number of measurement samples. The rational
behind this choice stems from the widespread approach of fading out the impact of the incoming measurement with
respect to the prior estimate as the number of samples grows. The proposed algorithm is verified via Monte-Carlo (MC)
simulations. In each MC run the initial true quaternion is set at random by generating its components from a uniform
probability distribution with support [-1,1] and normalizing the resulting vector. The kinematics of the true quaternion
are propagated using low and high inertial angular rates, ie ω = 0.1 [1, 1, 1] [deg/sec] and ω = 90 [1, 1, 1] [deg/sec],
respectively. The propagation time step ∆t is 0.1 sec. The angular rates are measured by a rate gyroscope with zero-
mean additive white noises of intensity σ2

eps/∆t, whose values range from very high quality, 0.01 deg/
√

sec to very low
quality, 1 deg/

√
sec. The true vector observations are acquired with a sample time ∆upd of 1 second and generated at

random. The measurements are simulated by adding zero mean white noises with intensity σ2
b/∆upd to each component

and normalizing the resulting vector. The values of σb range from star-tracker accuracy (0.01 deg) to coarse Sun sensor
accuracy (10 deg). The proposed filter, denoted here HQF, is implemented as well as another recursive filter, Optimal
REQUEST that is essentially an optimized recursive implementation of the q-method. Each MC run lasts 150 seconds.
The figures of merit used in the following are the MC average and standard deviation of the angle between the true and
the estimated quaternion at the final time, denoted by δφ f ,. Table 1 features the values of the MC averages of δφ f with
the MC standard deviations appearing in parentheses. The results clearly indicate a robust behavior of the filter in the
wide range of potential noise intensities, along with the consistent increase of performances for increasing accuracies.
In particular, when the gyro noise is very small, the filter yields a tenfold improvement in the accuracy compared to
the vector measurements. Figure 4 compares the performances of the HQF with the OPREQ filter for low angular
rates in two cases: very accurate and very noisy sensors corresponding to σb = 0.01[deg], σε = 0.001[deg/

√
sec]

for the upper graph and σb = 10[deg], σε = 1[deg/
√

sec] for the lower graph. For the sake of fairness, both filters
are initialized identically, ie after the first two measurements the OPREQ quaternion estimate is provided as initial
condition to the HQF. Then the two algorithms progress on their own. It is seen that OPREQ is performing slightly
better than the HQF filter. Yet the HQF tends to the same level of accuracy as OPREQ while avoiding the burden of
an eigenvalue/eigenvector solver at each step. The latter is clearer for low angular rates (upper graph) than for high
angular rates (lower graph). Figures 5 and 6 depict the time histories of the MC average and of the ±1σ envelopes
of δφ for excellent and poor sensors accuracies, respectively. In each figure the upper and lower plots correspond to
low and high angular rates, respectively. For very accurate sensors higher angular rates have a negative impact on the
steady-state level of the angular error. For very noisy sensors on the other hand the impact of the angular rates seems
marginal.

7. Conclusion

In this paper a novel time varying quaternion estimator from vector observations was developed within the realm of
deterministic constrained least-squares estimation. A loss function was presented based on the property that the quater-
nion of rotation lies close to the Kernel planes of matrices constructed from the vector measurements. The proposed
problem was shown to be mathematically equivalent to Davenport’s q-method yielding a new insight on the Wahba
problem. Indeed the optimal quaternion is the unique direction in R4 which minimizes the angular distance to the set
of the Kernel planes. In addition, a recursive algorithm for time varying quaternion estimation was developed based
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Table 1: Performances of the HQF at the final time. 100 MC runs
σb [deg]
σε [ deg

√
sec ]

0.01 0.1 1 10

0.001
(0.0006)
0.002

(0.006)
0.02

(0.04)
0.1

(0.3)
1.5

0.01
(0.003)
0.01

(0.008)
0.02

(0.07)
0.14

(0.3)
1.6

0.1
(0.03)
0.13

(0.07)
0.17

(0.11)
0.26

(0.98)
1.8

1
(0.8)
1.6

(0.9)
1.9

(1.1)
2.1

(1.1)
2.3

on this insight. The algorithm update stage features a rotation of the estimated quaternion in the Euclidean space R4.
The rotation maintains the unit norm property of the quaternion and finds an adequate weighting between the current
estimate and its normalized projection onto the most recent Kernel plane. A numerical simulation was performed show-
ing that the proposed recursive algorithm exhibits similar asymptotic performances as the sequential q-method. This
is achieved with a lower computational burden than the q-method, which requires an iterative eigenvalue/eigenvector
solver.

11

DOI: 10.13009/EUCASS2019-878



NOVEL MULTIPLICATIVE QUATERNION ESTIMATOR

time  [sec]
0 50 100 150

δ
Φ

  [
de

g]

×10-3

0

2

4

6

8
HQF
OPREQ

time  [sec]
0 50 100 150

δ
Φ

  [
de

g]

0

2

4

6

8
HQF
OPREQ

Figure 4: Monte-Carlo averages of the angular estimation error (100 runs). Low angular rates. Upper graph-Very
accurate sensors. Lower graph-Very noisy sensors. The performances of the HQF and of the recursive q-method
converge asymptotically.
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Figure 5: Monte-Carlo averages and ±1σ envelope of the angular estimation error (100 runs). Very accurate sensors.
Upper graph-Low angular rates. Lower graph-High angular rates. The performances of the HQF are impacted by the
high angular rates.
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Figure 6: Monte-Carlo averages and ±1σ envelope of the angular estimation error (100 runs). Very noisy sensors.
Upper graph-Low angular rates. Lower graph-High angular rates. The impact of the angular rates on the performances
of the HQF is marginal.
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