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Abstract

Full Navier-Stokes simulations are presented in orderteakthe unsteady structure of the cross-fed ori-
fice flows for shear-thinning fluids. Comparing with straigfed shear-thinning and cross-fed Newtonian
fluid simulations, it is found that the cross-fed orifice fldfws shear-thinning fluids have larger and more
distinct vortex structure generated by the horseshoe xof@rthermore, theftects of orifice Length-
to-Diameter (I[D), Reynolds number, and cross velocity in a manifold on tiselthrge co#icients are
studied and summarized. In particular, as the cross vglotih manifold increases, it is found that the
discharge co@icients are significantly reduced because of strong asyrimfiletv resistance caused by a
shear-thinning behavior.

1. Introduction

There is an interest in gelling propellants in order to inyarsafety, reduced volatility and minimized leakage from
spills, and to potentially permit the addition of energgtiovders to liquid propellants. Most formulations of intgre
exhibit a shear-thinning behavior wherein fluid viscosiégbases with increasing shear rate. Typical gels areainlik

to flow when no forces are exerted because of this shearitigifiehaviour. However, non-Newtonian shear-thinning
gels have been much less studied than their Newtonian aamte and all flow processes including internal flow,
atomization and combustion are quite poorly understoobth&ke processes are known to be considerably influenced
by the rheology of gels and, in particular, for propellareding or injection operation, the rheological behaviour is
expected to cause the unique flow structure and exit flow influng the subsequent processes such as the atomization
and burning as an initial condition. It is this issue thahis tentral focus of the present study.

Plain-orifice atomizers have been mostly used as an elem@jeotion system in prior gel propulsion studies
due to ease of fabrication and overall performance. Previniccessful prototypes demonstrated the usefulness and
excellence of the plain-orifice atomizer as an element dfg[d] and impinging jet injectors [2, 3] in their firing tesst
of practical systems. Sometimes, a contracting flowpatb]4as been used in lab-scale experiments as a means to
provide more continual acceleration of the fluid within thgection passage. Early studies on orifice flows focused on
the steady discharge characteristics [6] of Newtoniand|uidt the interests are moving to the unsteady phenomenatha
occur inside an orifice passage. Several factors are knogarte as instability sources that can lead the unsteadiness
Cavitation is one of primary instability sources and ocaumngn the local pressure near the inlet lip is lower than the
vapour pressure due to strong accelerations by the sudaraction. Even under the non-cavitating condition, the
recirculating vortex is still located at the inlet lip andciktes with a separation to satellite vortices as illatgd
in Fig. 1a. [7, 8] This unstable behaviour of the vena cot&ratso generates the mass pulsations at the orifice exit
as cavitation. Pulsations of about 1-2 % are attributed to-cavitating laminar hydrodynamic instabilities of the
vena contracta near the inlet lip from Canino and Heistén'sikations [7] of axially-fed (axisymmetric) passages in
Figure 1(a). Furthermore, the axisymmetric calculation&don and Heister [9] exhibit the potential occurrence of
the unsteadiness for shear-thinning orifice flows.

The extreme three-dimensionality imposed by the presehe@eanoss-flow within the injector manifold has
been much less studied in both experimental and compugdmlytical literature despite the presence of such flows
in virtually all multi-element injectors. The cross-flow énmanifold typically causes the asymmetric flow structure
inside an orifice passage as Figure 1(b). The size of a ré&fien zone on the windward side is significantly expanded
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Figure 1: Unsteadiness in Newtonian orifice flows: (a) Ayidéd type (b) Cross-fed type

when compared with the one on the leeward side. This unbadasize of the vena contractas may influence the
unsteadiness due to the hydrodynamic instabilities. @enisig the fact that cavitation significantlfects the liquid

jet deformation confirmed by the recent experiments, sibabased instabilities induced by a cross velocity mayllea
to a biased velocity profile at the orifice exit, subsequetatly unique spray development.

There have been a few relevent experimental studies of téidld in question for the case of Newtonian fluids.
Strakey and Talley [10] studied th&ect of cross flow and orifice length-to-diameter ratio on tiseltarge coficient
and cavitational characteristics for the impinging jeegipr applications. They developed the analytical modséta
on quasi-one dimensional fluid dynamics in order to estintlaedischarge cdicient. The model showed a good
agreement in discharge dfieient and the onset of cavitation with measured data excepthfort orifice passages,
L/D < 3. As a result of experiments, the dischargefioient was found to decrease as cross velocity increased and
orifice L/D ratio increased and these trends qualitatively matchdéisuith an analytical model. Nurick et al. [11, 12]
investigated theféect of turning angle and orifice length-to-diameter ratidtmndischarge cdgcient.

Bunnell [13] performed a computational study of cross-feshvbnian orifice flows for both cavitating and non-
cavitating conditions. His results indicated that the iaittstructure at the orifice exit is likely to move in transse
direction and this behaviour is more violent under non-zdivig condition than for cavitating conditions. For the
non-cavitating flow, a great amount of structure is revehlethe vorticity transport from the cross-flow in a manifold
and this structure is also found in experimental obsermatio

To the authors knowledge, this problem has not been studiggpatationally for shear thinning fluids. The
objective of the current study is to characterize mean antbient characteristics of cross-fed orifice flows for shear
thinning fluids. The flow characterization using the introtilon of the discharge céigcient will help us to estimate
the orifice exit flow, and to deliver the information for the gad spray analyses. Thé&ect of the manifoldnjection
velocity ratio and orifice length-to-diameter ratio is colesed. Furthermore, the shear-thinning cross flow will be
compared and discussed with the Newtonian one. Sectionv2dgoa description of the computational model while
Sections 3 and 4 provide illumination of the unsteady flowlfighd results of the parametric studies, respectively.
Conclusions of the work are provided in Section 5.

2. Numerical Model Description

2.1 Solution Methods

The computations reported here are conducted with an isehaunstructured grid code known as the General Equation
and Mesh Solver (GEMS) code. [14, 15] The GEMS code solvebl#wier-Stokes equations in conjunction with the
continuity and energy equations described below. Lamiafsutations were performed for all cases as there was
interest in characterizing the laminar instability of thena-contracta and that turbulence models for non-Newtonia
fluids are not well developed. For a flow with a single spe@esngle momentum equation, a single energy equation,
the Navier-Stokes equations that express the conseryaiioeiples are:

0Q 0(Ei-Ey) _
5 + X =0 (1)
where the vector), E andE,;, are given by
P
Q=| pu (2a)
ph®—p
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puUi
E=| puuj +6ijp (2b)
puih® —p
0
Evi=[ Tij ] (2¢)
TijUj+/1§—Ii

The quantitiesx; anduy; in Egs. (1) and (2) represent the Cartesian coordinates elodity componentsp andp

represent the pressure and density Bhis the stagnation enthalpy;; is the Reynolds stress tensaris the thermal
conductivity. A pseudo-time term expressed in terms of titive variablesQ, = (p, ui, T)", a pseudo timez, and
a codficient matrix,I, is added to the equation, so that the equation becomes:

aQP 9Q a(Ei—Evi) _
T "ot T,

The matrix, T, is chosen to control the artificial dissipation in the splatiiscretization and the convergence of the
pseudo-time iteration.

The codficient matrix,I', in the pseudo time term in Eq. (3) is defined by starting frosmacobian of the con-
servative variables with respect to the primitive variab®/0Q,, and by replacing the physical property derivative,
pp, by an artificial property derivativey,, as shown below:

0 3)

P'p 0 0 O pT
ppu p 0 O ptu
r= P oV 0O p O pTV (4)
p oW 0 0 »p pTW

p'oh?=(1-phy) pu pv pw prh®+phr

The preconditioning method uses an artificial property\dgitie of,, which is dependent upon the local fluid
dynamics scales. [16] This artificial term contributes teiag the system well-conditioned foffieient solution and
accurate formulation of the artificial dissipation termsr the present calculations, is defined in term of Reynolds
(Re=V-6/v),

ke

ARV max(1, 1/(Rex AR)?, 422)

where ARE1) is the aspect ratio of the control volume that the consemarinciple is applied.Ap is the
pressure dierence across the all the faces of a cell. [K¢/lb a constant chosen to ensure thiat= p, when the local
velocity is equal to the physical speed of sound.

The flux formulation for a general upwind finite volume approaan be interpreted as the average of the fluxes
on either side of the cell interfaces augmented by an adtifitissipation term,

(%)

E - % (EL + Eg) - % IAI(Qr— Q) = % (EL + ER) - %F |F71Ap| (QPR - QPL) (6)

The acoustic eigenvalueg;, of the matrix 1Ay, are given by

. ;[ () \/ (- - 4} -

The quantityc’, in Eq. (7) is a pseudo speed of sound apds the velocity component normal to the cell face. The
pseudo speed of sound is calculated from:

72 ,OhT (8)

%=
pp’ o + pr (1= php)

The numerical procedure uses a second-order approximamesRin solver to evaluate the spatial fluxes at cell faces.
Second-order temporal accuracy is achieved by means oflicindual time procedure that eliminates factorization
errors.
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Figure 2: Viscosity curve of MMIA1% HPC Gel based on a C-Y model

2.2 Rheological Model

The rheological model is the most crucial to describe thkstgabehaviour of the shear-thinning fluids. A Generatlize
Newtonian Constitutive (GNC) equation is widely used to miethe non-linear relationship between the shear stress
and deformation of the material. It remains a form of visgofr Newtonian fluids by defining the viscosity as not a
constant but a function of the shear rate as:

7ij = -1 (¥)%ij 9)
where,n is a viscosity function angj is the second-order strain rate tensor. The shear yats, obtained by the

second invariant of the strain rate as:
[ 13, Yij i
3 = —I = —_— 10
y \/ > \ 5 (10)

The shear-thinning behavior is expressed by the viscasitytfon in Eq. (9). A variety of candidate models exist fa th
viscosity function. The viscosity curve of the shear-thigfluids for gel propellant applications can be charazeati
from a series of rheological tests. Ciezki et al. [3] chaggzed the viscosity curve with plateaus for both low and
high shear rate ranges and proposed the Herschel-Bulkleynfed model. The Carreau-Yasuda (C-Y) model adopted
in the present study also contains the plateaus at both entadditionally provides the smooth curve during the
transitions, which is beneficial in numerical aspects i éheontinuous viscosity function is prescribed over thérent
shear rate space. The C-Y model is expressed as:

D)~ _ g 4 Gayy an
10 = Neo
where,a, n, andA are the fitting cofficients;no andz., is the viscosity plateau at ultimate low and high shear rate,
respectively. Our computations are conducted using th@ebéesal properties of MMKHPC gel that exhibits the pure
shear-thinning behavior by previous experiments [19] aaektbeen used as a gelled fuel. The viscosity curve of
MMH/HPC gel is represented in Figure 2 by C-Y fit@ents:ny = 950Pax* s", n, = 775mPaxs", 1 = 1.07,a = 4.76,
andn = 0.09. Also, note that the density of the fluid in the presentgiadssumed as 8/ m® for MMH/HPC gel.

2.3 Computational Mesh and Boundary Condition Treatments

The computational mesh in the present study consists of asplsre (injector manifold) and cylinder (orifice) as
depicted in Figure 3 for a upstream manifold and orifice tubgpectively. The interface between the hemisphere and
cylinder is smoothly rounded with a small radiug) = 0.05, to avoid singularities. The grid points are stretcimed

a direction away from wall surfaces and the hemisplogtimder interface. Butterfly meshing is used in the cylinde
is utilized for dficient cell arrangements inside a boundary layer. The deasthe computational mesh is preserved
even under dferent orifice lengths in a further parametric study.
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Figure 3: Computational meshes
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Figure 4: Upstream Boundary Condition Treatments for Gfees Orifice Flows using a Potential Flow Theory

Using computational meshes above, a potential flow theauiliged to obtain inflow conditions on the hemi-
spherical injector manifold boundary as illustrated inf&4. A sink located at the center of orifice inlet is supeegos
with a uniform manifold cross-flow velocity to derive the peent velocity components on the hemispherical bound-
ary. This method excludes the cycloréeet that may be present with other orifices in close proxiniitye resulting
velocity components on the hemispherical boundary may peesged:

Q.
u= P sindsing (12a)
V= i cosf + Vi (12b)
2nR?
W= Q sing cosg (12¢c)
2rR?

whereQ is a volumetric mass flow rate, R is a radius of a hemisplteeegos™ (y/R), andg = sin! (x/Rsiné).

In addition to the upstream boundary condition, a constackIpressure is imposed at the downstream boundary
and the rest of boundary planes are treated as a no-slip Walle it would be desirable to extend the computational
domain into the downstream chamber (at considerable egpemsor simulations [13] indicate a good capabiity to
predict mean and bulk transient oscillation modes with #leted domain. During the computation, the upstream
pressure is controlled by specified inflow velocity compdeemnd gradually reaches a quasi-equilibrium state as a
guasi-periodic flow evolves in the injector passage.

2.4 Convergence Study

A grid convergence study was conducted to determine the siestior a parametric study in the following sections.
According to the results of the convergence study in prevadsymmetric calculations [9], 160 * 72 grid points (axial
and radial grid number, respectively) are chosen for thiasamesh to be revolved for full three-dimensional mesh.
Thus, four candidate grids were prepared with respect t@a#irauthal grid number in the convergence study. The
unsteadiness is quantified by the mean discharggiicieait (Cp), oscillation amplitude o€p, and Strouhal number,
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Table 1: Summary of a convergence study

Label | Azimuthal Grid# TotalCell# Cp 30(Cp) (%) St
Grid A 36 149,720 | 0.60 1.46 0.43
Grid B 72 324,860 | 0.65 3.39 0.29
Grid C 108 529,160 | 0.65 3.66 0.54
Grid D 144 762,620 | 0.64 3.79 0.51
0.68
;
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Figure 5: Unsteady solution of Grid C for Baseline caRe{ = 15, 700,Reyen = 1, 200, sharp-edged orifice inlet, and
L/D = 3 with a MMH/HPC gel)

St. In particular, the oscillation amplitude is obtained bytatistical quantity as@(Cp) to exclude the irregular peaks
during the unsteadiness mode. In addition, the discharg@aients in the present study need to include the cross
velocity in a manifold. The discharge déieient and Strouhal number are defined as:

Co = \;n <= V2 (13a)
2A
i Tp +V?2
St= fV,/D (13b)

WhereV; andV; is a cross and ideal (Bernoulli) orifice exit velocity, restely, f is the oscillation frequency, and
D the orifice diameter.

For a baseline cas®;/V, = 0.3,V, = 27.5m/s and sharp-edged/p = 0.05) L/D = 3.0 orifice geometry in
which the unsteadiness is estimated to arise was choseataatérize the natural oscillation during the unsteadines
As a result, periodical oscillations are observed as Fi§(a@. These hydrodynamics instabilities inside an orifice
passage are characterized using a Fast Fourier Transforn{BET) as shown in Figure 5(b). The data sampling is
initiated after the solutions adequately reach a quasegierstate as shown in Fig. 5(a) and pressure oscillatibtisea
inlet boundary are less than 1%.

This baseline case is used to determine fffiective grid size for the following parametric investigatio~our
different grids are used for the convergence tests. Their griditifes are controlled by grid points in an azimuthal
direction. As the total cell number increases from Grid A ted®, the mean discharge déieient,Cp, converges to
a value of 0.65, and oscillation amplitude increases. TheuBal number reaches a value of 0.54, which is quite close
to the value obtained for the densest mesh of 0.51. Therdg®sid C is chosen as a grid for a parametric study as a
practical level given the desire to conduct parametricisgidJsers should be aware that computational uncertainty i
the unsteady characteristics is fair but not excellent utttiemeshes employed.

3. Analysis of Hydrodynamic Instabilities

The typical structure of cross-fed orifice flows for both Nemitin and shear-thinning fluids is represented in Figure 6.
Some fraction of the stream tube containing the cross-flgwianifold flow is captured by the orifice itself. While
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Figure 6: Typical flow structure of cross-fed orifice flows

horseshoe
vortex

0.5

Cross-fed
flow

i .
p
- <1 4 7/_3,./’
R A
_L;aie’; —_

0 05 1 6
X

(a) Cross-sectional view (b) Downstream view

Figure 7: Vortex generation of a cross-fed orifice flow for eahthinning fluid (an iso-surface of the vorticity magni-
tude= 50,000)

the fluid accelerates into the orifice, an asymmetric vemdraota is formed at the inlet lip. Vortices shed in the
axial direction from the windward side of the vena-contaaate larger in extent than those shed from the leeward
side. Depending on the cross-fl@xial flow velocity ratio, the vena-contracta and axialhed vortices may be absent
altogether on the leeward side of the passage. The axialgling vortex structure is connected smoothly azimidyhal
thereby forming a three-dimensional ring vortex ring thas b variable thickness.

The flowfield in question is fairly analogous to flow in a curyege flows in that twin eddies arise in the orifice
due to the azimuthal pressure gradient emanating from ¢heslel surface. As the fluid moves along the orifice passage,
the twin eddy structure is violently deformed and collapbgdhe vortex ring in a vena contracta. Furthermore, the
vortex ring is naturally unstable, oscillates, and distamnt the stream-wise direction. Finally, this unsteady ooti
gives way to the vortex separation and shedding, and eVeuitgay or breakdown to the fine scale structure if the
orifice tube is sfficiently long. In general, the passage lengths of interestdpermit full decay and definite memory
of the asymmetric inlet flow is present at the orifice exit. 3dprocesses induce periodic formation and shedding of
horseshoe vortices generation as shown in Figure 7.

Figures 8 and 9 assesexts of crossflow and fluid rheology on vorticity evolutiortive orifice passage. Both
calculations retain the same orifice design and mean mass8oin Fig. 7. In Fig. 8, a fully 3-D calculation is
performed on an axially-fed passage (i.e. zero crossflompube shear thinning fluid rheology described in Fig. 2.
The result shows vorticity confined to a narrow region near fieriphery of the channel in good agreement with
prior axisymmetric calculations [9]. The vortex ring at thena contracta is formed with a constant thickness in the
azimuthal direction. The flowfield is still unsteady as dagelortices are separated from the main vortex ring and
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Figure 8: Vortex generation of a axially-fed orifice flow forshear-thinning fluid (an iso-surface of the vorticity
magnitude= 50,000)
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Figure 9: Vortex generation of a cross-fed orifice flow for asiian fluid (an iso-surface of the vorticity magnitude
=50,000)

convect downstream. This process leads to a wrinkled vyrigo-surface at any given instant in time as noted in
Fig. 8.

Figure 9 highlights the influence of fluid rheology and congsaa Newtonian liquid with the shear-thinning
result in Fig. 7. Water, with viscosity and density of 0.0G#$ and 100®&g/m? is used for the calculation. As shown
in Figure 9, the vorticity structure is more complicated éindr than for shear-thinning fluid simulation in Fig. 7. The
Newtonian result still shows the evolution of the horse shamtex encompassing a substantial fraction of the span of
the channel, but it is perhaps not as distinct as in sheanitig result. Note that this laminar simulation has a litita
in describing the fine-scale turbulence motion that is eal the vortex breakdown and can only be used to interpret
the major vortical structures in the flowfield.

For shear-thinning fluids, the unsteadiness creates bosisftoa and viscosity fluctuations. When the cross
velocity in the manifold is non-zero, spatial asymmetrytaf fixial velocity, Figure 10(a), and viscosity, Figure J0(b
is enlarged in the transverse direction. The expansion®f/éna-contracta on the windward side cause the strong
acceleration of the fluid on the opposite side and travellorgices create axial velocityass pulsations. The unstable
motion of the vena-contracta can be understood as an disgjllaehaviour of the shear layer. For the shear-thinning
fluids, the shear layer is closely related with the viscobitgause of the shear rate dependence. Subsequently, the
lowest viscosity region attached to the inlet corner oat@h up and down in a transverse direction. The high vigcosit
zone is significantly influenced by this oscillation and gashrough the exit hole periodically as seen Figure 10(b).

Hydrodynamic instabilities are known to contribute to atoing the emerging jets by creating and enhancing
disturbances on the free surface near the exit of the orifitese intensified disturbances trigger instabilities & th
free surface ultimatelyfBecting the size of ligaments and droplets shed from thisaseff0]. Evolution of the spray
pattern imposed by assymetry from a relatively short orifi¢t cross-flow has not been studied in the literature even
though there are obviousftirences in the character of the massflux leaving the orifit@srcase.
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Figure 10: Instantaneous axial velocity and viscosity oarg at various times in a quasi-periodic oscillation.
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Table 2: Cases Investigated

L/D Vi/V, Re. Regen
3,4,5,6 0.30 15700 1200
3 0, 0.15,0.30, 0.44, 0.58 15700 1200
3 0.30 3900, 7800, 11700,| 100, 360, 730,
15700, 19600, 23500 1200, 1720, 2300
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Figure 11: Reynolds numbers with respect to core veldgity

4. Parametric Studies

The dfects of the orifice length-to-diameter/QR) ratio, cross-to-core velocity ratid/(/V2), and Reynolds number
were assessed in a series of parametric studies. A totalsifriiBations were conducted in support of these parametrics
as indicated in Table 2. The baseline conditions, emplay#k grid convergence study and in results in Figs. 5, 7, and
10, are highlighted in bold in Table 2. The orificiLratios were controlled by changing orifice length given astant
orifice diameter. A very short orifice length is known to cabgdraulic flip at a high speed injection condition, and
the range of |D ratio in the present study is limited from 3 to 6. In addititime velocity ratio is varied by a magnitude
of the cross velocity in a manifold up ¥, /V, = 0.3 fixing the core velocity,, through an orifice. The Reynolds
numbers of such flows are determined by the flow speed of teesisitwhich reflects the practical injection operation
range. In this respect, the Reynolds number is obtainedslynih definition equivalent to the bulk injection velocity,
V>, =10 - 60 mis. For non-Newtonian fluids, the generalized Reynolds nuiishesed to reflect the variable viscosity.
Its definition depends on the chosen model in order to desthid viscosity curve. For C-Y model, the generalized
Reynolds number can be expressed as [9]:

pV2

Régen = — (14)
[1+{2(5) BT o)+ | (55
Re, = pXZD (15)

However, considering that hydraulic instabilities nearitflet lip occur with a minimum viscosity near the high shear
rate Newtonian plateau, the Reynolds number basegd,p&q. (14), can also be useful to characterize the instisilit
Consequently, the Reynolds number basedgris also included in the flow characterization. Figure 11 jifes a
comparison of the two Reynolds numbers for the range offigewelocities considered in the parametric studies.

4.1 Hfects of Orifice Length-to-Diameter Ratios

The discharge cdicients for shear-thinning fluids are presented with one fewténian fluids in Figure 12. The
data for Newtonian fluids are obtained from Nurick et al.'pesimental correlations. The discharge @mgents for

10
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Figure 13: Pulsation magnitude and Strouhal number in tefrosifice L/D ratio

shear-thinning fluids are about 10% lower than ones for Neiatofluids and tend to degrade more rapidly wiyidL
increases than the Newtonian counterparts. Viscous draigstghe walls of the orifice is of course more prominent
with the gelled fluids and for this reason lowetD passages will be desired for injectors designed with thégieer
viscosity fluids.

The unsteady characteristics of the simulations in Fig. re2paesented in Fig. 13. Substantial unsteadiness is
present in the flow as massflow pulsations as large as nearlgctUr. This pulsation level is substantially greater
than that computed for axisymmetric flows[9]; one might estgikat this could have profoundfects on atomization
character and spray evolution as a result. As the orifj€eratio increases, the separated vortex decays to a greater
extent during its transit through the orifice passage, apdotiisation strength is correspondingly diminished. The
Strouhal numbers characterizing the fundamental frequefitbe pulsations, range from 0.5to 0.6 and do not change a
lot under the limited range of/D ratios investigated. These values are substantiallgtdahgan the 0.2-0.3 range found
for axisymmetric (i.e. no crossflow) inlet conditions[9]t this special velocity ratio it appears that the subharmoni
tone is nearly as powerfull as the primary harmonic as dssdisn the study of crossflow velocity in the following
subsection.

4.2 Hfects of Manifold Crossflow Velocity

The discharge cdicients from the present simulations are represented wik nom Nurick’s experimental correla-
tions [12] at the orifice [D = 2 and 5 in Figure 14. Here, the velocity ralf/V- is controlled by the change of the
cross velocityv; in a manifold fixing the injection velocity,. AsV; increases, the discharge ¢idgent decreases for
both fluids. For shear-thinning fluids, the dischargefitcient is much more sensitive to crossflow, an¥¥gtv, = 0.6,

11
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Figure 15: Distribution of the time-averaged local frictifactor on the leeward side at=Z0

it reaches to about 30% lower value than straightly-fed ¢gsg/, = 0). This implies that under a given pressure drop
condition, the actual mass flow rate for shear-thinning fiiagdn be strongly influenced by the velocity ratio and that
careful manifold designs will be required for multi-elenh@rjectors using gelled fluids. This significant reductidn o

discharge caoficients seem to be caused by the unusually strong and unkdlflow resistance on the leeward side of
the passage as Figure 15.

The dfect of V1/V; ratio on oscillation characteristics are shown in Figure A8 the velocity ratio increases
the pulsation magnitude increase. Typical values detexthim prior axisymmetric (i.e. axially-fed) simulations ree
of the order of 1-2%; crossflow is tending to increase putsatnagnatudes by factor of 3-5 times. The enhanced size
of vena-contracta and the transverse transport of vorfieétds to the increase in the pulsation levels under cragsflo
conditions. We anticipate larger fluctuations in the craossfled spray as a result. Unfortunately, this is typically
difficult to observe as most examples of crossflow-fed orificegrananulti-element configurations in which individual
orifice contributions are flicult to ascertain. A focused study in this area would be ogirgerest.

In spite of the change of pulsation magnitude, the Stroubaibrer is almost constantly remained except for
V1/V, = 0.3 case. For all cases, one cycle of dischargdficient contains two peaks: a strong and weak peak. At
V1/V, = 0.3, two peaks are almost similar in a magnitude as Figurg &6 one dominant frequency, two times of
the previous frequency, is detected. At this special velaaitio, the subharmonic is virtually as powerful as thei
harmonic tone. This is supported by the FFT analysis whiokiiges two dominant Strouhal numbers: 0.54 and 0.27.
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Figure 16: Pulsation magnitude and Strouhal number in tefrivs/V,
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Figure 17: Discharge cdigcient in terms of Reynolds number

4.3 Hfects of Reynolds Numbers

Fixing V1/V, = 0.3 and orifice D = 3, the Reynolds number is varied by the change of the coreigM,. Here, the
Reynolds number based gn is considered to compare with the flow characteristics fartdaian fluid simulation
and data from other literature. The dischargeficents are compared with one from Newtonian fluid simulation
and solutions from a potential flow theory for cross-fed oéfflow by Strakey and Talley [10] in Figure 17. As
expected, the discharge d¢beients for shear-thinning fluids are overall lower than thée Newtonian fluids. The
shear-thinning fluids are more sensitive to Reynolds numdbeto the fact that generalized values that reflect some of
the viscous character are substantially lower than theegdhased on the Newtonian limit viscosity. For Newtonian
cross-fed orifice flows, Ref. [10] model is known to exhibkis good accuracy in a prediction of dischargefitoient
and this point is again confirmed by a simulation result amgiediction from a potential flow theoryBé,, = 20, 000.
However, Ref. [10] model fails to a prediction of dischargeficient for shear-thinning fluids even though the friction
factor is corrected for shear-thinning fluids. THEeet may be attributed to the overestimation of the venaraotd size
in shear-thinning fluids in a potential flow model. The poi&ftow model provides the contraction déeient, 0.607,
atVy/V, = 0.3, but the actual simulation exhibits the vena contraaiahrsmaller than a half of the cross-sectional
area, which implies that the contraction fbeent is less than 0.5.

The oscillation characteristics as a function of Reynoldsber are summarized in Figure 18. HRa, <
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Figure 18: Pulsation magnitude and Strouhal number in teffReynolds number

15,000, a steady flow is obtained with the shear thinning fluid higher Reynolds numbers, unsteady flows appear
and the Strouhal number is constant over the remaining ramvgstigated. When the hydrodynamic instabilities are
present, the oscillation frequency proportionally insesawith increasing flow spe&. Similar behavior was noted
for Newtonian fluids by Bunnell and Heister[13].

5. Summary and Conclusions

The present study is aimed to reveal the flow structure ofsefed orifice flows and to characterize them in terms of
orifice length-to-diameter ratio, cross velocity in a maldf and Reynolds number. The numerical model considered
in the present study is based on a full laminar Navier-Stekpstion solver including a rheological modeling. The
boundary condition is treated by a potential flow theory idesito describe the cross-fed flows in a manifold.
Compared with straightly-fed and Newtonian flow simulatioross-fed orifice flows for shear-thinning fluids
have larger and more distinct vortex structure generateth&yhorseshoe vortex than for Newtonian fluids and are

observed to have quite spatially biased unsteadiness, @d¢sording to a parametric study, the conclusions that ean b
drawn are as followings.

1. The discharge cdigcients decreases as the orifigllratio increases and the Strouhal number ranges from 0.5
to 0.6.

2. As the cross velocity increases, the dischargdéhioients are significantly reduced due to its strong and unbal-
anced flow resistance due to a shear thinning behavior. Ageiffioscillations are found to have two peaks, a
strong and weak peak, over the investigatedV, range, O< V1/V, < 0.6, except for 0.3. AV;/V, = 0.3, a
strength of the weak peak during a period grows, and finatlyubial number becomes 0.54, a double of Strouhal
number under othév,/V,s.

3. The previous analytical model for dischargefticeents [10] that agrees well to a Newtonian orifice flows fails
to the prediction of shear-thinning orifice flows. It is gusddy the overprediction of a size of vena contracta.
At Re,,<25,000, the discharge ciieient largely increases as Reynolds number increasesaldasfound that
the Reynolds number is independent on oscillation behswior
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