4™ EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES

Arbitrary Lagrangian-Eulerian approach in Reduced Order
Modelling of a Flow with a Moving Boundary

Witold Stankiewicz, Robert Roszakand Marek Morzyhski
*Poznan University of Technology, Institute of Combustingifies and Transport
Piotrowo 3, 60-965 Poznan, Poland

Abstract

Flow-induced deflections of aircraft structures resultsaitbations that might turn into such a dangerous
phenomena like flutter or fieting.

In this paper the design of an aeroelastic system consisfiRgduced Order Model of the flow with
moving boundary is presented. The model is based on Galprkiection of governing equation onto
space spanned by modes obtained from high-fidelity compuatatThe motion of the boundary and mesh
is defined in Arbitrary Lagrangian-Eulerian approach arsdits in additional convective term in Galerkin
system. The developed system is demonstrated on the exafrgftow around oscillating wing.

1. Introduction

Interactions between fluid and moving (deforming) bouretasire ones of the most important issues of fluid dynamics.
They occur in wind turbines [19], civil engineering (e.getinfluence of a wind on bridges and buildings [24, 50]) and
aerospace industry.

In the last case, Fluid-Structure Interaction (FSI) playsaportant role in the design process of an aircraft. The
examples include dangerous phenomena like flutter affdting of the wings and fuselage [14, 52, 41], vibrations in
turbine engines [47] and helicopter blades [25], as wellpgdieations in the design of bio-inspired air vehicles [P, 6
Furthermore, recent research on the growth of the lift f@wd drag reduction by active electromorphing [35] and
aeroelastic boundary actuators [28, 23] require analydt#uid-Structure Interactions.

The design of new aircraft requires an analysis of a huge eumvariants. One has to checkidrent aircraft
configurations, mass cases, gusts an maneuvers, giving \étle engineering experience for current configurations
and technologies) hundreds of thousands of simulatioris [40

One time step of RANS calculation on the viscous grid usingc@2 cluster may take up to 400 s, giving
several weeks per simulation. On the other hand in the casedback flow control design the model should be small
enough to accurately predict the flow response and ensurththactuators will work in the correct phase. Long time
required to find the flow solution prevents the developmeiat i&al-time flow control. This means that further growth
in the aerospace industry, leading to more economical andomment-friendly solutions, is possible only through
the significant reduction of computation time and memorynegents. Reduced order Galerkin models [18, 34]
meet these requirements, approximating the governingtieqsae.g. Navier-Stokes) with a system of a few ordinary
differential equations.

The present paper is organized as follows. The high-dimeasialgorithm of Fluid-Structure Interactions is
described in section 2. Then, the details on governing @nstn Arbitrary Lagrangian-Eulerian (ALE) approach,
describing a flow with a moving boundaries (section 3) andfitthve model reduction techniques based on Galerkin
projection (section 4) are given. In particular, Galerkietlibd (section 4.1), projection of convective term in ALE
approach (section 4.2) and Proper Orthogonal Decomppsitied in mode expansion (section 4.3) are described.
Some remarks on the improvement of model’s accuracy ar@ giveection 5. Finally, the Reduced Order Models of
a flow around an oscillating airfoil are presented in secfiomhe results are summarized in section 7.
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2. Fluid-Structure Interaction algorithm

Computational Aeroelasticity [23] is a branch of mechamibéch examines the interactions between a stream of fluid
and a deformable body using the methods of Computationad Elynamics (CFD) and Computational Structural
Mechanics (CSM) [41].

The high-dimensional approach used in this work relies @enuge of independent solvers for solid and fluid
mechanics, exchanging information on the coupling intexfas a result, dierent discretizations (Finite Volume and
Finite Element Methods) and element types (tetrahedraeqtzeams) are used, and the meshes used on both sides
might vary in the number of nodes and elements on the couglivet” surface (interface). Non-conforming grids are
the reason of using of additional interpolation tools.

The computational FSI algorithm used in this work is showfign1.
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Figure 1: General Fluid-Structure Interaction algorithm

The velocity and pressure field is calculated by CFD codehédrcase of 2D laminar flow, in-house DNS solver
is used, while 3D Eul¢gRANS simulations with large numbers of degrees of freedoenparformed on parallel and
efficient DLR TAU-code [44].

The pressures are interpolated onto the structure usinglembased of finite-element meshes, as well as bucket
[2] and oct-tree [29] neighbour search algorithms. Undgalieg aerodynamic load CSM (elastic) solver calculates
the deformations of the structure. CSM solvers used in #gk include in-house CSM system [30] and open-source
Calculix solver [10].

The nodal displacements on the boundary of the structursntmgolated onto CFD mesh. Then the displace-
ments and velocities in the interior of CFD mesh are caledlasing deformation tool based on spring analogy [15].

The flow in modified (deformed) domain results in modified e#lpand pressure fields, and another values of
structure’s node displacements. The loop presented albiogeuntil the convergence in a given time step is reached.
Then, time step is increased using coupling proceduresideddn [36].

The most time-consuming part of such a coupled analysis igteffdelity flow solver. To accelerate FSI ana-
lyses, e.g. in the aircraft certification procedure and-tiea¢ flow control applications, full-dimensional CFD seiv
might be replaced by Reduced Order Model of a flow with moviogriglaries.

3. Governing equation
The viscous, incompressible flow is described by Naviek&equations, that might be written in the form:

U+V-(u®u)+Vp—RieAu:O Q)
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The velocities are defined in respect to the fixed computatioresh. This Eulerian approach, widely used in
fluid dynamics, means that the flow particles move througimtesh elements. This description allows large distortions
in the fluid motion (separations, vortices, reverse flow,)ehuit it requires precise definition of domain’s boundary.

A technique that overcomes the shortcomings of Euleriaordlgns and allows the simulation of a flow with a
moving boundaries is Arbitrary Lagrangian-Eulerian (Aldpproach [27, 11, 51, 42, 12]. It combines the best features
of Eulerian and Lagrangian approaches, by letting the nofiftgsid mesh move independently of the fluid particles.

In ALE formulation, the velocity of the boundary and the fluishugq is included in the modified convective
term:

U+V-((U—Ugnd)®U)+Vp—RieALl=0, (@)
wherec = U — Ugrig is a relative velocity between the material and the mesh amdlied convective velocity [12].
Mesh acceleration plays no role in the ALE formulation.

The movement of CFD mesh nodes is independent of the fluictfgamiotion. In particular, it might be associ-
ated with the movement of the structural grid boundary nduhelsagrangian approach equal to the material velocity),
ensuring that both CFD and structural meshes will not opestadisconnect.

In the case of viscous fluid model, the velocity (of fluid peles) on the boundary of the domain is equal to the
velocity of the structure (grid) ¢ = ugrig). In the case of inviscid flows, only the normal componentthefvelocity
are coupledr{- u = n - Ugriq).

4. Model reduction

4.1 Galerkin Method

In this paper, Galerkin method [34, 48] is used to developuiRed Order Model that preserves the main flow dynamics.
This approach consists in approximation of the velocitydft®y base solutiong (steady or time-averaged flow) and a
weighted sum of modes;:

N N
uM =uo+ ) auj= Y auy, &=Ll (3)
= 0

that results in the separation of spaag) @nd time (mode amplitudes) variables.
The (orthogonal) projection of the residual of approxindatavier-Stokes equation onto the space spanned by
the modes (4) results in a system of ordinaryetential equations (5).

(Ui, R[N])Q = f UiR[N]dQ =0 (4)
Q
1 N N N
2! :Eezajlij +ZZajaKQijk (5)
i=0 =0 k=0
where:
Iij =(Ui,AUj)Q and Gijk =—(Ui,V'(Uj®Uk))Q (6)

In Hilbert space, the inner product of two vectarandb is defined as:

(a,b)szQabdQ @)
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4.2 Projection of convective term in ALE description

It is assumed, that velocity and displacements of the fluidhngiq might be decomposed similarly to the velocity of
fluid particles (3):

Ng
Ugig = ) | &5, (8)
=1

where modal mesh deformation$, are time-invariant.

The projection of convective term of Navier-Stokes equaiio ALE description leads to additional term in
Galerkin system:

—(ui, V- ((u - ugrig) ® u))Q

(V- ew), +(u. V- (Ugia ® ), =

N N Ng N
= Olijk &) Ak — Z Z o a 9)
i=0 k=0 i=1 k=0
where:
A = (Ui, V- (U @ ug) (10)

As the mesh deformation modes are time-invarigfif,term is only dfected by the integration over elements
of deforming mesh. The changing element shapes might be iak@ account using continuous mode interpolation
[31, 48].

4.3 Mode basis for model reduction

The mode bases used in the Galerkin approximation mightdssified in terms of mathematical, physical and em-
pirical approaches, as discussed in [34]. In the empirippk@ach, mode basis “is determined a posteriori using
experimental or numerical data previously obtained fonemjiflow configuration“ [3]. The possible bases include
centroidal Voronoi tessellations (CVT) [5], Lagrange, hée and Taylor bases [3], as well as Proper Orthogonal
Decomposition [20, 46].

Although investigations in the area of empirical modes Iteslin modifications of POD method like Sequential
POD [22] and Double POD [45] and, recently, Dynamic Mode Deposition [43, 16], POD is still one of the most
popular modelling approaches in fluid dynamics, succdgsisked for flow control and aeroelastic analyses [34, 13,
26]. POD modes are optimal in energy representation by nartgin, so they possibly better describe the Navier-
Stokes attractor (limit-cycle oscillations of periodicvilp than the same number of modes obtained in affgmint
manner [32].

In this method, theM flow vectors (snapshots) of si2¢ (humber of Degrees of Freedom) are centered using
time-averaged solutiong

\’/i =V — Up, i=1.M, (11)

ResultingM fluctuation vectors; form a matrixV. POD modes used in model reduction are the eigenveators

of standard eigenproble@u; = 4; | u; of the autocorrelation matri€ of sizeN x N:

1.1
C= MVV , (12)
related to eigenvalueg of largest magnitude.

While the number of snapshat4 is substantially smaller than the number of degrees of &reeld, a modifica-
tion of traditional POD, proposed by Sirovich [46], is usénlthe Method of Snapshots the autocorrelation magrix

of sizeM x M is introduced: 1

C==-V'Vv 13
= (13)
The eigenvalues andl of matricesC andC are the same, while the eigenvectors (modes) are connected:
VUi
ui = - 14
vl B
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5. Model calibration

The mode basis calculated using Proper Orthogonal Decatiquosf a given data set is truncated and a limited number
of the most energetic modes, corresponding to the larggstedluesl, are used in the construction of ROM’s mode
basis. The neglect of small scales results in filtering ohHigguencies and vanishing of energy transfers between
resolved and unresolved scales of fluid flow [8], that de&¢as quality of the model.

The possible inconsistency of data set and the reduced-fodeulation (neglect or inaccurate treatment of
pressure and boundary terms, not verified incompresyibilithe flow) [7], as well as structural instability of Galénk
Projection [34, 39, 21] are another sources of discreparmséveen Reduced-Order Galerkin model and high-fidelity
model (like Direct Numerical Simulation of Navier-Stokeguations or Large Eddy Simulation).

The deterioration of model’s quality is particularly n&able in distorted frequencies, phases and amplitudes of
mode coéicients, under- or over-prediction of turbulent kinetic eyyeevel and diferent dynamical responses.

To correct the behaviour and improve the accuracy of Red@reér Galerkin Model, the cdigcients of the
Galerkin system of ODE is adjusted [8].

Such a calibration might be done by addition of artificiakldg” viscosities to recover thefects of truncated
modes [1, 37, 38].

This artificial viscosity might be defined as a single, constaluevr (15), orN parametersy; related to each
one of the modes (15).

vV
5=~ (15)

=, i=1eN (16)

Instead of calibrating “eddy” viscosities, all linear ¢beientsl;: [17] or both linear and quadratic cieients
qﬁk [8] of Galerkin System might be modified in order to improve tlesults of calibration.
The resulting system of equations might be written as fatow

3 ZVZ ij +| aJ"'ZZ qle+q|Jk aja 17)

j=0 j=0 k=0
fi(a)
The model presented above is a subject of the optimizatiooeglure, where objective function, related to the
prediction error of the model, is minimized.

The choices of mean square error of the moddfments (18) or their time-derivatives (19), referred asjlket
and Poincaré calibration, respectively [33, 4], are peval

N N N
0

N T ,
0 =Zf (%ROM(t)—aiDNS(t)) dt = Min (18)

w —Z [ @0 - 1o ai=win (19

wherea?°M anda°M represent mode céiicients and their time derivatives for Galerkin Mod#tN= - the codficients
calculated from Proper Orthogonal Decomposition of refeessimulation data, anti(a®NS(t)) - the values resulting
from the substitution oéPNS to the function on the right-hand side of equation 17.

Another error definitions might based on the turbulent kinebergy:

N N 2

X2 = f (Z ROM(t) Z DNS(t) dt = Min (20)
i=1 i=1
or modal energy flow balance:
N
x3:= ) (Pi+Ci+D+T+F)?=Min (21)

i=1
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(whereP;, Ci, Dj, T; andF; represent modal production, convection, dissipatiomgfier and pressure power, respec-
tively), leading to E-flow calibration, proposed by NoacB]3
In this work the optimization procedure based on GenetioAthm [49] is used.

6. Results of computations

6.1 2D flow around NACA-0012 airfoil

Two test-cases have been chosen for Reduced Order Modeltintpe first case, two-dimensional, incompressible,
viscous flow around oscillating NACA-0012 airfoil is anadgsusing in-house DNS solver. Reynolds number, related
to the chord length, iRe= 100, and the angle of attackds= 15°. For these parameters the flow with fixed boundaries
has one stable, steady solution. Prescribed sinusoideviease oscillations of the airfoil, with amplitude equathie

one fourth of the chord length and period equal 5 secondgjnbethe flow making it periodic with bounded amplitude
of (limit cycle) oscillations (fig. 2).

Figure 2: Finite element mesh for a flow around NACA-0012ddlileft) and a snapshot of limit-cycle oscillations

Only one form (transverse direction) of CFD mesh displagesngiq and velocitiesigig makes the separation
of space and time variables trivial:

Xgria = USaS = uSAsin(ft)
Ugrig = UT&S = uFAfcogft), (22)
wheref is the frequency and is the amplitude of airfoil oscillation.

Proper Orthogonal Decomposition has been performed orskogpfrom 7 periods of the flow described above.
First four of resulting modes, depicted in fig. 3, carry altr@i®% of information about kinetic energy of fluctuation.

Figure 3: Streamlines of the most dominant POD modes for adlmund NACA-0012 airfoil

State equations have been projected onto the space spayriigst lgight POD modes (covering 8% of
kinetic energy of fluctuation). Two Galerkin models haverbeenstructed.

In the first case (fig. 4, left), Galerkin model is formulatedBulerian approach, neglecting motion of the
boundary and mesh velocities. It can be seen, that initi@llason is damped, as expected for subcritical values of
Reynolds numbers.
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Itis obvious, that both mode basis and approximated gongrguations have to be formulated in ALE approach
to model the flow with moving boundary, as is the case of se@uaildrkin model (fig. 4, right).

Including the velocity of the mesh in convective term (9) gmdper calibration terms (17), Galerkin model in
ALE approach is characterized by the same frequency andsaltne same amplitude as reference data from ALE-

based DNS.
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Figure 4. Amplitudes for first two modes resulting from PORamposition of ALE DNS data (thin lines) and Galerkin
models (thick lines). Eulerian ROM neglecting mesh velesitleft) and ALE-based ROM (right) are depicted

6.2 3D flow around AGARD 445.6 wing

The second configuration is AGARD 445.6 wing (fig. 5), anatlygsing DLR Tau Code solver.

7 774401000/4
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Figure 5: Computational domain and meshes for CFD (left)@8M (right) analysis of AGARD 445.6 wing

In this case, the Reynolds number is assumed high enoughgtechdoundary layerfects and solve Euler
equations. Mach number equdis = 0.32 and the angle of attack is = 0.26°. The deformations of the struc-

7
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ture (modelled as a “plate model”) under aerodynamic lo&dcafculated using in-house FEM solver. For a given
configuration, flutter phenomena is observed (fig. 6).
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Figure 6: Z-component of the displacement of a node on theéadrailing edge of the AGARD wing

The snapshots from 4 periods of oscillations (fig. 6, rigltnputed using high-fidelity aeroelastic system
have been decomposed using POD. The most energetic ofingsumbdes, representing 996 of kinetic energy of
fluctuation, are depicted in fig. 7.

Figure 7: Streamlines of the most dominant POD modes for adlmund AGARD 445.6 wing

It can be seen that for Euler flow, as opposed to Direct Nurak8anulation of Navier-Stokes equations, the
modes do not form pairs.

The projection of the flow snapshots onto the space spann®&Oiy modes allows to calculate the reference
values of mode amplitudes. For the first two modes, they guetdsl in fig. 8.

The resulting functions are characterized by the same émsguand growth rate as the graph of node displace-
ments (fig. 6, right).
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Figure 8: Amplitudes for first two modes resulting from POz amposition of reference data

7. Summary

In this paper high-fidelity aeroelastic simulations and tRexdi Order Models of a flow with a moving boundary are
presented.

Arbitrary Lagrangian-Eulerian approach allows, by intioohg convective velocity into the governing equations,
the modelling of rapid boundary movement like airfoil anchgrbscillation. Galerkin projection of governing equation
(either Navier-Stokes or Euler) in ALE formulation resultsadditional quadratic terrqﬁk in the Galerkin system,
representing triadic interactions between two “flow” modad one “mesh velocity” mode.

In this paper mode bases, resulting from Proper OrthogorabBiposition of numerical simulation data, have
been used. The mode basis construction Reduced Order nizdeleen demonstrated on a 2D, viscous flow around
NACA-0012 airfoil and 3D, inviscid flow around AGARD 445.6 mg. It has been shown, that the design of Reduced
Order Models of the flows with moving boundary is possiblengsALE approach.

Further investigations include the extension of the rangapplicability of the model, by parametrization of
mode bases using Continuous Mode Interpolation [31].
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