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Abstract 

Nonlinear slew maneuver algorithms for flexible spacecraft are developed. The attitude tracking algorithm that 

uses quaternion parametrization and follows the prescribed time dependent attitude trajectory incorporating the 

derivative of the desired attitude is employed.  Nonlinear tracking feedback control algorithms that includes 

piezoelectric actuators and modal sensors are also developed.  Through simulations, the effectiveness of the 

tracking attitude control algorithm is demonstrated.  Also demonstrated is the effectiveness of the tracking 

controller utilizing piezoelectric actuators modal sensors in damping out vibration energy.    

1. Introduction 

Next generation spacecraft will need massive amounts of electrical energy to accomplish its missions such as 

interplanetary missions [1].  Earth observation missions that those employ synthetic aperture radar also require too 

much power for its operation.  Such as energy will come from huge solar panels to absorb enough sunlight.  These 

panels should also be lightweight.  This requirement can also be satisfied by producing satellites with a large solar 

panels.  Beside solar panels interplanetary spacecraft will also require large antennas to communicate with Earth from 

far away distances.  

To increase service life and reduce the launch cost, most of the modern satellite often employ large-scale and lightly 

damped structures for antennas and solar arrays.  This design restriction has become a major challenge recently due to 

flexibility and resulting excessive vibration on spacecraft. These effects may cause many problems in the satellite. 

Structural failure may be observed due to vibration, or satellite normal operations may be interrupted because of the 

undesired motion of flexible appendages. These flexible satellites need to carry out large slew maneuvers with high 

pointing precision and stability to perform complex space missions such as Earth observation and space monitoring. 

Designing an attitude control algorithm that compensates for this vibration and flexibility effects on satellite, is a 

challenging task.   

Among the active control schemes, piezoelectric actuators have attracted interest as a solution for the attenuation of 

flexible spacecraft oscillations ([2], [3], [4]). There are some studies on these devices that demonstrate its effectiveness 

to damp out vibration experimentally ([5], [6]). Moreover, these devices are lightweight and they also have low power 

consumption. Their basic action is to increase the stiffness and the internal damping of the system.  

On the other hand smooth slew maneuvers are needed not to violently excite the structural modes of the spacecraft.  

The well-known quaternion error feedback algorithm , is not quite suitable for smooth attitude maneuvers with 

precise pointing.  Recently, new algorithms that uses the to-go quaternion propagation where the derivative of the 

desired attitude quaternion is employed are presented ( , ).  Given a smooth time dependent attitude trajectory, 

the algorithm is shown to accomplish tracking control successfully.  This manuscript proposes using both piezo 

actuators and the recently developed quaternion based feedback algorithm to carry out smooth attitude maneuvers. 

In the next section, the mathematical models of the flexible spacecraft, and the to-go attitude derivation that takes the 

desired attitude into account is presented.  The attitude control algorithms are given next.  It is followed by a parametric 

study that considers various effects such as utilization of piezo sensors and actuators.  Finally some concluding remarks 

are given.     
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2. Mathematical Modeling 

2.1 Quaternion Parametrization 

Quaternion parametrization is used for attitude propagation. It is based on the to-go quaternion formulation that takes 

the time dependent desired attitude trajectory into account. The derivative of the to-go quaternion is derived. Let define 

the quaternion associated with the desired attitude using d , and current attitude using q , then the to-go attitude t  

may be written as ( , ),  

 

 d q t  or  
1t q d    (1) 

 

where, 
1q  denotes the inverse or conjugate quaternion, since only unit quaternions are considered.  In the above 

definition, the to-go quaternion obtained is the conjugate of the error quaternion used in the literature . 

In vector matrix form, 

 

 

4 3 2 11 1

3 4 1 22 2

2 1 4 33 3

1 2 3 44 4

d d d dt q

d d d dt q

d d d dt q

d d d dt q

  (2) 

 

or, 

 

 

4 4t q

t q
D   (3) 

 

Using the chain rule, the derivative of the to-go quaternion may be obtained ( , ), 

 

 

4 44
q qt

q qt
D D   (4) 

 

In general, the desired final attitude is fixed. However, for tracking control, the time dependent feature of the desired 

attitude maybe taken into account.  Remembering that the derivative of an attitude quaternion is given as (i.e., ) 

 

 

4 4 4

1 1

2 20

x

Tq q q

q q q
  (5) 

 

Equation (5) may be rewritten as , 

 

DOI: 10.13009/EUCASS2019-935



     

 3 

 

4 44

1

2q qt

q qt
D D   (6) 

 

Define the parameter, 

 

 

4 3 2 1

3 4 1 2

1

2 1 4 3

1 2 3 4

d d d d

d d d d

d d d d

d d d d

D   (7) 

 

and 

 

 1 1

44

1

2 tt

tt
DD D D   (8) 

 

After some simplifications , the following is obtained: 

 

 
4

44

- 1

2- 0 0

x x

T T tt

tt
I

s s
s

s
  (9) 

 

where, 

 

 

1 4 2 3 3 2 4 1

1 3 2 4 3 1 4 2 4 1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

,  and    0

d d d d d d d d

d d d d d d d d d d d d d d d d

d d d d d d d d

s s   (10) 

 

and I  is an identity matrix of proper dimension. It may easily be observed that 4 0s ,  and derivative of the to-go 

quaternion may be written as ( , ), 

 

 

4

4

1 1
( ) ( )

2 2

1
( )

2

x x

T T

t

t

t t

t

s s

s

  (11) 

The above to-go quaternion attitude propagation algorithm takes the derivative of the desired trajectory into account, 

resulting in the actual attitude propagation, to track the time dependent desired attitude.  If the desired attitude is fixed, 

then the usual to-go quaternion propagation algorithm is recovered: 
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44

1

2 0

x

T tt

tt
  (12) 

2.2 Mathematical Model of Flexible Spacecraft 

Generalized flexible spacecraft dynamic may be obtained as follows [10]: 

 

 

TJ H u

C K H
   (13) 

 

In the above equation, J  is the inertia matrix of whole undeformed structure which is symmetric positive definite,  

is the vector of modal coordinates of flexible modes being considered, H  defines the coupling matrix between flexible 

and rigid dynamics,  is the angular velocity of the main body and finally u  is the control torque to be used. If there 

are distributed actuators such as piezoelectric actuators, then the equation takes the following form [10]: 

 

 

2

T

p

J H u

C K H H u
   (14) 

 

Here, 2H  defines the coupling matrix between flexible dynamics and piezoelectric actuators and pu  are the potential 

differences applied to the piezoelectric actuators and defined as [10], 

 

 2 1 2[ ]T

pu H I I    (15) 

 

By using Equation (13), dynamic of the flexible spacecraft may be obtained in first order form as [10], 

 

 

1 ( )

( )

T

mbJ H C K CH u

H

C K CH

   (16) 

 

Defining,
T

mbJ J H H  and H  is total velocity of the flexible beam. Then, 

 

 A ABH    (17) 
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where, 
0 I

A
K C

 
  

  
 and 

0
B

I

 
  
 

 with the appropriate dimensions. Also, equations of the flexible spacecraft 

with piezoelectric actuator may be obtained by using Equation (14), 

 

 

1

2

2

( )

( )

T T

mb p

p

J H C K CH u H H u

H

C K CH H u

   (18) 

 

For the sake of simplicity in developing control algorithm, Equation (18) may be written as, 

 

 

1

2( )T T

mb pJ H C K CH u H H u

A ABH
   (19) 

Here, 2 2 1 2

1 2 2 2 2 2

0
[ ]

( ) ( )

T

T T

I
A A BH H I I

K H H C H H

 
      

     
, with the appropriate 

dimensions.  Also, using the modal coordinates total vibration energy may be written as [10], 

 

 
T T

tE K    (20) 

3. Attitude Control Algorithms 

In this section, Lyapunov function based feedback control algorithms are developed. In developing these algorithms 

two cases are considered.  These cases are listed in Table 1.  Both cases assume that body attitude and angular velocities 

are measured.  In addition, a number of modal coordinates are also estimated from piezoelectric sensor measurements.  

On the other hand, the first case assumes only rigid body actuators such as reaction wheels are present.  The second 

case assumes that there are a number of discrete piezoelectric patches that can affect the number of modes being 

controlled.  In each case, one control algorithm is based on the classical to-go quaternion attitude propagation, while 

the other algorithm takes the derivative of the desired attitude (Equation (11)) into account.  

Table 1: Control System Design  

Case Actuators Sensors 

I Attitude Actuators Attitude and Modal 

Sensors 

II Attitude and Piezo 

Actuators 

Attitude and Modal 

Sensors 

 

3.1 Case I: Attitude Control Actuators with Attitude and Modal Sensors 

Two control objectives are sought for:  track the desired attitude without a vibration in the satellite attitude and 

structure.  Consequently, control law must ensure the spacecraft attitude tracks the desired attitude without excessive 

jitter. The second requirement is that the vibration of spacecraft’s flexible appendages shall also be small.   
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Since, the to-go quaternion defines the difference between the desired attitude and realized attitude (i.e. attitude error), 

attitude tracking will be realized if the vectorial part of to-go attitude goes to zero: lim = 0
t

t  (or, 4lim = 1
t

t ). To 

damp out vibrations in various modes, on the other hand, is realized if the vector of modal coordinates vector goes to  

zero: lim = 0
t

.  

3.1.1 Attitude Control Using to-go Quaternion 

Theorem: The following controller brings the attitude to the desired one in a stable fashion: 

 

  T

p du k k H C K CHt          (21) 

 

for 0pk  and 0dk  properly selected.  

Proof: Consider the following positive definite Lyapunov function: 

 

 

1 2

1 4

2 1

1
2( )(1 )

2

1
( )

2

T

p mb

T T

V V V

V k t J

V P


 


 

  

 
  

 

    (22) 

 

where 1 1 0TP P    

Taking time derivative of Equation (22) to show asymptotic stability, 

 

 

1 4

2 1

2( )

( )

T

p mb

T T

V k t J

V P


 


  

 
  

 

 

  (23) 

 

Substituting Equation (12), Equation (16) and Equation (21) into the Equation (23), and also substituting Equation (17) 

into the Equation (23), 

 

 

1 2 1

2 1

( )

( )

T T T

d

T T

V k V P A ABH

V P A ABH


 




 



  
     

  

  
   

  

  



 (24) 

 

Then,  
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1 1 6( ) ( ) 0T T T T T T

dV k P A P ABH x Q x


   


 
     

 
      (25) 

 

where ( )
TT T Tx    is the state vector and 1P  may be computed as the solution of the Lyapunov equation 

as before, and, 

 

 

3

6

3 1

1 1 1

1
3

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



  (26) 

 

Note that Lyapunov stability theorem indicates that given a stable matrix, A , and a positive definite matrix P , can be 

found such that 
TQ PA A P     where Q   is also positive definite [11]. Using the Lyapunov stability theorem, 

the matrix 1Q  is a fixed positive definite matrix and solution of the 1P  exists because ( )A , with (.) denoting 

the set of eigenvalues. Then, the matrix 6Q  is negative definite, 6( )Q , for properly selected dk . 

3.1.2 Attitude Control Using to-go Quaternion with the Derivative of the Desired Attitude 

To-go attitude propagation algorithm presented Equation (11) is employed in this section. It offers a more precise 

trajectory tracking solution since derivative of the desired trajectory is taken into account.  

Theorem: The following controller brings the attitude to the desired one in a stable fashion: 

 

  2( ) T

p d d mbu k k k J H C K CHt         s s   (27) 

 

for all 0pk  and 0dk  properly selected. 

Proof: Consider the positive definite Lyapunov function: 

 

 

3 2

3 4

2 1

1
2 (1 ) ( 2 ) ( 2 )

2

1
( )

2

T

p mb

T T

V V V

V k t J

V P


 


 

      

 
  

 

 s s   (28) 

where 1 1 0TP P    

Taking time derivative of Equation (28) to show asymptotic stability, 
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3 4

2 1

2( ) ( 2 ) ( 2 )

( )

T

p mb

T T

V k t J

V P


 


      

 
  

 

 s s

  (29) 

 

Substituting Equation (11), Equation (16) and Equation (27) into the Equation (29), and substituting Equation (17) into 

the Equation (29),  

 

 

3

2 1

( 2 ) ( 2 )

( )

T

d

T T

V k

V P A ABH


 


     

  
   

  

 



s s

  (30) 

 

Then, 

 
1 1

6

( 2 ) ( 2 ) ( ) ( )

(2 ) (2 )

T T T T T

d

T T

d

V k P A P ABH

V k x Q x


   



 
        

 

 

  



s s

s s

  (31) 

 

where ( )
TT T Tx   is state vector with 

 

3

6

3 1

1 1 1

1
3

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



  (32) 

 

Using the Lyapunov stability theorem [11], the matrix 1Q  is a fixed positive definite matrix with the 1P  is the solution 

of Sylvester equation and exists because ( )A , with (.) denoting the set of eigenvalues. Then, the matrix 

6Q  is also negative definite, 6( )Q , for properly selected dk . 

Consequently, the proposed controller (Equation (27)), brings the system to the desired attitude asymptotically. 

3.2 Case II: Attitude and Piezoelectric Acuators with Attitude and Modal Sensors 

In this section, in addition to attitude control actuators, piezoelectric actuators to damp out structural vibrations are 

added employed in the feedback control system.  

3.2.1 Attitude Control Using to-go Quaternion 

Theorem: The following controller brings the attitude to the desired one in a stable fashion: 
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   2

T T

p d pu k k H C K CH H H ut           (33) 

 for 0pk  and 0dk  properly selected.  

Proof: Given control law may be derived using a properly selected Lyapunov function. Consider the following  positive 

definite Lyapunov function: 

 

 

1 2

1 4

2 2

1
2( )(1 )

2

1
( )

2

T

p mb

T T

V V V

V k t J

V P


 


 

  

 
  

 

    (34) 

where 2 2 0TP P    

Taking time derivative of Equation (34) to show asymptotic stability, 

 

1 4

2 2

2( )

( )

T

p mb

T T

V k t J

V P


 


  

 
  

 

 

  (35) 

Substituting Equation (12), Equation (19) and Equation (33) into the Equation (35),  

 

 

1

2 2( )

T

d

T T

V k

V P A ABH


 


 

  
   

  

 


  (36) 

Then,  

 

 2 2 7( ) ( ) 0T T T T T T

dV k P A P ABH x Q x


   


 
      

 
     (37) 

where ( )
TT T Tx    is the state vector  

 

 

4

7

4 2

2 2 2

2
4

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



  (38) 
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Using the Lyapunov stability theorem [11], the matrix 2Q  is a fixed positive definite matrix and solution of the 2P  

exists because ( )A , with (.) denoting the set of eigenvalues. Then, the matrix 7Q  is negative definite, 

7( )Q , for properly selected dk , proving asymptotic stability of the proposed controller. 

3.2.2 Attitude Control Using to-go Quaternion with the Derivative of the Desired Attitude 

Again the to-go attitude propagation algorithm given in Equation (11) is used in this section. 

Theorem: The following controller brings the attitude to the desired one in a stable fashion: 

 

   22( ) T T

p d d mb pu k k k J H C K CH H H ut          s s   (39) 

for all 0pk  and 0dk  properly selected. 

Proof: Given control law may be derived using a properly selected Lyapunov function. Positive definite Lyapunov 

function: 

 

 

3 2

3 4

2 2

1
2 (1 ) ( 2 ) ( 2 )

2

1
( )

2

T

p mb

T T

V V V

V k t J

V P


 


 

      

 
  

 

 s s   (40) 

 where 2 2 0TP P    

Taking time derivative of Equation (40) to show asymptotic stability, 

 

 

3 4

2 2

2( ) ( 2 ) ( 2 )

( )

T

p mb

T T

V k t J

V P


 


      

 
  

 

 s s

  (41) 

Substituting Equation (11), Equation (19) and Equation (39) into the Equation (41),  

 

 

3

2 2

( 2 ) ( 2 )

( )

T

d

T T

V k

V P A ABH


 


     

  
   

  

 



s s

  (42) 

Then, 

 
2 2

7

( 2 ) ( 2 ) ( ) ( )

(2 ) (2 )

T T T T T

d

T T

d

V k P A P ABH

V k x Q x


   



 
        

 

  

  s s

s s

  (43) 

where ( )
TT T Tx    is state vector with 
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4

7

4 2

2 2 2

2
4

1

2

2

T

d

T

k I Q
Q

Q Q

Q P A A P

P ABH
Q

  
  

  

    



  (44) 

Using the Lyapunov stability theorem [11], once the matrix 2Q  is a fixed positive definite matrix with the 1P  is the 

solution of Sylvester equation and exists because ( )A , with (.) denoting the set of eigenvalues. Then, the 

matrix 7Q  is negative definite, 
7( )Q , for properly selected dk . As it derived in Section (4.3.1), we may find 

that the largest invariant set ε  with the help of LaSalle theorem. Then all the control objectives are satisfied. 

4.  Simulation Results and Discussion 

Simulation of the mathematical model of the flexible spacecraft attitude dynamics is developed in MATLAB/Simulink 

environment. The desired attitude is defined as a time dependent function. A Cubic function is taken for the rotation 

angle. By using initial and final conditions, rotation angle coefficients may be obtained. Simulation time is selected as 

100 seconds. Simulation parameters for the attitude are given in Table 2. 

Table 2: Simulation Parameters for Attitude Dynamic 

Parameter Value 

Desired Attitude 

4

sin( / 2)

cos( / 2)d

d

 

Prescribe Time Dependent Rotation Angle 2 3a bt ct et  

Initial and Final Values of the Rotation 

Angles and their Derivatives 0 0  0 0  
2

3
f  0f  

Eigen Axis of the Rotation (1,2,3) / 14T

 

Duration of Rotation 100 sft  

 

In the simulations, the flexible spacecraft is assumed to have only four bending modes. In Table 3, natural frequency 

and damping ratio of the related modes are given [12].  

 

Table 3: Parameters of Flexible Spacecraft 

 

 Natural Frequency(rad/s) Damping Ratio 

Mode 1 0.7681 0.005607 

Mode 2 1.1038 0.00862 

Mode 3 1.8733 0.01283 

Mode 4 2.5496 0.02516 

 

DOI: 10.13009/EUCASS2019-935



Süleyman Altınışık, Ozan Tekinalp 

     

 12 

The characteristics of the piezoelectric are specified by the piezoelectric charge constant, c , the Young modulus of 

elasticity pE , and the thickness pb , are listed in Table 4 along with the bounding layer parameters. The length, width 

and thickness of the flexible panel are, l , al and bl , respectively. The bending moment pM  due to piezoelectric films 

is proportional to the applied voltage according to p pM c u  with [10] 

 

 
( ) ( 2 )

/
2( )

b b p b b p b b

p a p

p p b b b

E b b b El b b l
c c l E Nm V

E b E b El
  (45) 

 

 

Table 4: Characteristics of the Piezoelectric Material and Bonding Layer, and of the Flexible Panel 

 

Piezoelectric Layer  Flexible Panel  

12171 10pc m  5l m 

9139 10pE  N/m2 0.8al m 

32.1 10pb m 0.1bl m 

 106.8 10E N/m2 

 

Rigid body inertia matrix, coupling matrices and controller parameters are also given in Table 5 [12]. The feedback 

gains, 1000pk , 1000dk .  

Table 5: Simulation Parameters used for the Controller and the Flexible Spacecraft Model 

 

Parameter Value 

Control Parameters 1000, 1000p dk k  

Piezoelectric Actuator Control Parameters 1 2100, 100  

Rigid Body Moment of Inertia 
2

350 3 4

3 280 10

4 10 190

mbJ kgm  

Coupling Matrix between 

Flexible and Rigid Dynamics 

2

6.45637 1.27814 2.15629

-1.25619 0.91756 -1.67264
/

1.11687 2.48901 -0.83674

1.23637 -2.6581 -1.12503

H kgm s  

Coupling Matrix between 

Flexible Dynamics and the Three Piezoelectric 

Actuators 

2

3

2

2

2

2

2.3425 10

4.2253 10

3.9129 10

7.0261 10

/H kgm Vs  
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On the other hand, when piezoelectric actuators are present and chosen as shown in Table 5, they increase the stiffness 

and the internal damping of the system. Piezoelectric actuators’ feedback gain values, 1 , 2  are selected so that 

eigenvalues of the dynamics of the bending modes have natural frequencies 

0 [0.7988 1.1045 1.9078 2.6497]T  while for damping 
0 [0.009 0.012 0.018 0.152]T , are 

achieved. 

4.1 Rigid Body Simulation Results 

The simulations are carried out first to show the effectiveness of the tracking controller where the desired attitude and 

its derivative are taken into account.  Thus, the flexible modes are not included in the simulation model.  The results 

of the tracking controller is compared with those of the classical quaternion feedback controller.  In Figure 1, 

component wise difference between desired and realized attitude for classical attitude controller is given. Same graph 

for tracking attitude controller can be seen in Figure 2. Comparing Figure 1 and Figure 2, it may easily be observed 

that tracking controller tracks the desired trajectory about two orders of magnitude better than the classical controller.  

 

Figure 1: Component Wise Difference between Desired and Realized Quaternion with Classical Controller (no 

structural modes) 

4.2 Simulation Results for Case I 

In this section, results of the simulations carried out by assuming that only attitude control actuators are present in the 

system. The controller utilizes attitude, angular velocity and modal coordinates measured.  In Section 3.1, the 

associated formulation was given. First classical attitude control of Section 3.1.1 is simulated.  To understand the effect 

on structural modes, the vibration energy (Equation (20)) of the spacecraft is plotted in Figure 3.  

Using the tracking controller given in Section 3.1.2, the vibration energy graph is also obtained and presented in Figure 

4. Both controllers required similar amounts of control torque.  However, as it may be observed from the figures, with 

tracking controller the total vibration energy is decreased by about 20% as compared to the classical controller. The 

simulation results show that the success of tracking algorithm to suppress the vibration effects on the spacecraft while 

using almost the same amount of control torque.  
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Figure 2: Component Wise Difference between Desired and Realized Quaternion with Tracking Attitude 

Controller (no structural modes) 

 

 

Figure 3: Time history of the Vibration Energy with Classical Controller 
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Figure 4: Time history of the Vibration Energy with Tracking Controller 

4.3 Simulation results for Case II 

In this section, simulation is performed by adding piezoelectric actuators to the system. Using the controller in Section 

3.2.1, the generated vibration energy is obtained and presented in Figure 5.  The, control torque created by piezoelectric 

actuators may also be observed from Figure 6. Comparing Figure 5 with Figure 3, it may be observed that vibration 

energy on the spacecraft system is decreased considerably and damped out much faster with the utilization of 

piezoelectric actuators. The actuator voltages are also quite small. 

 

Figure 5: Time History of Classical Controller Vibration Energy with Piezoelectric Actuator 
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Figure 6: Time history of Control Voltage of the Middle Piezoelectric Actuator for Classical Controller 

 

Simulation is repeated this time with the tracking controller of Section 3.2.2.  The vibration energy history of the 

system is presented in Figure 7. The graph shows that with piezoelectric actuators and tracking controller, vibration 

energy is reduced by about 40%. Thus, the best solution for the vibration problem is obtained using tracking attitude 

controller together with the piezoelectric actuators. Moreover, as it may be observed from Figure 8 that tracking 

controller needs lower control effort on piezoelectric actuators.  

 

Figure 7: Time History of Tracking Controller Vibration Energy with Piezoelectric Actuator 
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Figure 8: Time History of Control Voltage of the Middle Piezoelectric Actuator for Tracking Controller 

5.  Conclusions 

New attitude control algorithms for the  slew maneuver of flexible satellites is presented.  It is shown that the tracking 

control achieves much higher pointing accuracy.  With flexible modes included, the vibration energy of the tracking 

controller is much lower than that achieved with the classical controller.   Including piezoelectric actuators, help damp 

out vibration much faster.  In this case tracking controller also outperforms the classical controller. 

In all cases, the success of the tracking controllers developed is demonstrated through simulations for missions when 

high pointing performance and low vibration energy is required. 
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