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Abstract
Spacecraft collision still does happen seldom, but the loss of a satellite can not be afforded: this
high risk therefore has to be addressed carefully. To support the decision to start a collision avoid-
ance maneuver, a dedicated tool is the probability of collision between the debris and the satellite
[12]. Crude Monte Carlo (CMC) could be a way if it could cope with very small probabilities,
say 10−6, within the available simulation budget and time. The methodology nowadays in use
is a numerical integration made tractable by physical hypothesis and numerical approximation
[7]. We advocate the Adaptive Splitting Technique (AST), presented in [4], to our purpose as
it avoids all the hypothesis needed for the numerical integration and clearly outperforms CMC
w.r.t. rare events. However, AST requires tuning. We provide experience based empirical tuning
rules to foster a wider spreading of the AST in the applied world.

1. Introduction

The February 10th 2009, tough their configuration did not appear troublesome [12], active commercial satellite
Iridium and out of order Russian satellite Cosmos collided. The impact produced number of smaller debris.
Most of them can destroy any artificial space object, whether in use or not, they might encounter. Space
debris are a threat to human space activity.

Dealing with space debris rises a number of questions. What to do with active satellites turning inactive?
How to clean at least the frequently used orbits? How to design future satellite so that they pollute as less
as possible when they go out of order? How to ensure the safety of active satellites? We focused on this last
question1.

The safest practice with respect to satellites is avoiding collision. Avoidance maneuvers are efficient
but costly and reduce the possible usage time. However, there is no point in saving fuel if it ends up spread
in space after a collision. Satellite safety responsible teams have to design a trade–off between fuel saving
and collision avoiding. Avoidance maneuvers are decided, among other parameters, based on the estimated
collision probability.

The Iridium–Cosmos collision was an unlikely event which probability cannot be calculated manually
and therefore as to be estimated. It even qualifies as a rare event i.e. an event which probability is less than,
say, p = 10−6. Crude Monte Carlo (CMC) is unable to estimate such a low probability with a reasonable
cost: about 108 simulations are needed to perform an estimate whose standard deviation is a tenth of p. This
is not affordable and a specific tool is required.

According to our knowledge, the current methodology in the NASA [7] to estimate the collision prob-
ability between two orbiting objects is integrating a Rician probability density function (pdf) over a circular
sub domain of the collision plan. Actually, the Gaussian uncertainty with respect to the real location and
speed of the satellites when last observed via Earth based radars is deemed to remain Gaussian as the
satellites go on their tracks, although the dynamics is nothing but linear. Said tracks are assumed, under
specified hypothesis, to be straight lines in the encounter region so as to conveniently define a collision plan.
The error ellipsoids are combined then projected on the collision plan and eventually numerically integrated.

1This paper is somewhat between a follow–up and a correction of [20]
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However easily implemented and fast to calculate this method is, the two hypothesis it is based on are
major drawbacks.

1. Uncertainty linear propagation.

2. Straight line tracks in the vicinity of the time of closest approach.

We find these hypothesis very strong and looked for an other way.
We therefore searched the existing rare event related literature to find an affordable, hypothesis free

rare event dedicated probability estimation technique. This paper tells this quest. We first introduce the
spacecraft collision issue via the Iridium-Cosmos case. We then try to estimate the collision probability
through Crude Monte Carlo (CMC) in section 3. Next, Cross–entropy and the non parametric adaptive
importance sampling, two rare event probability estimation techniques, are introduced and tried out as
well. In section 5 we present the Adaptive Splitting Technique (AST), the special rare event probability
estimation technique we advocate to our purpose, and show it can provide valuable accurate information in
this framework and give some insight with respect to its tuning.

2. Spacecraft encounter and noised state measurement

On February 10, 2009, a commercial Iridium communications satellite and a defunct Russian satellite Cosmos
collided, though their configuration was not reported dangerous [12]. In this section, the question “what was
the probability it happened?” is formalised.

In order to understand the predicament an active spacecraft managing team can find itself in, we will
describe the geometrical issue at hand and then the main source of randomness.

2.1 A basic geometry problem

Consider two satellites orbiting around the Earth in a Galilean frame of reference with our planet as origin
and equipped with the Euclidean distance. This three-body problem will be considered a double two-body
problem: each satellite interacts through gravity only with the Earth and not with the other satellite. Besides,
the Earth and the satellites are assumed to be homogeneous spheres with radii dE , d1 and d2. The collision
distance is therefore dc = d1 + d2. We wonder about the relative position of the two satellites: might they
collide during a given time span I = [ts, te]?

2.2 A convenient model of dynamics

To keep things simple, orbital mechanics being not our topic, we will use Kepler mechanics. One can use
more advanced models such as SGP4 [17] if wanted. The discussed probability estimation methodologies are
independent of the method.

At time t, the satellites will be represented by their states ~s1(t) and ~s2(t) i.e. their positions ~r1(t) and
~r2(t) and their speeds ~v1(t) and ~v2(t) such that ~si = (~ri, ~vi).

In our setting, the speeds evolve according to the same well-known Ordinary Differential Equations
defining the two body problem

∀t, d~vi
dt

= −a ~ri
r3
i

(1)

where a is a positive constant given by physics.
This ordinary differential equation (ode) is analytically solved in many textbooks and its solution

depends continuously and in a bijective fashion on the given so called initial conditions: its value ~smi at tmi ,
the measurement time, through Φ the ode’s resolvant i.e. its solution map:

i ∈ {1, 2},∀t ∈ I, ~si = Φ(~smi , tmi , t) (2)

At this point, there is a natural way to clear out the collision issue using

δ = min
t∈I
{‖~r2 − ~r1‖(t)} (3)

2
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Figure 1: Iridium-Comos distance on collision day according to TLE.
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 Iridium−Kosmos Distance on February 10 th  2009

t ∈ I 7→ ‖~r2 − ~r1‖(t) experimental convexity, figure 1, makes δ available through numerical optimisation and
its associated test:

ξ(~sm1 , tm1 , ~sm2 , tm2 , I) =
{

1 if δ ≤ dc
0 otherwise (4)

eventually closes the deal. Things would be all that easy and deterministic, had randomness not barged in.

2.3 Random measurements lead to uncertainty

In real life, the states are not monitored around-the-clock: they are merely measured from times to times, by
a radar. The Two Line Elements (TLE) provided by NORAD sum up this information and feed the models
with the (~smi , tmi ) pairs. However, TLEs are inaccurate and their inaccuracy is unknown. This uncertainty
is our very issue. To cope with this and to better reflect the reality, we added independent, identically
distributed (iid) noises ~ε1 and ~ε2, with density f~ε, to the models’ inputs smi .

~E =
(
~ε1
~ε2

)
f~E(~e) = f~ε(~ε1)× f~ε(~ε2) (5)

The collision issue can not be answered in a cut-and-dried way anymore as it has to be rephrased in a
probabilistic fashion itself: what is the probability of collision between the two satellites?

Via the random counterpart of our deterministic geometrical problem

i ∈ {1, 2},∀t ∈ I, ~Si = Φ(~smi + ~εi, t
m
i , t) = (~Ri(t), ~Vi(t))

∆ = mint∈I{‖~R2 − ~R1‖(t)}
Ξ = ξ(~sm1 + ~ε1, t

m
1 , ~s

m
2 + ~ε2, t

m
2 , I)

(6)

this question is equivalently stated as

P[{ The satellites collide during I}] = P[∆ < dc] = E[Ξ] (7)

We now face a plain expectation estimation problem.
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3. The Crude Monte Carlo

As an explicit analytical way to calculate E[Ξ] is unlikely to be found, one will most likely make do with
an estimation. Crude Monte Carlo (CMC) is a very convenient and reliable way to reach it, if the sought
probability is not too low, indeed: CMC can not handle rare event probability estimation at a reasonable
cost.

3.1 A basic set of tools and notations

CMC’s estimators for Ξ’s expectation E[Ξ] and variance V[Ξ] are defined respectively as µ, the empirical
mean and σ2, the empirical variance of n iid tests, Ξi, i ∈ {1, · · · , n}:

µ(Ξ, n) ≡ 1
n

n∑
i=1

Ξi σ2(Ξ, n) ≡ 1
n

n∑
i=1

(Ξi − µ(Ξ, n))2 (8)

As the empirical mean of iid random variables, µ(Ξ, n) is a random variable as well and we hope its variance
is as small as possible with respect to its estimated mean. To measure this, m iid µ(Ξ, n) throws are made
in order to calculate µ(Ξ, n)’s empirical relative deviation (Erd) estimator ρ

ρ(µ (Ξ, n) ,m) ≡ σ(µ(Ξ, n),m)
1
m

∑m
i=1 µ(Ξ, n)i

(9)

as a way to measure its accuracy as the ratio of its standard deviation over its empirical mean.

3.2 Why CMC can not cope with rare events

Using the independence of the Ξi and the fact that Ξ2 = Ξ for it is a binary 1 or 0 mapping, one can write
the following easily.

E[µ(Ξ, n)] = E[Ξ] V[µ(Ξ, n)] = E[Ξ](1− E[Ξ])
n

(10)

If the sought probability E[Ξ] is 10−4, to be accurate up to a tenth of the real value i.e. to have√
V[µ(Ξ, n)]/E[Ξ] ≤ 10−1

almost n ≈ 106 points are needed!
Most of the time though, in a real context, there is no way one can generate that many samples. Yet,

this degree of accuracy is becoming a standard, for amounts of money at stake are huge (the Iridium satellite
program is worth at least 200 M$) and safety standards more and more demanding.

3.3 A huge CMC estimation as reference

A huge Monte Carlo estimate was done to serve as a reference in our case. It benefited using fast to evaluate
Kepler dynamics instead of SGP4 and an unreasonable more than a week calculation time on four computers.

n = 77 · 106 P [∆ ≤ dc] ≈ 1.15 · 10−6 = p (11)

4. An overview of Importance Sampling

The Importance Sampling (IS) is an attempt at modifying the CMC so as to deal properly with a given rare
event case [9, 1, 2] and more generally stands as a variance reduction technique. It takes advantage on the
integral representation of the expectation of the random output of any transfer function φ with a random
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input X ∼ fX and conjugates it with the available extra information to propose a hopefully better suited
input space sampling random variable Z ∼ fZ called auxiliary random variable.

E [φ (X)] =
∫
X
φ (x) fX (x) dx =

∫
X
φ (z) fX (z)

fZ (z) fZ (z) dz = E
[
φ (Z) fX (Z)

fZ (Z)

]
(12)

Formally, the only requirement to assert the existence of dµ
dν via the Radon-Nikodym theorem is that proba-

bility density function fX is absolutely continuous w.r.t. fZ , i.e. ∀A ∈ X ,
[∫

A fX = 0
]
⇒
[∫

A fZ = 0
]
This

way fZ merely generates the very same events as fX but with another probability, purposely making rare
events more frequent.

The underlying hope is that with a good choice of fZ , the IS estimator, which is unbiased, can yield
reduced variance with respect to CMC, keeping its convenient implementation. Actually, once fZ is chosen,
it suffices to perform a CMC estimation of E

[
φ (Z) fX (Z)

fZ (Z)

]
. Eventually, it all boils down to choosing an

appropriate auxiliary density.

4.1 Optimal auxiliary density design

Being of Monte-Carlo type, the Importance Sampling expectation estimator Ŷn is a random variable. Its
performance depends on how appropriately chosen the auxiliary density is.

The ultimate goal is minimising V
[
Ŷn

]
, making it at least less than what could be achieve through

CMC. Calculations provide an optimal auxiliary density.[
V
[
Ŷn

]
is minimal.

]
⇔
[
∀x ∈ X, f∗Z (x) = |φ| (x) fX (x)

E [|φ| (X)]

]
(13)

Flabbergastingly, sampling according to f∗Z directly comes as both impossible and pointless as it requires a
normalizing constant (E [|φ| (X)]) as difficult to calculate as the very sought value. This, nonetheless gives
an hint about about how to design the auxiliary density fZ : as similar to f∗Z as possible.

4.2 Cross–Entropy and Non parametric Adaptive Importance Sampling

Cross–Entropy (CE) and Non parametric Adaptive Importance Sampling (NAIS) are two ways of building a
proxy to f∗Z . CE defines fCEZ as the closest element to f∗Z , in the sens of the Kullback-Leibler divergence,
within a parametric pdf family [3, 8, 21]. The (NAIS) strategy is two folded: first build fNAIS

Z , a proxy to
f∗Z , via a K probability kernel mixture, then use it to estimate the desired probability [19, 23].

We failed to use CE efficiently. We first used CE with the family of Gaussian distributions with diagonal
variance matrices. Random minimal distance between satellites ∆ was divided by a factor two to ten with
respect to CMC, but no collision was simulated. CE was then used with the family of Gaussian distribution
as whole, i.e. without any variance matrix structure hypothesis but symmetry and positivity. This led to
small to no improvement at all.

As far as NAIS is concerned, experience showed us it is cumbersome and inaccurate when the sampling
space dimension is over 10 [18], so it was not used.

The issue with CE is the choice of an adapted parametric pdf family. Being devoid of any analytical
insight about the δ mapping, we are clueless about what is an appropriate choice. In the NAIS case, the
same issue applies with respect to the the kernel shape and is topped with an increased calculation burden.
The following method, Adaptive Importance Sampling, solves these two problems, yet deals efficiently with
rare events.

5. The Adaptive Splitting Technique

So as to estimate the unlikely collision probability, a rare event dedicated technique is needed. We want it
able to deal with a black box mapping and not too calculation consuming. The Adaptive Splitting Technique
(AST) seems a good candidate.

5
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The Splitting Technique (ST) is a rare event dedicated technique, a good introduction to which can be
found in [15] and [16]. In order not to perform quite intractable analysis or integration w.r.t. φ, a ST variant
that would adapt to the information gathered on the fly is used: the Adaptive Splitting Technique (AST) as
explained in [6] for a dynamic case and in [5, 11] for the static case, such as the one here at hands.

5.1 An intuitive approach to AST

The basic idea here is divide and conquer : instead of estimating the very low probability directly, the work
is divided in estimating a sequence of easier probabilities and eventually calculating the sought value as a
plain product. This is the very purpose of this Bayesian formulation of our problem.

P[∆ ≤ dc] =
K∏
i=1

P[∆ ≤ li|∆ ≤ li−1] (14)

where l0 =∞ ≥ l1 ≥ · · · ≥ lK = dc form a decreasing sequence of thresholds to be defined later. Hopefully,
we have just reformulated our hard to estimate expectation as the product of easy to estimate conditional
expectations!

The Adaptive Splitting Technique (AST) is a way of making this wish come true in an iterative three
step way. Start with a sample of iid throws of ∆ known to be under threshold li. With i = 1, this is only
performing a plain CMC simulation. Then, and until the threshold is less than dc, do as follows:

1. Define li+1 as a the p–quantile of the current sample with 0.75 ≤ p ≤ 0.8 [14, 10].

2. Resample uniformly among the realisations under the new threshold.

3. Use the selected points to sample new points conditionally to being under li+1.

When the threshold is lower than dc, conclude that

P[∆ ≤ dc] ≈
K−1∏
i=1

pi × p•K−1 (15)

where p•K−1 is the estimated probability of collision given that the minimum relative distance is less than
lK−1.

The general idea of AST is simple but step 3 needs to be detailed.

5.2 Reversible kernel resampling

Step 3 is achieved thanks to a f~E-reversible Markov kernel M(·, ·). M(·, ·) : Rd × Rd → R is mapping such
that

∀x ∈ Rd, M(x, ·) : Rd → R is a density function. (16)

∀x ∈ Rd, M(x, ·) stands as a x–specific random way to propose another Rd point. Let us now impose a
constraint on M so as to respect the probability law. M is said to be a f~E-reversible Markov kernel if

∀(x, y) ∈ Rd × Rd, f~E(x)M(x, y) = f~E(y)M(y, x) (17)

This equation is known to physicists as the detailed balance equation [13]. It means that if from a f~E set,
you use M to generate another, then

• the new set is distributed according to f~E as well: this is the invariance property.

• statistically, no one can say which set generated the other: this is the reversibility property2.
2Reversibility ⇒ Invariance.
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Eventually, assume Xi ∼ f~E|i = 1∆≤li
f~E∫

1∆≤li
f~E

and define

ψi(Xi) =
{
M(Xi, ·)’s proposal (throw), Yi if ∆(Yi) ≤ li

Xi otherwise (18)

Thanks to reversibility, ψi is distributed according to f~E|i as well. We now can grow and inflate a f~E|i–sample
set thanks to the f~E|i available points via a f~E-reversible Markov kernel.

However, the iterative nature of the algorithm is such that points share a common genealogy. That,
at the end of the day, can translate into increased estimator variance. We have no theoretically proven way
to avoid that yet. The intuition is that using functional composition3 i.e. ψ◦(ω)

i , leads to lower and lower
variance as ω increases. It was shown in [22] that under mild conditions, ω > 1 cannot increase variance and
might even help. One can hence iterate ψi at will or based on a stopping time e.g. until 90% of the points
moved from their original position.

5.3 The AST algorithm

Let us now state the AST algorithm.

Algorithm 5.1 (Adaptive Splitting Technique). So as to estimate P [∆ ≤ dc], proceed as follows.

1. Generate η iid throws of ∆.

2. Set κ = 1.

3. Calculate the empirical p-quantile lκ.

4. While lκ ≥ dc, do:

(a) Select throws under lκ and discard others.
(b) Replace discarded points resampling uniformly with replacement among selected points.

(c) Apply ψ◦(ω)
κ to all the points.

(d) Increment κ by one: κ = κ+ 1.
(e) Calculate the empirical p-quantile lκ.

5. Estimate p•κ−1.

6. Conclude that P[∆ ≤ dc] ≈ pκ−1 × p•κ−1

η, p, ψ and ω are fixed before hand. The number of quantiles i.e. κ’s ultimate value, is random. The AST
estimator will be denoted

Ỹ + ν(dc, η, p,M, ω) (19)

and the total number of generated points is

N = η × (1 + ((κ− 1)× ω)) (20)

6. Experimental Results

Let us now proceed to the application, describing the noise model, the actual AST parameters, especially
the Markov kernel tuning, and comparing the results delivered by CMC and AST. Eventually, some insight
about the AST results sensibility with respect to its parameters will be given.

Refer to table 1 for the definition of f~ε, M(x, dy) and the tuning parameter α.
3Notation convention: f◦(n+1) = f◦(n) ◦ f and f◦(0) = Id.
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6.1 Markov kernel tuning

Given a point X ∼ N (06, D
2), the Markov kernel proposal is

Y ∼ αX +W√
1 + α2

where W and X are iid (21)

To choose α > 0, there is no theoretical result yet. According to [4], one should make big steps at the
beginning and make smaller and smaller steps, as the thresholds li decrease. The chosen heuristic is setting
initially α = 1 and adapt it in the course of the algorithm:

α =
{

α× θ if over 50% of accepted transitions
α/θ if under 50% of accepted transitions , where θ > 0. (22)

We experimentally found out it leads to estimates with lesser variance than fixing α.

6.2 Comparison between CMC and AST

Using parameters in table 1, the results4 in table 2 were obtained with a reasonable simulation budget. They
show that AST estimated more accurately than CMC as its estimators has a way lesser relative variance as
it was divided by 5, and for a very similar cost as it consumed on average the same amount of points.

As a matter of fact, AST outperforms CMC widely when it comes to estimating a rare event probability
with a limited budget. For instance, using table 1 but setting

Table 1: Parameters

TLEs : 01/13/09 D = 102Diag(4, 4, 10, 4, 4, 7) f~ε ∼ N (06, D
2) M(x, dy) ∼ N ( αx√

1 + α2
,

1
1 + α2D

2)

(23)
dc = 104 n3 · 105 m = 100 θ = 1.1 (24)
η = 1250 p = 0.75 ω = 5 (25)

η = 500 p = 0.20 ω = 25 (26)

one can have the following results

η = 1.0 · 10−6 p = 42.94% ω = 89375 ω = 4.4% (27)

that CMC cannot deliver.

Table 2: AST-CMC comparison

Mean estimate Erd Mean simulation number Erd
CMC 1.1 · 10−6 1.7258 300000 0
AST 1.9 · 10−6 0.3232 309060 0.0232

6.3 AST sensitivity

To test AST’s sensitivity to its parameters, we changed some parameters to see their impact on the estimated
value. Results are presented in table 3.

4Erd stands for Empirical relative deviation i.e. empirical standard deviation over mean ratio as explained at 9.
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• Column–wise

– Column 1 shows that if the “shaking parameter” θ does not evolve, regardless of how many times
the transition kernel is applied, AST fails to provide an estimation. A possible explanation is that
a static θ can not adapt itself so as to efficiently explore the input space.

– Column 1.05 and 1.10 show that the more the transition kernel is applied, the closer to p the
estimation and the lower the variance but the costlier the estimation. It is impossible to decide
whether the variance decrease is due to the budget increase or a better usage of it.

• Row–wise

– All three rows suggest that a gradual variation of α leads to a smaller variance.
– Comparison across rows is difficult because then both N and ω change.

The best trade–off seems to have θ close to but different from 1 and as many kernel application as possible
and, as could be expected, high η i.e. as many simulated points as possible.

Table 3: Kernel variance and iteration number influence with many cloud particles.
Experience parameters dcol η m p κmax

104 2000 100 4
5 300 .

H
HHHHω

θ 1 1.05 1.1

5 869.2 2992 5.25 · 10−26

3.3 0 98.9
205.0 657.5 0.40
5.1 1.8 25.1

180.5 640.1 0.6
3.5 1.8 23.9

10 1784.8 5982 9.45 · 10−26

5.4 0 79.6
376.8 1235.6 0.96
5.8 1.6 19.9

340.2 1232 1.01
5.9 1.5 20.7

20 3470.2 11962 1.8 · 10−25

3.46 0 56.5
748.3 2449.6 1.06
3.8 1.3 15.1

787.2 2450.8 1.07
3.9 1.4 18.0

Legend

• ω is how many times the transition kernel is used.

• θ is the transition kernel variance.

• κmax is the maximum threshold number. When κ reaches this value, whatever the threshold value, the
estimated probability is P[∆ ≤ dc] ≈ pκ × p•κ.

• Results are presented as follows:
µ (T,m) µ (N,m) · 10−3 µ

(
Ỹ ,m

)
· 106

ρ (T,m) ρ (N,m) ρ
(
Ỹ ,m

)
• ρ is expressed in percentages.

7. Conclusion

So as to estimate probability collision at reasonable cost without relying on restrictive hypothesis, we searched
the rare event probability estimation literature, as Crude Monte Carlo could not deliver. According to our
experiments, the Adaptive Splitting Technique (AST) is a better choice with this respect than Cross–Entropy
or Non Parametric Importance Sampling, two other rare event dedicated techniques. We advocate AST to
this purpose.

The Adaptive Splitting Technique, however, requires tuning. We provided experimental insight about
how to do it: a shaking parameter close to one but not equal to one and many transition kernel applications.
These empirical results remain to be backed up with theoretical results.
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Nonetheless, for it can be conveniently used with any black–box mapping and requires not hypothesis
about it, we reckon AST is a worthy choice when it comes to estimating rare event probability or extreme
quantile in an industrial context.
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