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Abstract
The reattachment process in shock wave/boundary layer interaction situations is either viscous or inviscid
dominated depending on the perturbation strength of O(Re−1/4). While the reattachment process is viscous
dominated for small values of perturbation strength, for large scale separations, the process is inviscid and
the separation region is dominated by significant transverse pressure gradients.

1. Introduction

In the wee known Chapman’s isentropic re-compression theory,3 the reattachment process is assumed essentially to be
inviscid. While this assumption largely holds at high Reynolds number and moderate Mach number supersonic flows,
its validity in high Mach number, low to moderate Reynolds number hypersonic flows is not immediately evident.
Typically, in hypersonic flows, the reattachment process is characterised by a pressure over shoot, which results from
the so called ‘necking’ a consequence of coalescence of separation and reattachment shock waves and some times a
leading edge shock, forming a triple point close to the surface.

Daniels4 developed a reattachment theory based on the triple-deck approach of Stewartson16 and Neiland.10 He
shows that, while largely inviscid across a streamwise distance ofO(Re−1/2), the reattachment is still viscous dominated
in a sublayer of thickness O(Re−5/8) , which can be described by boundary layer equations. The whole extent of the
reattachment process is spread across a region of O(Re−3/8) with pressure rise of O(Re−1/4). Daniels’ theory essentially
assumes small separation, characterised without a pressure plateau, wherein the pressure rise is induced, for example,
by a compression corner of angle α∗ = O(Re−1/4). For large separations, when α∗ = O(1) and with a well developed
plateau, Burggraf2 has described a reattachment process based on asymptotic theory.

In the present paper, we will discuss the reattachment process in hypersonic large scale separated flow. In
particular, it is shown that the evolution of the dividing streamline velocity is dependent on the Reynolds number as
well as the way separation is initiated. It is also shown that the maximum dividing streamline velocity is less than the
Chapman isentropic value and that the flow decelerates rapidly from maximum to zero at reattachment.

2. Analysis

2.1 Flow near reattachment

The reattachment process is characterised by the mass flow scavenged from the plateau pressure (constant pressure)
region by the shear layer that is then turned back into the recirculation region as a result of the pressure rise at reattach-
ment (Figure 1). Burggraf2 has analysed this process by considering the salient terms of the Navier-Stokes equations
pertaining to the shear layer and estimating their order of magnitude. He considered three cases depending on the ramp
angle α∗.

The first one is the case α∗ ≤ O(Re−1/4), wherein the separation region is small and there is no distinct plateau.
Under these circumstances the reattachment process is entirely viscous dominated and the transverse pressure gradient
∂p/∂y ≈ 0 as in standard thin shear layer approximations.

In the second case, where O(Re−1/4) ≤ α∗ << 1, the reattachment is largely inviscid but ∂p/∂y variation can still
be considered insignificant. In such circumstances, there will be a short plateau and both separation and reattachment
are interdependent and the velocities in the recirculation region are significantly low and the flow incompressible.
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Figure 1: Separation and reattachment at a compression ramp

In the third case, we have α∗ = O(1) and this implies a long and well developed plateau wherein separation and
reattachment are independent of each other and the Neiland10 and Burggraf2 asymptotic theory applies. The transverse
pressure gradient ∂p/∂y now becomes significant. The velocities in the recirculating region are high and the flow is
compressible. The reattachment process is inviscid and Chapman’s hypothesis becomes valid.

Following Burggraf,2 the quantities in the shear layer entering the reattachment region scale as:

lp ∼ α
∗3/2

and lR ∼ (α∗Re)−1/2 (1)

Where lp and lR refer to lengths of plateau pressure and reattachment region respectively. The stream-wise and
transverse pressure gradients are scaled as

∂p/∂x ∼ α∗
3/2

Re1/2 and ∂p/∂y ∼ (α∗Re)1/2 (2)

We thus note that for small α (<<1), the transverse gradient vanishes and for α ∼ O(1) or greater, it becomes
significant. For large α with a long plateau, lp ∼ O(1) and α∗ ∼ O(1), lR ∼ O(Re−1/2).

The asymptotic calculation with the limit Reynolds number gives the long plateau length as (see Burggraf2):

lp ∼ 3.47(α − 1.55)3/2 (3)

This is valid for all α >> 1.55, where α is the scaled angle as defined by Stewartson16 and Rizzetta et al.15 The
validity of this relation is shown in Figure 2 with various experimental as well as numerical data. The notable feature
of this relation is that it is independent of the wall temperature.

The reattachment region which is O(Re−1/2), vanishes in the limit Re → ∞. When this happens, the plateau
length lp and the separation bubble length lB are the same. In fact, for high Reynolds number flows, the two lengths are
used synonymously.

Burggraf2 suggests that for a truly long plateau the boundary layer history before interaction becomes less rel-
evant as separation and reattachment processes become independent of each other. A classic example of this is the
leading edge separation that has been studied by our group for some time now (see Khraibut et al.;7 Khraibut;6 Prakash
et al.;13 Prakash et al.14). The configuration is shown in Figure 3. Here lR/lp ∼ 0.0245, so that the Chapman’s hypoth-
esis that the reattachment is basically inviscid becomes valid.
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Figure 2: Variation of length of separation lB with scaled angle α. : Compression corner data for angles 10◦ to 24◦

(Tw/T0 = 0.125); ♦ : Katzer, 1989 (adiabatic); 4 : Degrez et al., 1987 (adiabatic); : Rizzetta et al., 1978 (Tw/T0 =

0.125); © & : Benay et al., 2006 (Tw/T0 = 0.6 and 0.1, respectively); � : Khraibut et al., 2017 (Tw/T0 = 0.1); 5
Chapman et al., 1958 (adiabatic); × : Swantek & Austin, 2012 (Tw/T0 ≈ 0.04)
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Figure 3: Flow schematic of a ‘tick’ configuration

2.2 Physical features of reattachment

From Oswatitsch’s relation,11 the reattachment angle βR is expressed as

tan βR = 3
dτw/ds
dpw/ds

(4)

where βR is the angle that the dividing streamline makes with the surface, τw and pw are the wall shear stress and
pressure evaluated at reattachment. Figure 4 shows the streamline angle at reattachment with respect to the compression
surface. It is seen that the reattachment angle βR is shallower than the separation angle βS . Figure 5 shows the pressure
and skin friction coefficient at reattachment. The reattachment angle calculated using Oswatitsch relation gave 5.5◦

based on CFD calculations (Khraibut6) and 8.6◦ from DSMC calculations (Prakash et al.13).
It is seen that for large angle at separation, α∗ ∼ βS . Further, from Oswatitsch relation,

dτ/ds >> dp/ds (5)

This implies that for large separation angles, the slow rise in dp/ds is accompanied by an abrupt decrease in
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Figure 4: Dividing streamline angles: (a) Separation, (b) Reattachment.
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Figure 5: Pressure and skin friction coefficients around reattachment

dτ/ds. On the other hand, at reattachment, there is an abrupt increase in pressure and the process is largely inviscid so
that the reattachment angle is small.

2.3 The velocity on the dividing streamline

Another important aspect of reattachment process is the velocity variation along the dividing streamline (DSL) from
separation to reattachment. Chapman’s isentropic recompression theory assumes that the normalised dividing stream-
line velocity u∗d is constant and equal to 0.587 and is independent of the Reynolds number. Subsequently, Baum and
Denison1 extended the Chapman model to include the existence of a Blasius boundary layer prior to separation and
applied it to base flows. They showed that the velocity evolved gradually reaching the Chapman value asymptoti-
cally. On the other hand, base flow investigations of cylinder and blunt cone by Park12 have shown that the dividing
streamline velocity goes to zero at reattachment quite abruptly after reaching a peak value, which is considerably less
than the Chapman’s isentropic limit. Computations, both CFD and DSMC of leading edge separation configuration
in hypersonic flow also show non-isentropic variation in dividing streamline velocity. Figure 6 shows the computed
(DSMC) variation of the dividing streamline velocity. In this figure, S ∗ is a scaled distance along the dividing stream-
line normalised by the scaled distance along the surface from the leading edge to the point of separation as defined in
Baum and Denison.1 Here S ∗ = 0 indicates separation and S ∗ → ∞ implies fully developed self-similar shear layer.
Some interesting features may be noted. After initial slow rise, the velocity reaches a peak value of about 0.55 before
rapidly falling to zero at S ∗ → 102 which indicates reattachment. In comparison, the base flows data of Park12 show
smaller velocity peaks (∼ 0.37) and smaller separation regions.

Reeves and Lees8 in their study of separation and reattachment behind blunt bodies in hypersonic flow, point out
that the presence of a surface and its radius of curvature in the vicinity of separation has a very significant influence
on the evolution of the dividing streamline velocity u∗d. This would explain the differences in u∗d variation for the three
configurations shown in Figure 6. While the axisymmetric blunt cone and circular cylinder are almost identical and
both show strong influence of the pre-existing boundary layer, the leading edge separation geometry, which is a flat
surface with very little fetch for boundary layer growth, shows a higher peak and a rather slower rise of u∗d in the initial
stages. The Reynolds number in all the three cases is of the same order (∼ 3x104) based on the characteristic length.

An estimate of the maximum value of the dividing streamline velocity u∗d can be made following the analysis of
Messiter et al.9 of a separating shear layer behind a step in supersonic flow. They show that at the end of the shear
layer prior to reattachment, the velocity on the dividing streamline is given by

(u∗d)2 ∼ 2a4/3
1 k5/3

o (x f /L)2/3 (6)

where a1 is a shear constant (0.332 for a Blasius boundary layer), ko is a positive constant, x f is the length of
the shear layer, and L is a characteristic length. In the case of the leading edge separation geometry, the characteristic
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Figure 6: Variation of DSL velocity ratio

length is the expansion surface length, while for circular cylinder it is the cylinder diameter and for the blunt cone,
the base diameter. Messiter et al.9 give 0.6 ≤ ko ≤ 0.73 based on experimental and numerical data. For hypersonic
flows, Gai5 shows that ko ≤ 0.655. Using the appropriate values for the shear constant, the peak values of u∗d for the
leading edge separation is then estimated to be 0.53 which compares quite well with the computed value of 0.55. For
the cylinder and blunt cone the corresponding estimate is 0.37, which again is in good agreement as seen from Figure
6.

3. Conclusions

Consideration is given to large-scale separation, wherein the plateau region is long and separation and reattachment
can be treated independently. Using Burggraf’s asymptotic analysis, the reattachment process is dependent on the
perturbation strength α∗. When α∗ = O(Re−1/4), the reattachment process is viscous dominated and the transverse
pressure gradient ∂p/∂y is negligible. With O(Re−1/4) < α∗ < 1, the reattachment process is largely inviscid and
∂p/∂y can still be assumed small. When α∗ = O(1), however, the reattachment is an inviscid process and ∂p/∂y , 0
and has to be accounted for. In the asymptotic limit of Re→ ∞, the plateau length and separation length (the distance
between separation point and the reattachment point) become of the same order and scale as α3/2. Available data,
both experimental and numerical, verify this relation. Further, it is seen that this relation is independent of the wall
temperature.
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