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Abstract 
This paper describes the architecture of the on-board computer (OBC) that meets all of the stated 

objectives for ILR-33 AMBER suborbital rocket. A modular OBC architecture is presented, based on 

requirements of scalability and ease of expansion. The merits of independent modules based on COTS 

components used in the system are described with exemplary system configurations given. 

Considerations on adapting the architecture to specific needs are presented as well as concepts for 

managing reliability and testing. Feasibility of such a system for use in microlaunchers and 

conclusions from the current development stage are discussed. 

1. Introduction 

The ILR-33 AMBER project aims to develop a highly scalable, cost-effective platform for in-flight validation of 

microlauncher technologies as well as for suborbital experiments. The OBC team is responsible for providing 

reconfigurable and reusable avionics that aim to make the AMBER rocket a competitive and reusable solution for 

scientific and technical research. Special approach during the OBC design needed to be adopted in order to make the 

avionics reusable for different missions performed by the rocket. The avionics need to be able to act as a service 

module providing the on-board experiments with power, logging and transmission capabilities while also performing 

a wide set of functions demanded by rocket flight.  

 

Centralised architectures have proven to be successful while being implemented in suborbital rocket missions [1] as 

well as CubeSat missions [2]. Perhaps biggest drawback of such solutions is its decreased reusability. Centralised 

hardware optimised to serve specific purpose might be impossible to scale without significant changes. Thus this 

architecture was deemed not suitable for the AMBER rocket and alternatives were considered.  

 

On the contrary a distributed system of modular avionics offers the possibility of creation of a scalable, 

reconfigurable system that can be easily adapted to changing mission purposes [3]. As a result the scalable OBC is 

able to be used during different suborbital missions and can act as an adaptable service module for suborbital 

experiments. Such a solution can be easily scaled in order to provide essential functionality and redundancy on-board 

of a rocket. 

2. Requirements.  

The presented environmental and functional requirements were used as a guideline in the process of defining the 

system requirements. Thereafter the system architecture was derived from the system requirements 

2.1. Environmental and functional requirements  

During a rocket flight on-board instruments are subject to harsh environmental conditions such as extreme 

accelerations, shocks, vibrations and temperatures [4]. The conditions of such a flight were summarised in Table 1 

based on previous flights and experiences of the Institute of Aviation’s ILR-33 Amber engineering team. While some 
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of these challenges, such as humidity and temperature, can be resolved at a mechanical level by designing a proper 

enclosure, many of them require the use of proper design rules to mitigate risk of damage and assure proper 

resistance to electrical failures. During a suborbital flight the rocket and its avionics is exposed for space 

environment for very short time. Additionally it reaches relatively low attitudes- below 200 km, thus the cosmic 

radiation problem is negligible in this case [5]. 
 

Table 1: Typical environmental conditions for sounding rocket flight 

 Min. Max. Unit 

Temperature -40 80 °C 

Pressure 0 110 kPa 

Humidity 0 100 % 

Vibration (20 – 2000Hz) - 10 g 

Shock (duration 0,5 ms) - 1000 g 

Shock Response Spectrum 

(Q=10; 100-500Hz) 

- 500 g 

 

Aside from resisting environmental effects, space electronics must meet strict criteria defined by the functions it 

must perform as well as reliability that must be assured. The ILR-33 Amber rocket computer was required to perform 

a wide set of tasks, from configuration and battery management before launch, through operating under radio silence, 

to recording numerous parameters and controlling actuators in various modes after launch. 

Typically, before launch a flight computer is connected to an auxiliary ground system that provides it with power and 

communication with a ground station, enabling charging of batteries and limited control and configuration by a user 

at a ground station. Under such conditions safety must be assured to prevent unplanned events from being triggered. 

The OBC must then detect the rocket launch and acquire data from numerous sensors while controlling actuators and 

staging. The system is also required to detect the end of the mission in order to backup flight data and switched to 

standby mode. 

 

The purpose of ILR-33 rocket is to provide a reusable carrier for various suborbital experiments. The OBC should be 

designed in a way to provide necessary power, logging and transmission capabilities for the experiments to be 

mounted on the rocket without introducing big changes in the hardware or software.  

 

2.2. System requirements 

In order to address the aforementioned demands, requirements for the computer avionics implementation were 

adopted. Due to the large number of tasks performed by the computer designing a single highly integrated system 

would prove complex and difficult to test. Sufficient performance of such a system would also be difficult to assure 

in early design phases because of large expected communication overhead between the controller of such a system 

and connectors or actuators. Moreover, a highly integrated system with a controller under high workload would 

likely be difficult to expand with additional functionalities should the requirements change, necessitating software 

and hardware changes for every such adaptation.  

 

For these reasons a distributed open system would seem preferable. Distributing the functions of a flight computer 

across different devices allows to reduce the complexity of each device, making design easier. Moreover, expanding 

the functionalities of such a system could be achieved by adding more devices to the open distributed network. 

Therefore assuring demanded configurability and reusability. However, a major problem of such a design would 

come from size and mass constraints on-board the ILR-33 Amber rocket. Modular architectures used in 

nanosatellites are heavily constrained by defined connectors and assigned interfaces which highly limit form factors 

and performance. It has been thus decided that a custom architecture that would enable easy scalability and openness 

via modularity should be developed. The implementation of such an architecture demands assignment of specialised 
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interface for communication and power distribution. An appropriate target hardware and software platform which 

contributes to increasing the reusability need to be chosen. 

3. System architecture 

Achieving the stated requirements for modularity and scalability of the system motivated the definition of 

an architecture that enables both independent operation of subsystems and future expansion without sacrificing 

performance. While several such architectures that are based on standards such as PC/104 already exist and are 

commonly used in nanosatellites [6], the limitations inherent to them such as form factor can invalidate their use in 

more constrained applications. 

3.1 Architecture overview 

The developed architecture relies on the separation of subsystems by dividing the on-board computer (OBC) into 

independent, heterogeneous modules of matching form-factor connected by a common stack interface. The purpose 

of the interface is to provide data connectivity between modules via multipoint interfaces as well as power 

distribution and possibility of implementation of inter-modules mission specific functions. Since a predefined form 

factor limits the possible complexity of each board subsystems can consist of numerous cross-dependant boards, with 

specific intra-module interfaces to allow for easy expansion. Each module is responsible for a specific task and 

should be fully self-contained to minimize the cross-dependence of modules. 

 

The architecture is similar to PC/104 in that it has been designed with stacking the boards in mind. However, in 

contrast to PC/104 systems and similar architectures, no master node is permitted and nodes are as independent as 

possible, allowing for failures of individual nodes while still maintaining remaining system functionality. As a result 

adding new nodes should be possible without introducing modifications to existing ones, which could simplify 

expansion.  

 

Depending on the required performance of inter-module communication two types of interfaces are predicted in this 

architecture. A multiplexed interface on the common stack interface is always present to enable reliable, low-

throughput connectivity with easy integration of additional modules. A common choice for such an interface is the 

CAN bus [7][8] due to its low latency, high reliability and availability of COTS solutions suited for high-reliability 

applications. Consequently it has been chosen as part of the basic configuration of a system in this architecture. 

While CAN can be used as a data bus its low bit rates and strict message format limit its throughput, making it more 

suited for real-time control than exchanging raw data. To accommodate for high data rates necessity e.g. for 

communication between data acquisition and memory modules a second interface can be utilized, existing outside of 

the common interface implemented as part of the module stack. Point-to-point network interfaces are highly 

preferred for this application, with a separate module operating as a network controller for such an interface. Their 

comparatively large latency must be considered when deciding which interface should be utilized for a particular 

transmission, with CAN being ideally used only for control and diagnostics. A summary of characteristics expected 

of each bus has been made in Table 2.  

 

Table 2: Comparison of bus requirements  

 Control bus Data bus 

Latency Low Uncontrolled 

Data rate Low High 

Implementation complexity Low High 

Incorporation into modules Mandatory Optional 

Suggested implementation CAN - 

 

High speed interfaces used in today’s electrical systems such as require point-to-point low-voltage differential 

signalling connections due to limitations of arbitration methods used in multiplexing buses. As a result they cannot 

be incorporated into the stack’s common interface without limiting scalability of the system. The proposed 

architecture requires each board utilizing a high-speed data connection to incorporate a separate wire-to-board 

connector to interface either with a dedicated network controller module or directly with another module. This allows 

for a degree of flexibility when designing new modules in that the high-speed bus can be omitted from simpler 

modules, reducing design complexity.  
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Figure 1: Basic module building blocks 

 

Concluding the architecture the basic building block diagram of a single module was created and it is presented on 

the Figure 1. As it can be seen the core of each module is microcontroller with dedicated programming and 

debugging interface.  

 

Although each module should be as independent as possible, semi-independent modules can be incorporated into 

designs when necessary due to limitations of the chosen form-factor. In such a case the high-speed bus may be used 

not only to provide network connectivity with the whole system but also as a way of providing a direct connection 

between interdependent modules. As the high speed interface is unconstrained from PCB design various different 

network topologies can be utilized and reconfigurations can be performed to best suit mission requirements. 

An example of a configuration consisting of individual modules, multi-board modules and different data connections 

is shown on Figure 2. 

 

 
 

Figure 2: Example system configuration 

 

3.2 Hardware considerations 

The architecture is intended for use with COTS hardware components in order to implement self-contained, highly 

functional modules in a small form factor while also reducing cost. The suggested architecture uses a COTS 

mezzanine connector to implement an electronic stack similar to PC/104 in a much smaller form factor without 

sacrificing the capability of the common interface. Current high-density board to board connectors offer much lower 

pitch than the 2.54mm used in PC/104 while also allowing multiple board-to-board heights to be incorporated into 

a single design, which helps reduce board size and stack height, subsequently reducing enclosure size and weight. 

DOI: 10.13009/EUCASS2019-940



     

 5 

Most connectors are also suited for high-speed interfaces, which allows more expansion possibilities for future 

designs. 

Although not necessitated by the architecture the current implementation is based on ARM microcontrollers with 

each module having the exact same microcontroller, which allows for reusability of hardware and software between 

modules. ARM microcontrollers additionally offer an improvement in cost, performance and power consumption 

over CPUs currently used in the space industry [9] and substantial effort is being made in order to adapt them to 

high-reliability applications [10]. Furthermore, the proposed architecture allows to compensate for the reduced 

reliability of COTS components by easy implementation of cold-redundancy, as discussed further. 

Due to heavy emphasis on openness the modules share common power supply lines. However, due to harsh 

environmental conditions during rocket flight, power failures due to phenomena such as capacitor cracking might 

cause power shorts which could cause a system failure if not protected against. Overcurrent protection has been 

incorporated into each module limiting the current to twice the maximum nominal operating value to switch a faulty 

module off from the power supply. This safety feature can be coupled with various forms of redundancy to detect 

failures and adapt the operation of the system to assure mission completion. 

3.3 Software considerations 

Due to the modular approach taken and incorporation of highly repetitive building blocks of the modules much of the 

code driving each module’s microcontroller can be reused. For this reason the structure of the developed code has 

also been developed with modularity in mind, utilizing numerous layers of abstraction to account for future changes 

in hardware. The aim of the applied software design philosophy was to reduce repetitive workload while maintaining 

high code clarity and performance.  

C++ has been chosen as best for this purpose due to its good performance and heavy support of object-oriented 

programming (OOP). The use of OOP allows for clean and efficient implementation of numerous abstraction layers 

as well as creation of easy to use drivers enabling easy and safe code reuse with the use of encapsulation. The created 

software architecture can be seen on Figure 3. 

 
 

Figure 3: Software architecture summary 
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Although a bare-metal approach has been tested and deemed feasible for achieving desired performance and software 

modularity, the application of real time operating systems such as FreeRTOS has allowed for further improvements 

as several functions are performed uniformly across modules.  

 
Since tasks relating to the basic building blocks are performed on each module a basic code portion is present across 

all nodes and can be, similarly as in hardware, considered a basic building block, the structure of which is shown on 

Figure 4. In the proposed implementation the basic tasks would be: 

 CAN TX, responsible for sending messages from a queue updated from other threads 

 CAN RX, responsible for receiving and parsing CAN messages 

 LOG UART TX, responsible for sending debug information via a serial interface 

 DEFAULT, which is the main logic state implementing the state machine 

 

 
 

Figure 4: Example basic thread diagram for proposed configuration 

 

Thus a new module can be created with a greatly reduced workload by expanding on a ready and tested framework 

utilized on previous modules.  

3.4 Redundancy considerations 

Reliability is a major concern for space avionics due to harsh operating environment causing difficult to predict 

failures, most often associated with space radiation. Due to the use of COTS components reliability of a single 

module is likely to be inferior to current space systems utilizing specialized components with space heritage. The 

proposed architecture has been created to reduce the impact of single module failures on the rest of the system by 

focusing on the independency of each module. However, reliability can be further improved by adding redundancy at 

the module level or system level. 

Cold- or hot-spare redundancy in the form of multiple identical modules performing the same function can be 

implemented with little workload due to the independent operation of modules. The CAN bus utilized in the system 

can be used for heartbeat messages that would allow for use of cold redundancy or to implement voting in the case of 

critical command messages. The proposed architecture thus provides a flexible method of applying redundancy 

according to mission risk and required reliability. 

Redundancy can be also applied in the form of multiple instances of the same system operating independently, with 

either cold-spare or voting implemented as a separate system. Such systems have been already described in aircraft 

avionics [11].  
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4. Testing 

For the purpose of increasing the reliability of the system a proper testing scheme has to be applied. Required tests 

can be divided into 2 groups: hardware tests and software and integration tests. Hardware needs to be qualified 

before it will be integrated with the software. Qualification of the hardware should be conducted using a dedicated 

test stand. To reduce development effort test stands should not be dedicated for each module but instead able to 

service all modules designed according to this architecture. Continuous integration practices should be applied 

during the hardware and software integration as it guarantees rapid bug discovery and produces tested and reliable 

code. The testing procedure should enable testing of independent isolated modules as well as a whole stack.  

4.1. Hardware tests 

Hardware tests should be conducted as in-circuit tests using a test stand able to test different kinds of OBC modules. 

For the purpose of reducing the test overhead the construction of the test stand cannot require any significant 

modification of the tested modules. Consequently the bed of nail test approach was adopted for this purpose. This 

solution provides a compact interface between the test stand and the device under test (DUT). Such a solution has 

a low impact on the hardware design of a module. During PCB design only small testing points for signals, power 

lines and interfaces have to be included which results in a minimally invasive testing interface on each module. 

 

Hardware in the loop testing, simulation of digital and analog inputs and outputs as well as simulation of different 

protocols and resistive loads are required in order to conduct comprehensive tests of every module. National 

Instruments PXI computer was chosen as a very convenient solution with intuitive software, LabVIEW, available for 

easy creation of custom testing user interfaces. 

 

The heterogeneity of each module introduces some challenges to the process of standardisation of the test procedure. 

In order to reduce workload it is necessary to provide a common interface which operates as a bridge between the 

PXI and DUT. Thus an adapter PCB was designed. Its purpose is to gather all of the signals of the PXI and all of the 

loads on one common connector. Loads can be control by PXI using digital outputs that controls relays. The relays 

are responsible for connecting power resistors in parallel. The more power resistors are connected the bigger the load 

is, which allows for varying the load during testing. It also increases the amount of digital and analog channels that 

can be measured or simulated by providing channel multiplexing. Owing to this solution the testing procedure can be 

unified. Testing overhead comes down to designing a custom PCB interfacing with pogo pins dedicated for every 

DUT. The PCB is connected to the adapter PCB using previously mentioned common connector. The whole 

architecture of the test stand is sum up on the Figure 5:. Testing PCB provides the possibility to test a module as 

completely isolated system. Every interface and signal used by the module can be simulated by connecting it to 

common connector. 
 

With aim of simplifying and automating the testing procedure, a LabVIEW application provides possibility of 

reading and writing every test stand I/O. It is also possible to program the test sequence and save the test results. 

What’s more the test result of a specific module can be employed as a qualification model for the production of this 

module.  

 
Figure 5: Diagram of the test stand architecture 

4.2. Software and integration tests 

The modular and reusable character of the OBC software makes it possible to develop each chunk of the code 

independently from the rest of the software. Eventually the part of the code that was under development need to be 

integrated with the rest of the code and further the new version of the software needs to be integrated with the 
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hardware. Usually integration is risky and demanding process [12]. The practise of continuous integration (CI) has 

proven to be very effective addressing that issue. CI means that software developers integrate the code often, at least 

once per day [13]. Every integration includes running the test and software verification. This practice contributes to 

early discovery of integration problems.  

 

In order to habituate this practise the workflow described in Figure 6:. was introduced. First the developer needs to 

cover the majority of his code with unit tests. Unit testing is one of the practises of test driven development approach 

(TDD). This technique enables to test the software incrementally function by function. This approach leads to 

significant decrease in development time [12] as it helps to find bugs quickly which also contributes to decrease of 

debugging time. Adaptation of TDD in embedded systems helps to write and test the code independently from 

hardware which reduces the debugging time on target where software issues might be harder to find. In order to run 

unit test each developer need to set up a unit test harness [12]. Only when all of the unit test were successfully passed 

the code can be committed. Commit is detected by an automatic build server. The server tries to integrate it by 

running the integration unit tests and then building it.  
 

To prevent from project delay due to late hardware development it must be possible to test the software completely 

on the emulated target. Even if hardware is already qualified it is require to first test it on emulated hardware as this 

may lead to early detection of the bugs that might cause hardware issues. Software can be uploaded to dedicated 

qualified module only after passing all of the test. If the hardware is not qualified yet but the software passed the tests 

on emulated environment it is deployed to the repository and waits for hardware to be qualified. The last step is a 

hardware in the loop test conducted on the isolated module. All of the interaction with the external devices and 

components are simulated by the test stand, which also monitors and enables direct interaction with the DUT 

e.g. changing state or simulating errors. If software pass all of the test in can be deployed into production repo. 

 
Figure 6: Software and integration test workflow 

The test stand gives the possibility of conducting whole stack tests. In the stack configuration it is not possible to 

access all of the modules using pogo pins. Therefore a flat configuration must be adopted providing the possibility of 

simulating the external devices and different testing scenarios using the test stand LabVIEW application. In such 

a configuration a dedicated PCB provides the common interface using interconnected mezzanine connectors.  

5. Discussion of results 

Providing the basic hardware and software tools, like configuration of CI process and building of the reusable test 

stand the team could begin to establish reusable hardware and software building blocks. The basic template of the 

module PCB, including the microcontroller, mezzanine connector and CAN module, was established and utilized 

during further development of the first three prototype modules. A similar approach was undertaken during the 

software development. Reusable software components like drivers, wrappers, utilities as well as classes for task 

creation and management were created. This caused the software development process time to be shortened as only 

module specific functionality had to be developed while the rest functionalities were reused.  

 

Finally after establishing of this framework the reliable system of delivering the ready to flight OBC was created. 

Due to the high modularity and independence of modules as well as hardware-independent software testing patterns 

application of agile project management methodologies was attempted. The qualified hardware integrated in 

dedicated housing with tested software acted as adopted definition of done (DOD) of each sprint. In this way there is 

always qualified OBC available for flight test. New hardware and software changes are introduced on the 
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development version of the system. After qualification they are being integrated with the latest version of the system 

creating new flight ready iteration. The developed architecture and design method could allow for further 

implementation of agile methodologies to better adapt to changing requirements posed by experiment owners. 

 
So far power, logging and data acquisition modules were developed and are ready for flight test. They create the first 

iteration of the system. The development process of first iteration successfully verified the presented architecture and 

provide the OBC team with conclusion and plans for future improvements.  

 
Adaptation of the architecture to microlaunchers, satellites or other more complex high-reliability systems should be 

more closely analysed in a separate case study with a derivation of a more precise set of functional requirements and 

solutions enabled by the presented architecture. Although features useful in such systems such as redundancy and 

high scalability should be possible in this architecture. They have not yet been tested and remain to be considered in 

the future. 

 

6. Conclusion  

The process of the ILR-33 Amber OBC development according to the presented architecture and methodologies is 

still ongoing, however the adopted strategy has already proved to be effective during the design of a prototype. 
A modular architecture with highly independent modules has been developed and its advantages in high-

performance, scalable designs have been assessed. Basic module structure both in terms of hardware and software 

has been defined which allowed for reduction of workload when designing new modules. Methodologies for 

hardware and software development and testing were presented. 

 

The architecture has already been used to develop a working 3-module prototype used for data acquisition and 

recording on the ILR-33 Amber rocket. Though true effectiveness of the architecture remains to be seen as new 

needs for functionalities arise it has thus far been useful in increasing design reuse, thus reducing development time. 
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