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Terrain aided navigation is a technique 
based on the association of an inertial naviga-
tion unit, a radio-altimeter measuring the dis-
tance from the aircraft to the ground and a 
digital terrain elevation map. The radio-
altimeter measurements provide indirect in-
formation on the aircraft position that can be 
used to fix the inertial position, speed and atti-
tude drift errors. This technique achieves a 
high accuracy navigation along the flight. 
This operation corresponds to a non-linear es-
timation problem. The non-linear property is 
induced by the terrain surface shape, which is 
a major difficulty for filtering algorithms, es-
pecially when large initial horizontal position 
errors and/or mountainous areas are consid-
ered. 

Over the last three decades, several algo-
rithms have been developed. Batch-oriented 
algorithms, like TERCOM, are based on the 
correlation between the measured terrain-
height profile and the digital map. Another 
class of algorithm is derived from an Ex-
tended Kalman Filter. The SITAN algorithm 
is an example. More recent algorithms 

(TERPROM, SPARTAN) mix both ap-
proaches. 

In this work, we focus on an alternative 
class of algorithms called particle filters [1] [2] 
[3]. Particle filters solve the estimation prob-
lem, in a Bayesian framework, by approximat-
ing the state probability density function by a 
set of weighted samples. We have developed 
two terrain-aided navigation algorithms based 
on the particle approximation. The first one is 
designed to cope with large initial position er-
ror (several kilometers). Thus, it can be used as 
an alternative to batch-algorithms for the posi-
tion acquisition phase. Our second particle fil-
ter is based on the Gaussian particle filter, and 
offers an alternative to the Extended Kalman 
Filter approach. Both algorithms have been im-
plemented and evaluated on simulated data, in 
comparison to grid-based methods and EKF al-
gorithm. 

The Bayesian approach & Particle filtering 

Basically, terrain-aided navigation consists 
in combining the prior knowledge of the air-
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craft state given by the inertial system with 
the additional position-related information 
from terrain height measurements. The Bayes-
ian framework provides the theoretical tools 
to carry out this operation in an optimal way. 
In particular, this framework is well adapted 
to the recursive estimation of a dynamic state 
model given independent observations [4]. 

Let’s denote xk the system state at time k. 
In the case of terrain-aided navigation, the 
state represents the inertial navigation errors. 
At a minimum, it includes position errors, but 
it may also be completed by speed and atti-
tude errors. The state follows an evolution 
process described by a recursive equation: 
 ),(1 kkk f uxx =+  (1) 

with uk the evolution noise. In the Bayesian 
framework, an equivalent description of this 
process is given by the transition probability 
density function p(xk+1 | xk) which analytical 
expression can be straightforwardly drawn 
from f and the noise model. 

The radio-altimeter measurement is mod-
eled as:  
 kkkkk vLlhzm +−= ),(  (2) 

Where lk, Lk and zk are respectively the lati-
tude, longitude, altitude of the aircraft. The 
function h stands for the terrain elevation 
model. The noise vk sums up the measure-
ments errors. Once again, this model can be 
equivalently described by a probability den-
sity function p(mk | xk), called likelihood. 

In the Bayesian framework, the knowl-
edge of the state xk given all the past observa-
tions Mk=[m1…mk] is given by the posterior 
probability density function p(xk | Mk). This 
function can be recursively updated through 
the following equations: 
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Subsequently, several state estimates can be 
build from the density function p(xk  | Mk). A 

very classical choice is minimum mean square 
error (MMSE) estimate: 

[ ]kpk kk
E xx Mx )(

MMSEˆ =  

This general scheme of recursive estima-
tion defines the class of Bayesian filters. One of 
the well-known member of this class is the 
Kalman filter, which equations are directly 
drawn from (3) and (4) under the assumptions 
of linear models and additive Gaussian noises. 
Particle filters lies in the same framework. In 
addition, they provide the capability to handle 
non-linear and / or non-Gaussian problems. In-
deed, equations (3) and (4) are analytically in-
tractable in general case. 

Therefore, a general approach for non-
linear filtering is to choose an approximation of 
p(xk | Mk) that can be easily propagated through 
(3) and (4). For particle filters, this approxima-
tion is based on a finite set of weighted samples 
called particles. More precisely, a particle con-
sists in the association of a state vector xk

(i) and 
a weight wk

(i). The particles are distributed into 
the state space and accordingly weighted so 
that the local density of weight around the state 
xk is proportional to p(xk | Mk).  

One of the attracting aspects of the particle 
filters is that the intractable update equations 
correspond to simple operations on the particle 
set: 
• Propagation (also called sampling) step: 

Individual particle state is updated according 
to the state evolution model (1). The noise 
uk is randomly sampled for each particle. 

• Weight update step: 
For each particle, a measurement prediction 
given the particle state is computed. The 
likelihood p(mk+1 | xk+1

(i)) is drawn from the 
difference between the predicted measure-
ment and the actual observation mk. Finally, 
weights are updated according to: 
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That procedure ensures that the particle set 
remains a valid approximation of the true prob-

(3)

(4)
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ability density p(xk | Mk) at any time k. Never-
theless, as observations are accumulated, the 
total amount of weight concentrates on only 
few particles and a majority of particles have 
a negligible weight. Thus, an additional op-
eration called resampling is needed. It con-
sists in discarding low weighted particles and 
multiplying the others ones.  

In addition, the MMSE estimate of the 
state is computed as the weighted mean of the 
particle states: 
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Finally, the overview the whole algo-
rithm structure is presented on fig. 1. 

Practical implementation of particle filters 
for terrain-aided navigation 

The particle filter algorithm, as described 
in the previous section, is more a general 
scheme than a ready-to-use algorithm. The 
following sections will be dedicated to the ad-
aptation of the algorithm to the specific issues 
raised by the terrain-aided navigation filtering 
problem. Therefore, efforts have been aimed 
in two directions: firstly, improving the algo-
rithm efficiency and reliability, and secondly, 
pointing out the interests of using particle fil-
ter over traditional grid-based or EKF-based 
methods. 

 
Rao-Blackwellization procedure 

An important aspect of particle filter de-
sign is the number of particles that ensure an 
correct probability density approximation. 
This aspect is strongly related to the dimen-
sion of the state space: the number of required 
particles grows exponentially with the dimen-
sion. As a result, particle filters cannot handle 
high-dimension state space with a number of 
particles compatible with a real-time, embed-
ded implementation. For TAN, this problem 
can be solved by taking advantage of the par-
ticular structure of the problem. Indeed, the 

non-linear nature of the problem is clustered in 
the relationship between the measurement and 
the horizontal position. This allows a factoriza-
tion of p(xk | Mk) to the form: 
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where [xk
H, xk

N ] is a partition of the state vector 
between horizontal position and the other 
variable. The key point is that the 
determination of p(xk

N
  | xk

H,  Mk) is a linear 
Gaussian problem (under the assumption that 
the measurement noise is Gaussian) and can be 
solved analytically with a Kalman filter. The 
non-Gaussian remaining part p(xk

H
 | Mk) is ap-

proximated by a set of particles which are sam-
pled in the horizontal plane only. This proce-
dure is called Rao-Blackwellisation. Further 
developments can be found in [2]. 
 
Particle filtering for position fix 

In this section, particle filtering is applied 
to a situation of large initial position errors. In 
such case, the terrain variations over the initial 
uncertainty area are too important for a proper 
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Fig 1. Particle filter algorithm 
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terrain linearization. Such a scenario occurs 
after a long inertial-only navigation cruise 
phase.  

The proposed algorithm aimed at jointly 
estimating position and speed on each axis, 
considering the following state model (for one 
axis): 
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where uacc is an acceleration noise, and ∆T the 
iteration timestep. A Rao-Blackwellisation is 
applied to partition the state space between 
horizontal variables and vertical ones: a Kal-
man filter is attached to each particle and es-
timates the vertical position and speed given 
the particle trajectory in the horizontal plane. 

Here is the description of each filter step: 
 

Initialisation step:  
(a) The prior state density is assumed to be 

Gaussian. Particles are laid uniformly 
over a circular area that correspond to a 
3σ uncertainty boundary (see fig. 2). 
Their weights are ajusted to fit a Gaussian 
distribution. 

(b) The vertical channel Kalman filters are 
initialized according to the prior 
information on the vertical channel. 

Sampling step:  
(a) The horizontal state is updated according 

to (5). An acceleration noise value is 
randomly sampled for each particle. 

(b) A prediction step is performed on Kalman 
filters, according to (5). 

Weight update step: 
(a) A measurement prediction m(i) is computed 

for each particle. Kalman filter are updated 
according to the innovation  
ξ(i) = mk - m(i). 

(b) Particle weight are updated according to the 
innovation likelihood: 
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The fig. 2 presents the evolution of the par-
ticle set as the filter converges. Such a particle 
filtering algorithm is comparable to grid-based 
method. Indeed, if a null horizontal speed is as-
signed to particles and if the particle selection 
step is switch off, the algorithm is very close to 
a fixed-grid method. With the particle selection 
step, it behaves as an adaptive grid method. 
Hence, the main contribution of particle filter 
over grid-based methods is the possibility to 
jointly estimate 3D position and speed. 

 
Particle filtering for tracking 

As soon as the position fix is achieved with 
an acceptable accuracy, a tracking algorithm 
can be launched to track the INS errors with an 
elaborated drift model. In addition to position 
and speed errors, this model may include atti-
tude errors, accelerometer bias and gyro-meter 
drift rates. This task is classically devoted to an 
extended Kalman filter, which efficiently han-
dles high dimension state evolution models. 
This approach is followed in the SITAN algo-

 
Fig. 2. Evolution of the particle set in the horizontal plane 
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rithm for example. In essence, the perform-
ances of an EKF-based filter for terrain-aided 
navigation are limited by the relevance of the 
local linear approximation of the terrain pro-
file. Consequently, a severe risk of failure ap-
pears in case of large horizontal position er-
rors.  

By contrast, particle filters do not rely on 
any terrain approximation, since terrain eleva-
tions are evaluated locally for each particle. 
However, particle filters do not handle effi-
ciently high state space dimension.  

The proposed algorithm is an effort to 
conciliate the attributes of interest of each ap-
proach. The basic structure of this filter is de-
rived from the Kalman filter: the filtering 
densities p(xk | Mk) are assumed to be 
Gaussian and the prediction step is identical 
to a Kalman filter. The key idea of the 
proposed algorithm consists in substituting 
the Kalman update step with a particle-based 
procedure, so as to handle stronger non-
linearities. 

The algorithm has been implemented 
using a state model which includes position, 
speed and attitude (9 dimensions). Here is its 
detailed structure: 

 
Prediction step: (Identical to a Kalman filter) 

kkk xFx ˆˆ =+  

k
T
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Update step: 
(a) sampling: Particles are sampled in the 

horizontal plane according to the Gaussian 
prior distribution )/( 1 k

H
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kk /1+P . 

The distribution ),( )(,
1 k

iHN
kp Mxx +  is also 

Gaussian, with mean and covariance given: 

)ˆˆ()(ˆˆ )(,1)(, H
k

iH
kk

H
k

iN
k PM ++

−
+++ −+= xxxx  

T
k

N
k

iN
k MPMPP 1)(, )( −

+++ −=  

(b) Kalman update and weighting: The deter-
mination of ),( 1
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is a linear Gaussian problem. A Kalman 
update step is performed for each particle to 
obtain the updated mean )(,

1ˆ iN
k+x  and 

covariance )(,
1

iN
k+P . In addition, particle 

weights are updated from the likelihood of 
the innovation )(iξ  given by the Kalman fil-
ter: 
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(c) Estimation: the mean 1ˆ +kx  and covariance 

1+kP  of the posterior distribution is 
estimated from the particle set. 

The fig. 3 presents the particle set, sampled 
from the prior distribution, then weight accord-
ing to their likelihood (blue-green-red color), 
and the corresponding posterior distribution.  

 

Simulations and results 

A generic model of strap-down inertial 
navigation system is used to generate inertial 
data from a simulated aircraft trajectory. The 
radar-altimeter data are generated from the tra-

Prior distribution

Posterior
distribution

Fig.3. weighed particle set 
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jectory and a terrain map. Radar-altimeters er-
rors are considered to be a Gaussian noise. 

The fig. 4 presents the terrain map used 
for the evaluation, with two test trajectories. 
The first one (scenario1) corresponds to a 
hilly terrain, and thus the measurements are 
very informative. On the contrary, the second 
one (scenario 2) exhibits less terrain varia-
tions and a longer measurement sequence is 
needed. 

The evaluation criteria is the residual root 
mean square error for horizontal position,  
evaluated on the basis of 50 runs.  

 
 
 
Particle filtering versus grid methods 

This comparison involves the particle fil-
ter designed for position fix and a grid-based 
method. The grid-based method operates on a 
fixed horizontal grid, which corresponds to 
the initial particle set (fig. 2). The initial un-
certainty area is denoted as “C1” on fig. 4. 

The results for both scenarios are pre-
sented fig. 5 and fig. 6. The convergence 
phases for both filters are very similar. How-
ever, the speed drift degrades the grid method 
estimate over time. That phenomenon is clear 
when long sequences are considered (scenario 
2). On the contrary, as the particle filter 
jointly estimates speed errors, it is usable on 
long sequences. 

Particle filtering versus EKF algorithm 
This comparison involves the Gaussian 

particle filter designed for tracking and a stan-
dard extended Kalman filter. The initial uncer-
tainty area is denoted as “C2” on fig. 4. 

The results for both scenarios are presented 
fig. 7 and fig. 8. On hilly terrain (scenario 1), 
the particle filter exhibits a faster convergence 
rate, and the final precision is slightly better. In 
addition, 10 divergences cases have been ob-
served for the EKF, and only 3 for the particle 
filter. In addition, the results for scenario 2 il-
lustrate the capability of the particle filter to ex-
tract information from small terrain variations. 

Conclusion 

From this study, several conclusions can be 
drawn concerning the relevance of using parti-
cle filters for terrain-aided navigation. For a 
practical point of view, particle filters are a 
worth alternative to grid-based methods in 
situations were the drift induced by speed er-
rors cannot be neglected over the measurement 
time lag. Such situations occur in case of poor 
featured terrain that requires a long integration 
time to obtain a precise position fix. In other 
aspects, the Gaussian particle filter can also be 
used as a direct replacement of an EKF. In that 
application, the main interests are a faster con-
vergence and a better robustness. More gener-
ally, particle estimation is a very flexible 
framework: various algorithms can be drawn 
from the general principles and targeted to a 
specific context of use. 
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Fig.4. Terrain map and scenarios 
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Fig. 7. Scenario 1 - Tracking 
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Fig. 6. Scenario 2 – Position fix 
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Fig. 5. Scenario 1 – Position fix 
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