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There are many investigations which are 
devoted to the plate flutter problem. The solu-
tion is reduced to calculation of system eigen-
frequencies, their position on the complex 
plane indicates existence or absence of the 
flutter. For gas pressure one uses the piston 
theory or its modifications valid for high 
enough Mach numbers, and solves the eigen-
value problem numerically. 

In the present paper flutter of the plate 
having form of wide strip is investigated. For 
eigenvalue problem the asymptotic method 
for extended areas, or the theory of global in-
stability [1; 2, §65] is used. For gas pressure 
is used asymptotically exact expression at 

∞→L  for full range of Mach numbers 
1>M . Two qualitatively different types of 

instability are obtained. First, single oscilla-
tion form flutter, which is result of negative 
aerodynamic damping. Second, coupled-type 
flutter, which is result of interaction of two 
oscillation forms. Stability criteria and the 
frequencies corresponding to maximum am-
plification are derived for both types. Mecha-
nism of transition of eigenfunctions to insta-

bility has a simple physical sense and is de-
scribed in details below. 

1. Statement of the problem 

In plane statement one considers a linear 
stability of elastic strained plate having form of 
strip which is streamlined from one side by 
homogeneous supersonic gas flow and bal-
anced from another side by constant pressure. 
Gas flow vector is parallel to the plate plane. 
One considers the gas as inviscid and perfect, 
the flow assumed to be adiabatic, plate obeyed 
the classic equation of thin plate bending.  

Assume all variables dimensionless and in-
troduce the coordinate system connected with 
the plate as shown in fig. 1. The plate occupies 
the region 2/Lx ≤ , 0=z , here L is width of 

the plate; at 2/Lx >  surface 0=z  is consid-
ered as absolutely rigid.  

Apply to system small perturbance de-
scribed by gas velocity potential φ and plate 
bending w. 
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Fig. 1 

In the region 0>z  gas potential φ satis-
fies the wave equation 
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and the damping condition at ∞→z . At 
0=z  potential obeys impenetrability condi-

tion 
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The bending w obeys the equation of motion 
of the plate 
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( 2/Lx < ), and the boundary conditions at 
plate edges. Undimential parameters are as 
follows: 
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Here u and ρ are velocity and density of the 
gas, a is its sound speed, σ is strain stress at 
middle surface of the plate, ρm, Lw and h are 
material density, width and thickness of the 

plate, 
)1(12 2

3

ν−
=

EhDw  is its bending stiffness. 

Parameter wM  is the ratio of propagation 
speed of long bending plate waves to the 
speed of sound in the gas. Assume that 

1>M , 1<<µ , 1>>L . 
Supposing all functions depending on 

time as tie ω−  and substituting this dependence 
in the system of equations, one obtains the ei-
genvalue problem. Flutter criterion is existence 
of at least one eigenvalue having positive 
imaginary part.  

2. Global instability 

In [1; 2, §65] general method for solving 
the eigenvalue problem is developed and on its 
basis sufficient instability conditions for  ho-
mogeneous states of one-dimensional extended 
systems of general form are formulated.  Two 
types of instability were discovered: one-side 
instability which depends on boundary condi-
tions at one of system boundaries, and global 
instability  which does not depend on the 
boundary conditions. Plate boundary conditions 
usually used are pinning ( 0/ =∂∂= xww ) and 
clamping ( 0/ 22 =∂∂= xww ); they do not sat-
isfy one-side instability condition of plane per-
turbances. 

Global instability criterion is as follows. 
Let dispersion relation of unbounded (i.e. oc-
cupying full x axis) system is 0),( =ωkF , 
where k is wave number, ω is complex fre-
quency of the perturbance. At sufficiently large 

ωIm  its solutions kj = kj(ω), which are num-
bered in imaginary part decrease, can be di-
vided into two groups: 0Im >jk , j=1,...,s and 

0Im <jk , j=(s+1),...,N, the number of solu-
tions in each group is equal to the number of 
boundary conditions at one of boundaries of fi-
nite system. Every solution defines a branch of 
multi-valued analytical function k = k(ω). 
When ωIm  decreases, imaginary parts of the 
first group solutions decreases, and ones of the 
second group increases, and for some ω the 
equality  

jNjsnmjsj
kkkk ImmaxImImImmin

11 ≤≤+≤≤
===  

will be satisfied. Set of such ω defines a curve 
Ω on the complex plane ω. Under sufficiently 
large extension of finite system, part of its ei-
genfrequencies spectrum lies near this curve, as 
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more densely and closely to it, as more the 
system extension [1; 2, §65]. At that 
eigenfunctions corresponding to indicated 
eigenfrequencies under ∞→L  and far from 
boundaries of the system have asymptotic 
form ( ) tixik

n
xik

m eeCeC nm ω−ωω + )()( . Here Cj 
are constants defined by boundary conditions 
and i is imaginary unit. It is sufficient for  in-
stability of the system that a part of curve Ω 
would lie in the region 0Im >ω ; this is con-
dition of global instability.  

Dispersion relation for plane perturbances 
of unbounded plate which is streamlined from 
one side by gas has the form [3]: 

0
)(

)()(
22

2
2224 =

−ω−

−ω
µ−ω−+

Mkk

MkkMDk w   

(1) 
First term corresponds to contribution of 

elastic and inertial forces of the plate, the sec-
ond one corresponds to contribution of aero-
dynamic forces applied to the plate. At 

1Im >>ω  square root in the second term is 
chosen such that its real part is positive; this 
condition is the consequence of damping con-
dition away from the plate. It picks out four 
solutions of (1) k(ω), analytically continued 
on the complex plane ω cut by line 0Re =ω , 

0Im <ω . At large ω  solutions are close to 
roots of dispersion relation of unbounded 
plate in vacuum ( 0=µ ); to each group belong 
two roots. 

Note that it follows from (1) that curve Ω 
is symmetric relative to imaginary axis ω. 
Thus we can consider only the right half-
plane of the complex plane ω. 

Results of our investigation are described 
below, analysis details can be found in [4]. 

3. Global instability of high-frequency  
perturbances 

In the present section assume that µ is 
small parameter and ignore low-frequency 

perturbances on assuming that µ>>ω , 
µ>>k . Then the second term in (1) is small in 

comparison with the first one. Since at 0=µ  
the curve Ω coincides with real axis, then at 
small 0≠µ  this curve consists of points 

)(ωδ+ω i , 10 <<δ<  R∈ω , 0>ω . Expand-
ing ),( µδ+ω ik j  in Taylor formula in δ and in 
µ, one obtains from the condition 

),(Im),(Im 32 µδ+ω=µδ+ω ikik  dependence 
)(ωδ  (so the form of the curve Ω) and instabil-

ity criterion.  
Flutter criterion accurate for infinitesimal 

order of µ is the inequality  
1+> wMM ,   (2) 

its physical sense is in the following.  
First, consider the plate of infinite  width. 

Suppose that harmonic wave )(),( tkxietxw ω−=  
runs along the plate with phase velocity 

22/ DkMkc w +=ω= ; R∈ω . The wave gen-
erates perturbance of pressure which in turn 
leads to correction in the wave number k. Spa-
tial amplification or damping of the wave (un-
der real frequency ω), which is defining by 

)(Im ωk , depends on the character of gas flow 
relative to the wave. If the flow is subsonic, 
that is 1<− cM , than the phase of pressure 
perturbance coincides with the phase of plate 
bending and cannot lead to damping or amplifi-
cation of the wave. If the flow is supersonic 
than the phase of pressure is shifted by π/2 with 
respect to the phase of the wave, in this case 
spatial damping or amplification of the wave 
depends on the direction of gas flow with re-
spect to the wave, and the direction of wave 
motion. If they coincide than the gas performs 
positive work and the wave is amplified, if they 
are counter than the gas performs negative 
work and the wave is damped. Thus the wave 
moving against the gas flow always experi-
ences resistance from it and is damped, the 
wave moving along the gas flow is amplified if 
the gas moves faster than the wave ( 1>− cM ) 



SESSION 2.7: AEROTHERMODYNAMIC PHENOMENA II 

 4

and is damped if the wave moves faster than 
the flow ( 1−<− cM ). 

Now consider the plate of large but finite 
width. Mechanism of generation of its global 
eigenfunctions which are built in accordance 
with [1; 2, §65] is of the following form. The 
wave corresponding to wave number k2, 
which is running along the plate downstream 
the gas flow, reflects from its back edge and 
generates two waves running back. One is 
damped and corresponds to k4, the second is 
close to harmonic wave and corresponds to k3. 
If the plate is sufficiently wide then when 
these waves reach the forward edge, ampli-
tude of damping wave is negligible and one 
may assume that only wave, corresponding to 
k3, came back. Then it reflects from the for-
ward edge and generates damping wave cor-
responding to k1 (which is is negligible at the 
back edge by the same reason) and original 
wave, corresponding to k2, but generally hav-
ing different amplitude. As a consequence of 
described process of mutual conversion of 
both waves in reflections (two appending 
damping waves are essential only near plate 
edges), the global eigenfunction is generated. 
If amplification of the wave running down-
stream becomes more than damping of the 
wave running upstream, then after double re-
flection wave amplitude will be increased. On 
cyclic iterations of this process this leads to 
exponential increase of perturbance ampli-
tude. Amplification of the wave running 
downstream takes place when 1−< Mc , at 
that it becomes as larger as c (phase speed of 
the wave running along the plate) is closer to 
M – 1 (motion speed of back front of sonic 
waves in the gas). Under 1−= Mc  these 
waves resonate, which leads to their maxi-
mum amplification. As 22)( DkMkc w += , 
the criterion (2) which is accurate to small 
terms of order of µ corresponds to parameters 
values region for which there exist waves 
along the plate with phase speed 1−= Mc , 
so that µ>>k . 

Using the fact that waves, which phase 

speed 1−= Mc , grow the most quickly, from 
dispersion relation (1) one can find their fre-
quency: 

DMMM w /))1(()1( 22
max −−−=ω  

 
Fig. 2 

In fig. 2 the part of the curve Ω is shown 
for parameters  

M=1.5,   Mw=0,   D=23.9,   µ=1.2·10–4   (3) 
(steel plate streamlined by an air flow under 
normal conditions) from which, in particular, 
one can find maximum increment of oscilla-
tions 4

max 106.3 −⋅≈δ . All points of the curve 
Ω, which do not lie on the shown region of ω 
plane and satisfy condition µ>>ω , have nega-
tive imaginary part. 

Consider now descrete spectrum of system 
eigenfrequencies. 

In the absence of the gas eigenfrequencies 
ωn lie on the real axis ω. In the presence of the 
gas eigenfrequencies, which are satisfy condi-
tion µ>>ωn , in first approach under large L 
lie on curve Ω and have the form ωn+iδ(ωn). 

As a consequence the following depend-
ence of plate eigenfunctions growth rate on its 
width is generated. Under sufficiently small 
width L (on assumption that theory of global 
instability can be applied for considered L) 

maxω>>ωn  for any n and state of the plate is 
stable because δ(ωn)<0. In increasing L eigen-
frequencies move in the direction of their real 
part decrease, and frequencies ω1, ω2 etc in se-
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ries move through area δ(ω)>0. As the dis-
tance between neighbour frequencies which 
lie near maxω  at ∞→L  tends to zero, then 
beginning from some L the plate always will 
belong in high-frequency flutter region, and 
maximum growth rate among all high-
frequency eigenfunctions )(max

: nnw
n

ωδ=δ
µ>>ω

 

in increase of L will have the form of damp-
ing oscillations, asymptotically approaching 
to maxδ . For example, the dependence of wδ  
on pinned plate width for parameters (3) is 
shown in fig. 3. To each successive local 
minimum wδ  when L increases, transition of 
the quickest growth to the successive oscilla-
tion eigenform corresponds.  

 
Fig. 3 

Analogously one can trace the depend-
ence of eigenfrequencies µ>>ωn  on Mach 
number M. At that eigenfrequencies of plate 
oscillations in vacuum ωn remain motionless 
and the curve Ω for increasing M moves to the 
right and deforms. Dependence )(Mwδ  also 
has oscillation character, but maximum 
growth rate maxδ  changes with M alteration. 
For example, the dependence )(max Mδ  is 
shown in fig. 4 for parameters D=23.9, 
µ=1.2·10–4. 

 
Fig. 4 

4. Global instability of low-frequency  
perturbances 

Consider now low-frequency perturbances 
when the second term in (1) is not small in 
comparison with the first one. 

Let 0=wM . It follows from previous sec-
tion that at sufficiently large |ω| the curve Ω is 
defined by the condition =ω>ω )(Im)(Im 21 kk  

)(Im)(Im 43 ω>ω= kk . Let us move along Ω in 
the direction of ωRe  decrease. Then this con-
dition will be satisfied only up to some ω de-
fined by the expression =ω>ω )(Im)(Im 21 kk  

)(Im)(Im 43 ω=ω= kk ; at this point the curve 
Ω has sharp turn. At following ωRe  decrease 
mutual position of branches k3 and k4 is 
changed, and points of the curve Ω are defined 
by the condition =ω>ω )(Im)(Im 21 kk  

)(Im)(Im 34 ω<ω= kk . The curve ends at the 
branch point ω* of roots k2(ω) and k4(ω), at 
which 0*Im >ω . Thus, at 0=wM  low-
frequency perturbances are unstable. For ex-
ample, the curve Ω for small ω region under 
parameters (3) is show in fig. 5.  

Physical sense of mutual changing of the 
position of 3Im k  and 4Im k  at small ωRe  con-
sists in the following. In the absence of the gas, 
for small real ω the wave, which corresponds to 
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branch k3, is harmonic, and the wave, which 
corresponds to k4, is low-damping, these both 
waves propagate against the flow. Under gas 
influence the wave corresponding to k3 also 
becomes damping, so that at small ω its 
damping has the same order as the damping 
of wave k4. Change of inequality 

43 ImIm kk >  to inequality 43 ImIm kk <  
means that at small frequencies damping of 
wave k3 under gas influence becomes stronger 
than the damping of wave k4, and global ei-
genfunctions are generated by waves k2 and k4 
instead of k2 and k3. 

 
Fig. 5 

Stability investigation of low-frequency 
perturbances is based on study of position of 
roots k2(ω) and k4(ω) branch point ω* on ω 
plane. On condition ω>>k  (it can be shown 
that it is correct for the branch point) one can 
simplify the dispersion relation (1), neglecting 
ω in the second term and choosing certain 
branch of the square root:  

0
1

)(
2

2
2224 =

−
µ+ω−+ k

M

MikMDk w   (4) 

Investigation of (4) leads to the following 
instability criterion:  
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The frequency, which corresponds to maximum 
of perturbances growth rate, has the form  
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where A depends on parameters of the problem 
and lies in the range from 0.433 to 0.595. In the 
case of instability the curve Ω has the same 
qualitative form as shown in fig. 5. In the case 
of stability no mutual interchanging of k3 and k4 
at small ω is present. At that the curve Ω is 
ended in the branch point of roots k2 and k3 ly-
ing in the under half-plane.  

5. Discussions 

Essentially the method of global instability 
which is used in solution of eigenvalue prob-
lem, leads to the following method of calcula-
tion of pressure acting on oscillating plate: os-
cillation is assumed to be a superposition of 
waves running along imaginary unbounded 
plate, and satisfying the same boundary condi-
tions at edges as for the real plate; pressure is 
considered as the superposition of pressures 
acting on these unbounded waves. On using 
exact dependence of pressure on bending [5], 
one can show that under 0Im >ω  this method 
at ∞→L  is asymptotically exact.  

Suppose that for the pressure acting on un-
bounded running waves were used expression  

t
wC

x
wCtxp

∂
∂

+
∂
∂

= 21),(      (5) 

where Cj are functions of parameters of the 
problem, 02 ≥C  (in particular, such form has 
the piston theory and some other approaches at 
large Mach numbers). Then high-frequency 
perturbances would be stable. Thus, high-
frequency flutter cannot be obtained in using of 
expressions having form (5). Note, that the the-
ory discovered in [6], correctly describe high-
frequency flutter and leads to the criterion 
which coincides with derived here.  

Low-frequency flutter is described cor-
rectly by dependences of the form (5), for the 
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reason that in its investigation one used ap-
proximate dispersion relation (4) which can 
be treated as exact dispersion relation derived 
in use of quasi-static approach having the 

form (5), where 
12

2

1
−

µ=
M

MC , 02 =C . 

Now explain physical difference between 
high-frequency and low-frequency flutter. In 
[7,8] two types of plate flutter are described 
— single degree of freedom flutter and cou-
pled-type flutter. The first one appears under 
action of negative aerodynamic damping of 
one of oscillation form, so that there is no in-
teraction between forms. The second type of 
flutter is the consequence of two eigenforms 
interaction [5,9]. Prove that derived in the 
present paper high-frequency and low-
frequency flutter are accordingly single de-
gree of freedom flutter and coupled-type flut-
ter. Really, it is easy to understand that the 
structure of high-frequency growing eigen-
function described in section 3 coincides with 
structure of eigenfunctions of the plate being 
in the vacuum. In other words, oscillations are 
in a single oscillation form. On the other 
hand, it follows from results of [5,9] derived 
in the approach of the piston theory that the 
plate having the form of strip of sufficiently 
large width is being in coupled-type flutter 
region. As high-frequency flutter cannot be 
discovered in approach of the piston theory, 
coupled-type flutter is low-frequency flutter.  

The correspondence derived between 
both flutter types clarifies the fact that the 
single degree of freedom flutter was described 
only in works [7,8]. In overwhelming works 
one used dependences having form (5), 
which, as shown above, do not lead to exis-
tence of single degree of freedom flutter. But 
there where more exact dependences of pres-
sure on bending are used, seemingly during 
numerical solution one used too small terms 
of series for discovery of high-frequency flut-
ter. Note that in aircraft design criteria [10-12] 

for investigation of criterion of paneling flutter 
quasi-static and piston theory are used, and thus 
the possibility of single degree of freedom flut-
ter is not excluded.  

Investigation is supported by grants of 
Russia Foundation for Basic Research (05-01-
00219) and President of Russia Federation 
(NS-1697.2003.1). 
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